
A remark on least energy solutions in RN

Louis Jeanjean∗ and Kazunaga Tanaka∗∗
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Université de Franche-Comté
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Abstract: We study a mountain pass characterization of least energy solutions
of the following nonlinear scalar field equation in RN :

−∆u = g(u), u ∈ H1(RN ),

where N ≥ 2. Without the assumption of the monotonicity of t 7→ g(t)
t , we show

that the Mountain Pass value gives the least energy level.

0. Introduction
In this note we study the following nonlinear scalar field equations in RN :

−∆u = g(u), u ∈ H1(RN ), (0.1)

where N ≥ 2. In particular, our aim is to enlighten a mountain pass characterization of
least energy solutions. We recall that a solution ω(x) of (0.1) is said to be a least energy
solution if and only if

I(ω) = m, where m = inf{I(u); u ∈ H1(RN ) \ {0} is a solution of (0.1)}. (0.2)

Here I : H1(RN ) → R is the natural functional corresponding to (0.1)

I(u) =
1
2

∫

RN

|∇u|2 dx−
∫

RN

G(u) dx, (0.3)

where G(s) =
∫ s

0
g(τ) dτ .

In the fundamental papers [BL] and [BGK] the authors establish the existence of
least energy solutions through the minimization problems :

Minimize
{∫

RN

|∇u|2 dx;
∫

RN

G(u) dx = 1
}

for N ≥ 3,

Minimize
{∫

R2
|∇u|2 dx;

∫

R2
G(u) dx = 0

}
for N = 2.

Precisely, they show
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Theorem 0.1. ([BL] for N ≥ 3, [BGK] for N = 2). Assume

(g0) g(s) ∈ C(R,R) is continuous and odd.

(g1) −∞ < lim inf
s→0

g(s)
s

≤ lim sup
s→0

g(s)
s

= −ν < 0 for N ≥ 3,

lim
s→0

g(s)
s

= −ν ∈ (−∞, 0) for N = 2.

(g2) When N ≥ 3, lim
s→∞

|g(s)|
s

N+2
N−2

= 0.

When N = 2, for any α > 0 there exists Cα > 0 such that

|g(s)| ≤ Cαeαs2
for all s ≥ 0.

(g3) There exists ξ0 > 0 such that G(ξ0) > 0, where G(s) =
∫ s

0

g(τ) dτ .

Then m > 0 and there exists a least energy solution ω0(x) of (0.1) satisfying ω0(x) > 0 for
all x ∈ RN and, as any solution u(x) ∈ H1(RN ) of (0.1), the Pohozaev identity :

N − 2
2

∫

RN

|∇ω0|2 dx = N

∫

RN

G(ω0) dx. (0.4)

Under the conditions (g0)–(g2), it is shown in [BL, BGK] that I(u) is well-defined
on H1(RN ) and of class C1. In Lemma 1.1, we show that I(u) has a Mountain Pass
Geometry. Indeed it has the following properties :

(i) I(0) = 0. (0.5)
(ii) There exist ρ0 > 0, δ0 > 0 such that

I(u) ≥ δ0 for all ‖u‖H1(RN ) = ρ0. (0.6)

(iii) There exists u0 ∈ H1(RN ) such that

‖u0‖H1(RN ) > ρ0 and I(u0) < 0. (0.7)

Thus if we define the following minimax value (Mountain Pass value, MP value for short)

b = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (0.8)

where
Γ = {γ(t) ∈ C([0, 1],H1(RN )); γ(0) = 0, I(γ(1)) < 0}, (0.9)

we have b > 0. At this point it is natural to ask if b is a critical value and whether the
corresponding critical points are least energy solutions, that is, if b = m holds or not.

Our main result is the following theorem which gives a positive answer :

2



Theorem 0.2. Assume (g0)–(g3). Then it holds

b = m,

where m, b > 0 are defined in (0.2) and (0.8). That is, the Mountain Pass value gives the
least energy level. Moreover, for any least energy solution ω(x) of (0.1), there exists a path
γ ∈ Γ such that ω(x) ∈ γ([0, 1]) and

max
t∈[0,1]

I(γ(t)) = I(ω).

Remark 0.3. In the case where a least energy solution ω(x) of (0.1) satisfies ω(x) > 0
for all x ∈ RN , the path γ ∈ Γ of Theorem 0.2 can be chosen such that γ(t)(x) > 0, for
all x ∈ RN , ∀t ∈ (0, 1] (see Lemma 2.1).

In many non-autonomous semi-linear elliptic problems, it turns out that information
on the least energy level of an associated autonomous problem is crucial in these years. The
least energy level often appears as the first level of possible loss of compactness. Consider,
for example, a problem of the type

−∆u = g(x, u), u ∈ H1(RN ), (0.10)

where g(x, u) → g∞(u) as |x| → ∞. We assume the following functionals J(u), J∞(u) are
C1 on H1(RN ) and have a MP geometry.

J(u) =
1
2

∫

RN

|∇u|2 dx−
∫

RN

G(x, u) dx, J∞(u) =
1
2

∫

RN

|∇u|2 dx−
∫

RN

G∞(u) dx.

Here G(x, s) =
∫ s

0
g(x, τ) dτ and G∞(s) =

∫ s

0
g∞(τ) dτ . We denote the corresponding MP

values by c and c∞. Suppose in addition that J(u) has a bounded PS sequence at the level
c. Then, from the work of P. L. Lions on concentration-compactness [L], it is well known
that J(u) has a critical point at the level c, if c < m∞. Here

m∞ = inf{J∞(u); u ∈ H1(RN ) \ {0} is a solution of (0.10)}.
Thus if one knows that c∞ = m∞, to get a critical point, it is sufficient to show that
c < c∞. Checking this inequality is easier than proving directly that c < m∞ because of
the minimax characterizations of c and c∞. To insure that c∞ = m∞, the standard way
so far is to assume that

s 7→ g(s)
s

: (0,∞) → R is non decreasing. (0.11)

This property enables to make use of the Nehari manifold: M = {u ∈ H1(RN ) \
{0}; J ′∞(u)u = 0}. Under (0.11), any non-zero critical point of J∞ lies on M and the
least energy level m∞ is characterized as

m∞ = inf
u∈M

J∞(u).

This readily implies that c∞ = m∞. What our Theorem 0.2 is saying is that the equality
c∞ = m∞ always holds without the assumption (0.11).
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Among other applications of our mountain pass characterization of the least energy
solutions of (0.1) we mention singular perturbation problems, i.e., the search of peak
solutions. For this subject we refer, for example, to Ni-Takagi [NT] and del Pino-Felmer
[DF]. An autonomous problem of the type of (0.1) appears in these problems through a
scaling argument. Precise estimates are necessary on its least energy level in order to get
peak solutions. Usually the condition (0.11) is required for these estimates. In [JT] we
present some results on this topic which relies on our Theorem 0.2.

To give a proof of Theorem 0.2, we make use of properties of the dilation ut(x) =
u(x/t) (t > 0) as in [BL, BGK]. Actually, for any least energy solution ω(x) of (0.1), we
construct, in Lemma 2.1, a path γ ∈ Γ such that

ω ∈ γ([0, 1]) and max
t∈[0,1]

I(γ(t)) = m.

The existence of such paths implies that b ≤ m. To show that b ≥ m, we introduce the set
P of non-trivial functions satisfying Pohozaev identity (0.4) :

P = {u ∈ H1(RN ) \ {0}; N − 2
2

∫

RN

|∇u|2 dx−N

∫

RN

G(u) dx = 0}.

We will show, in Lemma 3.1, that

m = inf
u∈P

I(u)

and, in Lemma 4.1, that
γ([0, 1]) ∩ P 6= ∅ for all γ ∈ Γ.

This directly leads to b ≥ m.

Notation : We will use the following notation :

‖u‖p =
(∫

RN

|u|p dx

)1/p

for p ∈ [1,∞),

‖u‖∞ = ess sup
x∈RN

|u(x)|,

‖u‖H1 = (‖u‖22 + ‖∇u‖22)1/2.

1. Mountain Pass Geometry

We observe here that under (g0)–(g3) the functional I(u) defined in (0.3) has a mountain
pass geometry.

Lemma 1.1. Assume (g0)–(g2). Then I(u) satisfies (0.5)–(0.6).

Proof. We deal with (0.6). (0.5) trivially holds. First we prove (0.6) for N ≥ 3. By the
assumption (g1)–(g2), for any ε > 0, there exists Cε > 0 such that

−g(s) ≥ (ν − ε)s− Cεs
N+2
N−2 for all s ≥ 0.

4



Thus, recalling that g(s) is an odd function, we have, for a C ′ε > 0

−G(u) ≥ 1
2
(ν − ε)s2 − C ′ε|s|

2N
N−2 for all s ∈ R .

It follows from the embedding H1(RN ) ⊂ L
2N

N−2 (RN ), that for a C ′′ε > 0

I(u) ≥ 1
2

∫

RN

|∇u|2 dx +
ν − ε

2

∫

RN

|u|2 dx− C ′ε

∫

RN

|u| 2N
N−2 dx

≥ 1
2

min{1, ν − ε}‖u‖2H1 − C ′ε‖u‖
2N

N−2
2N

N−2

≥ 1
2

min{1, ν − ε}‖u‖2H1 − C ′′ε ‖u‖
2N

N−2

H1 for all u ∈ H1(RN ).

Therefore choosing ρ0 > 0 small, we can see that (0.6) holds.
Next we prove (0.6) for N = 2. By the assumptions (g1)–(g2), for any α > 0 there

exists Cα > 0 such that

−g(s) ≥ 1
2
νs− Cαs4eαs2

for all s ≥ 0.

Since
∫ s

0
τ4eατ2

dτ = 1
2αs3(eαs2 − 1)− 3

2α

∫ s

0
τ2(eαs2 − 1) dτ ≤ 1

2αs3(eαs2 − 1), we have

−G(u) ≥ ν

4
s2 − Cα

2α
s3(eαs2 − 1) for all s ∈ R

and thus, for a C ′α > 0,

I(u) ≥ 1
2
‖∇u‖22 +

ν

4
‖u‖22 −

Cα

2α

∫

R2
u3(eαs2 − 1) dx

≥ 1
2
‖∇u‖22 +

ν

4
‖u‖22 −

Cα

2α
‖u‖36

√∫

R2
(eαs2 − 1)2 dx

≥ 1
2
‖∇u‖22 +

ν

4
‖u‖22 −

C ′α
2α
‖u‖3H1

√∫

R2
(e2αs2 − 1) dx.

Also, from the Moser-Trudinger inequality (c.f. Adachi-Tanaka [AT] and references
therein), there exist σ0 > 0, M > 0 such that

∫

R2
(eσ0u2 − 1) dx ≤ M for all ‖u‖H1 ≤ 1.

Thus for any c > 0 it holds that
∫

R2
(e

σ0
c2

u2 − 1) dx ≤ M for all ‖u‖H1 ≤ c
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and choosing ρ0 > 0 small, we can see that (0.6) holds.

Remark 1.2. Actually we see, from the proof of Lemma 1.1, that

I(u) > 0 for all 0 < ‖u‖H1(RN ) ≤ ρ0.

where ρ0 is given in (0.6).

Remark 1.3. Modifying slightly the arguments of the proof of Lemma 1.1, it is possible
to show that, for N ≥ 3, there exists ρ0 > 0 such that

N − 2
2

‖∇u‖22 −N

∫

RN

G(u) dx > 0 for all 0 < ‖u‖H1(RN ) ≤ ρ0.

Lemma 1.4. Assume (g0)–(g3). Then (0.5)–(0.7) hold. In particular I(u) has a mountain
pass geometry and the MP value b in (0.8)–(0.9) is well-defined.

Proof. We know, from Lemma 1.1 that (0.5)–(0.6) hold. Also, since I(0) = 0, we see
from Remark 1.2, that proving (0.7) is equivalent to show that Γ 6= ∅. This will be done
in Lemma 2.1.

As stated in the Introduction, the proof of Theorem 0.2 consists of 3 steps

Step 1 : Construction of a path γ ∈ Γ such that

ω ∈ γ([0, 1]), (1.1)
max

t∈[0,1]
I(γ(t)) = m, (1.2)

where ω(x) is a given least energy solution of (0.1).
Step 2 : minu∈P I(u) = m. (1.3)
Step 3 : γ([0, 1]) ∩ P 6= ∅ for all γ ∈ Γ. (1.4)

Step 1 implies b ≤ m and Steps 2 and 3 imply b ≥ m.

2. A path γ ∈ Γ satisfying (1.1)–(1.2)

Let ω(x) be an arbitrary least energy solution of (0.1)

Lemma 2.1. Under the assumptions (g0)–(g3), there exists a path γ ∈ Γ satisfying (1.1)–
(1.2).

Proof of Lemma 2.1. We will find a curve γ(t) : [0, L] → H1(RN ) such that

γ(0) = 0, I(γ(L)) < 0, (2.1)
ω ∈ γ([0, L]), (2.2)
max

t∈[0,L]
I(γ(t)) = m. (2.3)

After a suitable scale change in t, we can get the desired path γ ∈ Γ.
When N ≥ 3, our construction is rather simple. Setting

γ(t)(x) =
{

ω(x/t) for t > 0,
0 for t = 0,
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we can see that
1. ‖γ(t)‖2H1 = tN−2‖∇ω‖22 + tN‖ω‖N

2 .

2. I(γ(t)) =
tN−2

2
‖∇ω‖22 − tN

∫

RN

G(ω) dx.

Thus γ(t) ∈ C([0,∞),H1(RN )). Moreover, Pohozaev identity (0.4) implies
∫
RN G(ω) dx >

0, d
dtI(γ(t)) > 0 for t ∈ (0, 1) and d

dtI(γ(t)) < 0 for t > 1. Thus for sufficiently large L > 1
our path γ(t) satisfies (2.1)–(2.3).

When N = 2, our construction is more complicated. We choose t0 ∈ (0, 1), t1 ∈ (1,∞)
and θ1 > 1 so that a curve γ, constituted of the three pieces defined below, gives a desired
path :

[0, 1] → H1(R2); θ 7→ θωt0 , (2.4)
[t0, t1] → H1(R2); t 7→ ωt, (2.5)
[1, θ1] → H1(R2); θ 7→ θωt1 . (2.6)

Here ωt(x) = ω(x/t).
First we remark that since ω(x) satisfies (0.1),

∫

R2
g(ω)ω dx = ‖∇ω‖22 > 0.

Thus we can find θ1 > 1 such that
∫

R2
g(θω)ω dx > 0 for all θ ∈ [1, θ1]. (2.7)

Next we set ϕ(s) = g(s)/s. By the assumption (g1) we have ϕ(s) ∈ C(R,R). With this
notation (2.7) becomes

∫

R2
ϕ(θω)ω2 dx > 0 for all θ ∈ [1, θ1]. (2.8)

Now we compute d
dθ I(θωt):

d

dθ
I(θωt) = I ′(θωt)ωt

= θ

(
‖∇ωt‖22 −

∫

R2
ϕ(θωt)ω2

t dx

)

= θ

(
‖∇ω‖22 − t2

∫

R2
ϕ(θω)ω2 dx

)
.

Choosing t0 ∈ (0, 1) sufficiently small, we have

‖∇ω‖22 − t20

∫

R2
ϕ(θω)ω2 dx > 0 for all θ ∈ [0, 1]. (2.9)
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By (2.8), we can also choose t1 > 1 such that

‖∇ω‖22 − t21

∫

R2
ϕ(θω)ω2 dx ≤ − 1

θ1 − 1
‖∇ω‖22 for all θ ∈ [1, θ1]. (2.10)

Thus we can see by (2.9) that along the line (2.4), I(θωt0) increases and takes its maximal at
θ = 1. Since

∫
R2 G(ω) dx = 0 by Pohozaev identity (0.4), we have I(ωt) = I(ω) = 1

2‖∇ω‖22
along the curve (2.5). Next by (2.10), I(θωt1) decreases along the line (2.6) and we have

I(θ1ωt1) = I(ωt1) +
∫ θ1

1

d

dθ
I(θωt1) dθ

≤ 1
2
‖∇ω‖22 −

∫ θ1

1

1
θ1 − 1

‖∇ω‖22 dθ

< −1
2
‖∇ω‖22 < 0.

Therefore we get the desired curve.

As a corollary to Lemma 2.1, we have

Corollary 2.2. b ≤ m.

3. Proof of (1.3)

In this section we give a proof of (1.3). Namely we show :

Lemma 3.1. m = inf
u∈P

I(u).

Proof. We argue for the cases N ≥ 3 and N = 2 separately.
For N ≥ 3 we use an idea from Coleman-Glazer-Martin [CGM] as in [BL]. We

introduce a set
S = {u ∈ H1(RN );

∫

RN

G(u) dx = 1}.

There is a one-to-one correspondence Φ : S → P between S and P:

(Φ(u))(x) = u(x/tu), where tu =

√
N − 2
2N

‖∇u‖2.

For u ∈ S,

I(Φ(u)) =
1
2
tN−2
u ‖∇u‖22 − tNu

∫

RN

G(u) dx

=
1
N

(
N − 2
2N

)N−2
2

‖∇u‖N
2

and thus

inf
u∈P

I(u) = inf
u∈S

I(Φ(u)) = inf
u∈S

1
N

(
N − 2
2N

)N−2
2

‖∇u‖N
2 .
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It is observed in [BL] that infu∈S ‖∇u‖22 is achieved and that the corresponding Φ(u) is a
least energy solution. Thus we have

m = inf
u∈P

I(u).

For N = 2, we have P = {u ∈ H1(R2) \ {0}; ∫
R2 G(u) dx = 0}. We remark that I(u) =

1
2‖∇u‖22 on P. It is shown in [BGK] that infu∈P ‖∇u‖22 is achieved and the minimizer is
a least energy solution of (0.1) after a suitable scale change u(x/t). Thus m = infu∈P I(u)
also holds for N = 2.

Therefore the proof of Lemma 3.1 is completed.

4. Proof of (1.4)
In this section we prove the following intersection property :
Lemma 4.1. γ([0, 1]) ∩ P 6= ∅ for all γ ∈ Γ.

As a corollary to Lemmas 3.1 and 4.1, we have
Corollary 4.2. b ≥ m.

In the proof of Lemma 4.1 we use the notation :

P (u) =
N − 2

2
‖∇u‖22 −N

∫

RN

G(u) dx

= NI(u)− ‖∇u‖22.
Proof of Lemma 4.1 for N ≥ 3. The proof of Lemma 4.1 for N ≥ 3 is straightforward.
By Remark 1.3, there exists ρ0 > 0 such that

0 < ‖u‖H1 ≤ ρ0 =⇒ P (u) > 0.

For any γ ∈ Γ we have γ(0) = 0 and P (γ(1)) ≤ NI(γ(1)) < 0. Thus there exists t0 ∈ [0, 1]
such that

‖γ(t0)‖H1 > ρ0,

P (γ(t0)) = 0.

Since γ(t0) ∈ γ([0, 1]) ∩ P we have γ([0, 1]) ∩ P 6= ∅.
When N = 2, P (u) = −2

∫
R2 G(u) dx and since our P (u) does not have a ‖∇u‖22-

component we can not argue as in Lemma 1.1 and Remark 1.3.
To prove Lemma 4.1 for N=2, we choose ρ(x) ∈ C∞0 (R2) such that

ρ(x) ≥ 0 for all x ∈ R2,∫

R2
ρ(x) dx = 1

and for any given γ ∈ Γ we set for ε > 0

γε(t)(x) =
∫

R2
ρ(

x− y

ε
)γ(t)(y) dy.

Then it is easily proved that
(i) For any ε > 0 and t ∈ [0, 1], γε(t) ∈ H1(R2) ∩ L∞(R2).
(ii) γε(t) : [0, 1] → L∞(R2) is continuous.
(iii) maxt∈[0,1] ‖γε(t)− γ(t)‖H1 → 0 as ε → 0.
We also remark that
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Lemma 4.3. Under (g1), there exists ρ0 > 0 such that for u ∈ H1(R2) ∩ L∞(R2)

0 < ‖u‖∞ ≤ ρ0 =⇒ P (u) > 0.

Proof. By (g1), there exists ρ0 > 0 such that −G(s) > 0 for 0 < s ≤ ρ0. Thus we have
Lemma 4.3.

Proof of Lemma 4.1 for N = 2. Let γ ∈ Γ be given. First we remark that, because
of (iii), we have P (γε(1)) ≤ 2I(γε(1)) < 0 for any small ε > 0. Also, since γε(0) = 0 for
any ε > 0, by Lemma 4.3 and (ii) we have P (γε(t)) > 0 for t > 0 sufficiently small. Thus,
assuming ε > 0 small, we can find tε ∈ [0, 1] such that

‖γε(tε)‖∞ > ρ0,

P (γε(tε)) = 0.

In particular, γε(tε) ∈ P.
We extract a subsequence εn → 0 such that tεn → t0 as n → ∞. From (ii)-(iii) it

follows that

‖γεn(tεn)− γ(t0)‖H1 → 0, (4.1)
P (γ(t0)) = 0

and to conclude we just need to show

γ(t0) 6= 0. (4.2)

To establish (4.2), we recall a result of [BGK] saying that infu∈P ‖∇u‖22 = 2m > 0. Thus

‖u‖H1 ≥
√

2m for all u ∈ P

and in particular ‖γεn(tεn)‖H1 ≥ √
2m for all n. Therefore it follows from (4.1) that

‖γ(t0)‖H1 ≥ √
2m > 0. Thus γ(t0) ∈ γ([0, 1]) ∩ P and γ([0, 1]) ∩ P 6= ∅.

Remark 4.4. In the proof of Lemma 4.1 for N = 2, making use of the continuity of
the path γ(t) in H1(R2) is essential. We give an example. For g(s) = −s + s3 we have
P (u) = ‖u‖22 − 1

2‖u‖44. Now for any u0 ∈ H1(R2) with P (u0) < 0, the path γ(t) =
t−1/4u0(x/t) : [0, 1] → H1(R2) is a continuous path in L2(R2) ∩ L4(R2) (but not in
H1(R2)) joining 0 and u0. However P (γ(t)) < 0 for all t ∈ (0, 1].

End of the proof of Theorem 0.2. Combining Corollaries 2.2 and 4.2, we get b = m.
This is the desired result.

References

[AT] S. Adachi and K. Tanaka, Trudinger type inequalities in RN and their best exponents,
Proc. Amer. Math. Soc. 128 (2000), 2051-2057.

[BL] H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Arch. Rat. Mech.
Anal. 82 (1983), 313-346.

[BGK] H. Berestycki, T. Gallouët and O. Kavian, Equations de Champs scalaires euclidiens
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