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Abstract

We consider a nonlinear equation posed in a Hilbert space H

(P ) (A− λL)u = N(u).

The operators A and L are linear, bounded and self-adjoint. The non-
linear term N satisfy N(0) = 0. Assuming that ]a, b[ is a spectral gap
of the combined spectrum ρ(A,L) := {λ ∈ IR : A − λL : H → H
is an isomorphism} we show that λ = b is a bifurcation point for (P).
Namely that there exists a sequence {(λn, un)} ⊂ ]a, b[×H of nontriv-
ial solutions of (P ) such that λn → b and ‖un‖ → 0. For this only
mild conditions on N around u = 0 are required. A local Lyapunov-
Schmidt reduction permits to overcome the strong indefiniteness of the
problem. The proof is then based on an original variational approach
of mountain pass type.

∗Primary: 35 J20, Secondary: 35 B32



1 Introduction

In this paper, we shall be concerned with the nonlinear equation

(P ) (A− λL)u = N(u) in H

where H is a real Hilbert space. We denote by < ·, · > and ‖ · ‖ respectively
its scalar product and norm. The operators A and L are linear, bounded and
selfadjoint with

(A1) < Lu, u >> 0 for u ∈ H\{0}, σ(A) ∩ IR+ 6= ∅, σ(A) ∩ IR− 6= ∅ and
0 6∈ σ(A).

For the nonlinear term N we assume there exist a ε0 > 0 and a positive
function φ ∈ C2(Bε0 , IR) with N = ∇φ on Bε0 := {u ∈ H : ‖u‖ ≤ ε0} which
satisfies

(A2)
φ(u)

‖u‖2
→ 0 as ‖u‖ → 0,

(A3) there exists q > 2 such that < N(u), u >≤ qφ(u) for all u ∈ Bε0 .

Let ρ(A,L) = {λ ∈ IR : A − λL : H → H is an isomorphism } and
σ(A,L) = IR\ρ(A,L). ¿From (A1), there exist a, b ∈ IR, a < 0 < b such that
[a, b]∩σ(A,L) = {a, b} (see Lemma 2.1). Thus 0 lies in the spectral gap ]a, b[
of σ(A,L). Throughout the paper, we shall refer as problem (P) the issue of
finding nontrivial solutions of equation (P) when λ ∈]a, b[.

The aim of our work is to show that under mild assumptions on the op-
erator N around u = 0, b ∈ σ(A, L) is a bifurcation point for (P ). Namely
that there exists a sequence {(λn, un)} ⊂ ]a, b[×H of nontrivial solutions of
(P ) such that λn → b and ‖un‖ → 0. We make no assumption on b. It may
be an eigenvalue (of finite or infinite multiplicity) or a point of the continuous
spectrum. Note that by (A2), N(0) = 0 and thus (λ, 0) ∈ IR ×H is always
solution of (P ).

Our approach is variational. It starts with the observation that (λ, u) ∈
IR×Bε0 is a solution of (P ) if and only if u is a critical point of the functional :

J(λ, u) =
1

2
< (A− λL)u, u > −φ(u).

By the spectral theorem for self-adjoint operators, since 0 6∈ σ(A), H splits
into two orthogonal subspaces V and W corresponding respectively to the
positive and negative part of σ(A), namely H = V ⊕ W . Let P and Q
be respectively the orthogonal projections of H on V and W . For λ ∈]a, b[
the quadratic form < (A − λL)u, u > is positive definite on V and negative
definite on W (see Lemma 2.1). In the general situation, we consider, both
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V and W are allowed to be infinite dimensional. Thus for λ ∈]a, b[, J(λ, ·) is
strongly indefinite and to find a critical point of J(λ, ·) standard variational
procedures, used when W = {0}, such as the mountain pass theorem cannot
be applied.

Another difficulty we shall face searching for a critical point is a possible
lack of compactness. It may happen, for example, when the functional is
invariant with respect to a group whose orbits are not compact. To deal
with some cases of this kind, we introduce the following terminology that we
borrow from [25].

Let O(H) denote the group (with respect to composition) of all isometric
isomorphisms of H. Given a subgroup G of O(H), Θ(u) = {Tu : T ∈ G} is
the orbit containing u ∈ H generated by G. A functional K ∈ C1(H, IR) is
called G-invariant if and only if K(Tu) = K(u) ∀u ∈ H,T ∈ G. In this case,
it follows that K ′(Tu)Tv = K ′(u)v ∀u, v ∈ H and so T ∗∇K(Tu) = ∇K(u)
∀u ∈ H,T ∈ G. Thus, ∇K is G-equivariant and we note that ∀u ∈ H and
v ∈ Θ(u), K(u) = K(v) and ‖∇K(u)‖ = ‖∇K(v)‖.

Definition 1.1 Given K ∈ C1(H, IR) and a subgroup G of O(H), we say
that K is weakly upper G-compact on H provided that

1. K is G-invariant,

2. from every bounded sequence {un} in H such that K(un) → c > K(0)
and ‖∇K(un)‖ → 0, we can extract a subsequence {uni

} and select
elements vn ∈ Θ(un), such that vni

⇀ v weakly in H where v 6= 0 and
∇K(v) = 0.

To prove that b is a bifurcation point for (P ), we exhibit a particular sequence
{λn} ⊂ ]a, b[, λn → b and an associated sequence {un} ⊂ H\{0} of critical
points of J(λn, ·) for which ‖un‖ → 0 as λn → b. The following condition
plays a crucial role to control the norm of un, n ∈ IN .

For δ > 0 we say that the condition T (δ) is satisfied if PL = LP and if
there exists a ε ∈]0, ε0] and a sequence {un} ⊂ H with ‖un‖ = ε such that
φ(un) > 0 for all n ∈ IN and

lim
n→∞

< (A− bL)un, un >

φ(un)δ
= lim

n→∞
‖(A− bL)un‖2

φ(un)δ
= 0.

We now state our main result.

Theorem 1.1 Suppose that (A1)-(A3) hold and that T (δ) is satisfied for a
δ ≥ 1. Assume also that

(A4) There exists K > 0 such that ‖N(u)‖ ≤ Kφ(u)1− δ
2 for all u ∈ Bε0.
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(A5) (i) Either N is compact or

(ii) for a subgroup G of O(H) and for λ < b close to b, J(λ, ·) is weakly
upper G-compact in Bε0.

Then, there exists a sequence {(λn, un)} ⊂]a, b[×H of nontrivial solutions of
(P ) such that λn → b− and ||un|| → 0. In particular, b is a bifurcation point
for (P ).

Remark. Since, by (A2), φ(u) → 0, ||N(u)|| → 0 and ||N ′(u)|| → 0 as
‖u‖ → 0, both φ, N , N ′ are bounded on any ball Bε, centred at the origin, of
radius 0 < ε < ε0 sufficiently small. Throughout the paper we shall assume
that it is already true for ε0 > 0. Thus (A4) is always satisfied when T (δ)
holds with a δ ≥ 2.

Remark. Requiring condition T (δ) to hold with a δ ≥ 1 (or an equiva-
lent condition) is standard in all the works dealing with bifurcation within
spectral gaps (see [25]). The purpose of the condition is discussed later in the
introduction. For the moment observe that PL = LP implies that V is invari-
ant for A and L. In this case, if there exists an eigenvector u ∈ Ker(A− bL)
with φ(u) > 0, T (δ) is trivially satisfied for all δ > 0. However the condition
may also be satisfied for some values of δ even when Ker(A− bL) = {0} (see
[25]).

An important motivation for studying problem (P ) is that it can be viewed as
the abstract formulation of several physical models. For example, nonlinear
Schrödinger equations of the form :

−∆u(x) + p(x)u(x)− f(x, u(x)) = λu(x), x ∈ IRN(1.1)

with p a periodic function in IRN and f a nonlinear term, can be set in the
form of (P ). Here the existence of nontrivial solutions reveals the presence
of bounded states whose “energy” λ ∈ IR lies in gaps of the spectrum of the
linear operator −∆ + p. These bounded states are, so to speak, created by
the nonlinear pertubation. In [8] a refined Choquard-Pekar model, relevant
in solid state physics, was studied via an abstract formulation of type (P ).
Equation (P ) can also be used to describe nonlinear Dirac equations [10]
or even Hamiltonian systems [5, 9, 25]. We refer the reader to [25] where
the connection between the abstract formulation (P ) and several “concrete”
problems (as (1.1)) is established.

We shall now briefly describe what we believe to be the more significant
results on problems of type (P) or on the special form (1.1). These results
essentially differ by the conditions which are imposed on φ (i.e. on N). We
distinguish five main conditions :
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(N1) φ is globally defined on H.

(N2) φ is convex.

(N3) φ is superquadratic at infinity, namely there exist p > 2 and R > 0 such
that < N(u), u >≥ pφ(u) for all u ∈ H with ‖u‖ ≥ R.

(N4) There exist C, D > 0 such that

‖N(u)‖ ≤ C + Dφ(u), ∀u ∈ H.

(N5) N is compact.

A first possible approach is to construct, on a suitable space, a functional
having a mountain pass geometry whose critical points correspond to solu-
tions of (P ). In that direction, we mention the work of Buffoni, Jeanjean
and Stuart [8]. In [8], we look for a solution of (P ) when λ ∈ ]a, b[ is fixed.
We use a global Lyapunov-Schmidt reduction to control the part of the solu-
tions in the space W . It leads to study a functional defined only on V . An
application of the mountain pass lemma (see [4]) then permits to obtain the
desired critical point. This reduction requires φ to be globally defined and
convex. Subsequently, this approach was extended to study the bifurcation at
b by Buffoni [5] and finally by Stuart [25]. In [25], the same conclusion of our
Theorem 1.1 is obtained (see Theorem 7.2). In addition to our assumptions,
conditions (N1) to (N4) are needed and when N is not compact, the function
< N(u), u > −2φ(u), has to be weakly sequentially lower-semicontinuous.

Among the works relying on an equivalent mountain pass formulation, we
also mention [1]. In this paper Alama and Li develop, on a specific class of
nonlinear Schrödinger equations with periodic potential, a dual approach in
the spirit of [3] (see also [9]). Global conditions and convexity on φ are also
required. In addition, special features of the class come into play. They imply
in particular (N3) and (N4). The paper of Alama and Li deals with the search
of solutions for fixed λ ∈]a, b[. Subsequently, their approach was refined in
[18] and [19] where the existence of bifurcation points is studied.

A second approach developed to handle (P ) consists in searching directly
a critical point of J(λ, ·). Heinz [11, 12] opened this route. He obtained the
existence of a solution for any λ ∈ ]a, b[, using the linking theorem of Benci
and Rabinowitz (see [2]) and studied the bifurcation of solutions at λ = b.
His approach was subsequently refined in [13, 14]. Strong assumptions on φ
are needed in these works. In addition to (N1)-(N4), condition (N5) has to
hold. Indeed, the compacity of the nonlinear term is a key ingredient in the
Benci-Rabinowitz’s theorem.

More recently, substantial improvements along this approach were made by
Troestler and Willem [27, 28] (see also [23]). They demonstrate the existence
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of a nontrivial solution for any λ ∈ ]a, b[, without assuming convexity nor
compacity, for a specific class of nonlinear Schrödinger equations of type (P ).
Their argument is based upon a generalised linking theorem due to Hofer and
Wysocki (see [15]) which had been already used by Esteban and Séré to solve
a nonlinear Dirac equation of the form of (P ) (see [10]). The approach of [27]
was extended by Troestler in [26] to deal with bifurcation. He proved that
bifurcation occurs at b without assuming convexity or compacity. However, φ
still need to be globally defined and superquadratic. Moreover, his arguments
to remove the convexity are closely linked with the particular equations he
considered.

The third and last approach is actually the oldest. Here, the idea is to use
a constrained variational procedure. One looks for solutions of (P ) having
a small but prescribed norm. The λ now appears as a Lagrange parameter.
One finds a sequence of solutions {(λn, un)} ⊂ ]a, b[×H where by construction
‖un‖ → 0 as n → ∞. Then, one checks, a posteriori, that λn → b. This
approach was introduced by Küpper and Stuart [16] and substantial improve-
ments were made by Buffoni and Jeanjean [6, 7]. To our knowledge, [7] is the
only result where φ needs just to be defined around the origin. Also (N4) and
(N5) are removed. We need however both (N2) and (N3).

Let us now sketch the proof of Theorem 1.1. First we show, in Section
2, that solutions (λ, u) of (P ) for λ close to b and ‖u‖ small are of the form
(λ, v + g(λ, v)) with v ∈ V . The function g, defined in a neighborhood of
(b, 0) ⊂ IR × V , is obtained by an implicit function theorem. Having done
this Lyapunov-Schmidt reduction we may define the functional F (λ, v) :=
J(λ, v + g(λ, v)) on a small ball Bc(V ) := {u ∈ V : ‖u‖ ≤ c} of V . In
particular F has the property that if v is a critical point of F (λ, ·) then
v + g(λ, v) is a critical point of J(λ, ·). For the reduction we need (A2) but,
performing only a local reduction, we manage, in contrast to [8, 25], not to
require φ convex. Now, because F (λ, ·) is just defined in Bc(V ) we must
develop a variational argument within this ball. In Section 3, we show that
F (λ, ·) has in Bc(V ) a mountain pass geometry for λ sufficiently close to b.
Namely there exists λ0 ∈]a, b[ such that setting

Γλ := {γ ∈ C([0, 1], Bc(V ))/ γ(0) = 0 , F (λ, γ(1)) < 0},
we have that Γλ is non void for all λ ∈ [λ0, b[ and

c(λ) := inf
γ∈Γλ

max
t∈[0,1]

F (λ, γ(t)) > 0.

This geometry of F (λ, ·) is proved using the condition T (δ) where δ ≥ 1. We
shall see in Section 4 that, under our assumption (A5), any Palais-Smale se-
quence for F (λ, ·), λ ∈ [λ0, b[ at the level c(λ) > 0 (i.e. a {vn} ⊂ Bc(V ) such
that F (λ, vn) → c(λ) and ∇vF (λ, vn) → 0) leads to a nontrivial critical point
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of F (λ, ·). To end the proof of Theorem 1.1 we shall prove that at least for
a sequence {λn} ⊂]a, b[, λn → b, F (λn, ·) possesses a Palais-Smale sequence
in Bc(V ) whose “size” goes to zero as λn → b. For this two main ingredients
will be used. The fact the function λ → c(λ) is monotone decreasing and esti-
mates on the behavior of c(λ) as λ → b obtained as consequence of condition
T (δ) when δ ≥ 1 (see Section 3). The proof goes as follow. First, in Section
4, the estimates, combined with the decrease of λ̈!oc(λ) permit to establish
the existence of a strictly increasing sequence {λn} ⊂ ]a, b[, λn → b, on which
both c(λn) → 0 and c′(λn) → 0. Here c′(λ) denotes the derivative of c(λ).
Then we prove that for all n ∈ IN , F (λn, ·) admits a Palais-Smale sequence
at level c(λn) contained in a ball of Bc(V ), centred at the origin, whose radius
goes to zero as c(λn) → 0 and c′(λn) → 0. The key point here is to explicit a
special sequence of minimizing (for c(λn)) paths in Γλn which satisfies some
“localisation” properties (see Proposition 4.2) implying the existence of our
Palais-Smale sequence.

Remark. The fact that the monotonicity of λ → c(λ) plays a role in our
proof is reminiscient of Struwe’s work on the so-called “monotonicity trick”
(see for example [24], Chapter II, Section 9). On various, specific examples,
he first showed how the monotonicity of c(λ) can be used to derive that an
associated family of functionals has a bounded Palais-Smale sequence for al-
most every value of λ. Recently Struwe’s approach has been extended and
renewed as to cover general abstract settings [20, 22]. In particular, in [22],
the monotonicity condition is no more required. However to obtain a bifurca-
tion result the mere boundedness of the Palais-Smale sequences (indeed here
automatically insured since F (λ, ·) is defined only on Bc(V )) is not enough.
The idea is to relate precisely the “size” of the Palais-Smale sequence to the
quantities c(λ) and c′(λ) on which the test functions of condition! T (δ), δ ≥ 1
give us informations. We pursue here in the direction of [21] where the be-
havior of λ → c(λ) was first used to study a simpler situation of bifurcation
from the infimum of the spectrum.

Remark. If one assume that φ is defined on all H and convex it is possible to
define F (λ, .) on all V and for every λ ∈]a, b[ (see [25] for example). To obtain
a critical point for F (λ, ·) one then faces the problem of a priori bounds on
the Palais-Smale sequences. The main motivation for introducing (N3) and
(N4) is to ensure that all Palais-Smale sequences for F (λ, ·) are bounded. In
our case, the corresponding difficulty is to avoid that suspected Palais-Smale
sequences accumulate on the boundary of Bc(V ). However, since the “size”
of the Palais-Smale sequence is proved smaller and smaller (as λn → b), this
may not occur.
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Remark. A close look at our proofs reveals that the purpose of requiring
condition T (δ) with δ ≥ 1 is to ensure (in combinaison with (A2)) a moun-
tain pass geometry for F on Bc(V ) and to guarantee a sufficient decrease of
c(λ) → 0 as λ → b.

Remark. If one wants to apply Theorem 1.1 to specific problems, as for
example the study of the nonlinear Schrödinger equation (1.1), it is necessary
to check that T (δ) hold for a δ ≥ 1. We refer to [25] where this is done
for a class of problems of type (1.1) under appropriate conditions on f (see
Lemma 9.5). Note also that an application of our Theorem 1.1, in the frame
of Hamiltonian systems, will soon be available in [17].

2 Transforming the problem

In this section, using a Lyapunov-Schmidt reduction, we construct an equiv-
alent problem posed on a ball of the subspace V and we give a variational
interpretation of this reduction. We also introduce the functional F and we
show that it is monotone as a function of λ ∈]a, b[ for λ sufficiently close to b.
Before stating the main results of the section we derive some properties of the
linear problem associated to problem (P ). We also make some observations
on the local nature of our assumptions on N .

The spectral theorem for self-adjoint operator asserts that 0 6∈ σ(A) is
equivalent to the existence of V , W = V ⊥ and α, β ∈ ]0, +∞[ such that

(i) A(V ) ⊂ V

(ii) < Au, u >≥ β‖u‖2, ∀u ∈ V

(iii) < Au, u >≤ −α ‖u‖2, ∀u ∈ W .

Since, by assumption (A1), σ(A) ∩ IR+ 6= ∅, and σ(A) ∩ IR− 6= ∅ both V and
W are here nontrivial. Now we introduce the following quantities which play
a fundamental role in the discussion of (P )

a = sup

{
< Au, u >

< Lu, u >
, u ∈ W, u 6= 0

}

b = inf

{
< Au, u >

< Lu, u >
, u ∈ V, u 6= 0

}

m(λ) =

{
α(1 + λ

a
) for λ ≤ 0

α for λ > 0
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n(λ) =

{
β(1− λ

b
) for λ > 0

β for λ ≤ 0

and finally

M(λ) = min{m(λ), n(λ)}.
These quantities relate to the properties of A− λL as follows.

Lemma 2.1 Let (A1) be satisfied. Then, ]a, b[⊂ ρ(A,L) and

1. a < 0 < b,

2. < (A− λL)u, u >≥ n(λ)‖u‖2, ∀u ∈ V and λ ≤ b,

< (A− λL)u, u >≤ −m(λ)‖u‖2, ∀u ∈ W and λ ≥ a,

3. ‖(A− λL)u‖ ≥ M(λ)‖u‖, ∀u ∈ H and a ≤ λ ≤ b,

4. If PL = LP then {a, b} ∩ ρ(A,L) = ∅.
Proof. See [25]. 2

Concerning the assumptions (A2)-(A5) on N , it should be clear that they
still hold if we replace ε0 > 0 by any ε ∈]0, ε0]. This is less obvious but also
true for condition T (δ). Indeed an easy consequence of (A3) is that

for any t ∈ [0, 1] and u ∈ Bε0 , φ(tu) ≥ tqφ(u).(2.1)

Finally for further reference we note that by (A1) and (A2),

for any ε > 0 sufficiently small, 4φ(u) ≤< Au, u >, ∀u ∈ Bε(V ).(2.2)

Now, we can give the first main result of this section. It is based on the
implicit function theorem

Lemma 2.2 Suppose that (A1)-(A2) are satisfied and PL = LP . There
exists a ε1 ∈]0, ε0], an open connected neighbourhood U of 0 in W and a
unique function g ∈ C1(V (b)×Bε1(V ), U) where Bε1(V ) is the ball centred in
0 of radius ε1 in V and V (b) an open connected neighborhood of b, satisfying
the following assertions :

(i) g(λ, 0) = 0, g(V (b)×Bε1(V )) ⊂ U and for (λ, v) ∈ V (b)× Bε1(V ) :

Q∇uJ(λ, v + g(λ, v)) = 0.(2.3)

(ii) If (λ, v) ∈ V (b) × Bε1(V ), then ∇uJ(λ, v + g(λ, v)) = P∇uJ(λ, v +
g(λ, v)).
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(iii) If (v, w) ∈ Bε1(V )× U , then Q∇uJ(λ, v + w) = 0 ⇔ w = g(λ, v).

(iv) If u is a critical point of J(λ, ·) such that (λ, Pu, Qu) ∈ V (b)×Bε1(V )×
U , then Qu = g(λ, Pu).

Remark. Clearly ‖g(λ, v)‖ → 0 as λ → b and ‖v‖ → 0 by continuity of g.
This is why we can assume without loss of generality that J is well defined at
(λ, v + g(λ, v)) in Lemma 2.2.

Proof of Lemma 2.2. We define G in IR×B ε0
2
(V )×B ε0

2
(W ) by

G(λ, v, w) = Q∇uJ(λ, v + w).

It clearly satisfies G(b, 0, 0) = 0. Now, an easy computation shows that for
any z in W ,

DwG(λ, v, w)z = (A− λL)z −QN ′(v + w)z.

Then, by (A2), we obtain :

DwG(b, 0, 0)z = (A− bL)z for z ∈ W.

Therefore, by Lemma 2.1, it follows that :

< DwG(b, 0, 0)z, z >≤ −m(b)‖z‖2

and thus, DwG(b, 0, 0) is invertible in W . Applying the implicit function
theorem, there exists an open connected neighborhood Θ = V (b)×Bε1(V ) of
(b, 0) in IR × V , U an open connected neighborhood of 0 in W and a unique
C1−function g : Θ −→ U such that for (λ, v, w) ∈ V (b) × Bε1(V ) × U , we
have :

[∇uJ(λ, v + w) = P∇uJ(λ, v + w)] ⇔ w = g(λ, v).

This proves the assertions (i),(ii),(iii) and (iv) follows from (iii). 2

Our next result gives a variational interpretation of the function g. Namely
the functional w → J(λ, v + w) for λ ∈ V (b) and v ∈ V fixed has a unique
local maximum in w = g(λ, v). From this we deduce, in particular, that
g(λ, v) = o(v) for v near 0. More precisely, fixing an arbitrary λ̄ ∈ V (b) with
λ̄ ∈]0, b[ we have

Proposition 2.3 Let ε1 ∈]0, ε0] be as in Lemma 2.2.

(i) There exists a constant C > 0 and ε2 ∈]0, ε1[ such that, for any ε ∈
]0, ε2], if v ∈ Bε(V ) then g(λ, v) ∈ BCε(W ). Moreover for all v ∈ Bε(V )
with ε > 0 sufficiently small

J(λ, v + w) ≤ J(λ, v + g(λ, v)), ∀w ∈ BCε(V ), ∀λ ∈ [λ̄, b[.
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(ii) ||g(λ, v)|| = o(||v||) as ‖v‖ → 0 uniformly in λ ∈ [λ̄, b[. In particular for
any ε > 0 sufficiently small, g(λ,Bε(V )) ⊂ Bε(W ), ∀λ ∈ [λ̄, b[.

Proof. (i) Since g is C1 on V (b) × Bε1(V ), for ε2 > 0 small enough, setting
C = sup

[λ̄,b]×Bε2 (V )

‖∇vg(λ, v)‖ we can assume that C < ∞. Thus

‖g(λ, v)‖ = ‖g(λ, v)− g(λ, 0)‖ ≤ C‖v‖

establishing that g([λ̄, b[×Bε(V )) ⊂ BCε(W ) for any ε ∈]0, ε2]. Now, for
v ∈ Bε(V ) fixed with ε ∈]0, ε2], we define Φλ,v : BCε(W ) → IR by

Φλ,v(w) = J(λ, v + w).

Making ε2 > 0 smaller if necessary we can assume that v + w ∈ Bε0 and thus
it is well defined. Now setting η := (1+C2)

1
2 ε > 0 and K(η) := sup

u∈Bη

‖N ′(u)‖,
we have for (v, w) ∈ Bε(V )×BCε(W ), λ ∈ [λ̄, b[ and z ∈ W :

D2
wΦλ,v(z, z) = < (A− λL)z, z > − < QN ′(v + w)z, z >

≤ −m(λ)‖z‖2 + K(η)‖z‖2

≤ −m(λ̄)‖z‖2 + K(η)‖z‖2.

Now, since (A2) implies that ||N ′
(u)|| → 0 as ||u|| → 0, we have K(η) → 0

as ε → 0. Thus for ε > 0 small enough K(η) < m(λ̄). Consequently Φλ,v is
strictly concave and its (unique) maximum is w = g(λ, v) by Lemma 2.2 (iii).
This gives (i).

(ii) Take ε ∈]0, ε2] such that (i) holds. Setting η := sup
u∈Bε

φ(u)

‖u‖2
≥ 0, we

have for (v, w) ∈ Bε(V )×BCε(W ) and λ ∈ [λ̄, b[,

Φλ,v(w)− Φλ,v(0) =
1

2
< (A− λL)w, w > −φ(v + w) + φ(v)

≤ −1

2
m(λ)‖w‖2 + η‖v‖2.

Now the variational characterisation of g(λ, v) implies that

−1

2
m(λ)‖g(λ, v)‖2 + η‖v‖2 ≥ 0

which leads to

‖g(λ, v)‖2 ≤ 2η‖v‖2

m(λ̄)
.

11



Since η → 0 as ε → 0 by (A2) we indeed check that

‖g(λ, v)‖
‖v‖ → 0 when ‖v‖ → 0

uniformly in λ ∈ {b ≥ λ ≥ λ̄}. Thus (ii) is true and the proof of the propo-
sition is completed. 2

For the rest of the paper we now fix a c ∈]0, 1
2
ε1]. It is choosen sufficiently

small so that for ε ∈]0, c] the claims (i) and (ii) of Proposition 2.3 hold and the
condition (2.2) is satisfied. As we already said we can assume that ||un|| = c
in condition T (δ). In view of Lemma 2.2, for any (λ, u) ∈ [λ̄, b[×H solution of
(P ) with ||u|| < c, v = Pu is a critical point of the functional F (λ, ·) defined
on the ball Bc(V ) by

F (λ, v) = J(λ, v + g(λ, v)).

Before ending this section we show that the variational characterisation of g of
Proposition 2.3 (i) implies that the family of functionals F (·, v) for λ ∈ [λ̄, b[
has a (strong) monotonicity property.

Proposition 2.4 Let λ1, λ2 be such that λ̄ ≤ λ2 ≤ λ1 < b. For any v ∈
Bc(V ) we have :

0 ≤ J(λ2, v)− J(λ1, v) ≤ F (λ2, v)− F (λ1, v).

Proof. Observe that by Proposition 2.3 (i) we may write

F (λ2, v) = J(λ2, v + g(λ2, v))

≥ J(λ2, v + g(λ1, v))

=
1

2
< (A− λ2L)v, v > +

1

2
< (A− λ2L)g(λ1, v), g(λ1, v) >

− φ(v + g(λ1, v)).

Thus, we indeed have

F (λ2, v)− F (λ1, v) ≥ 1

2
< (λ1 − λ2)Lv, v >

+
1

2
< (λ1 − λ2)Lg(λ1, v), g(λ1, v) >

≥ 1

2
< (λ1 − λ2)Lv, v >= J(λ2, v)− J(λ1, v) ≥ 0. 2

12



3 Mountain pass geometry for F (λ, ·).
In this section we show that F (λ, ·), for λ close to b, has a mountain pass
geometry. More precisely we shall prove that there exists λ0 ∈ [λ̄, b[ such that
setting

Γλ := {γ ∈ C([0, 1], Bc(V )) / γ(0) = 0 , F (λ, γ(1)) < 0},

we have that Γλ is non void for all λ ∈ [λ0, b[ and

c(λ) := inf
γ∈Γλ

max
t∈[0,1]

F (λ, γ(t)) > 0.

We also derive a priori estimates on the mountain pass level c(λ). We start
with the following result which make explicit the behavior of F (λ, ·) near
v = 0.

Lemma 3.1 Assume that (A1)-(A2) hold and that λ ∈ [λ̄, b[. There exists
ρ(λ) > 0 such that

F (λ, v) ≥ 1

4
n(λ)‖v‖2, ∀ v ∈ Bρ(λ)(V ).

Proof. Let λ ∈ [λ̄, b[. Note first, that, by Proposition 2.3 (i)

F (λ, v) ≥ J(λ, v) =
1

2
< (A− λL)v, v > −φ(v).(3.1)

Now, by (A2), for any η ∈]0, n(λ)] there exists d = d(η) > 0 such that

‖v‖ ≤ d ⇒ φ(v) ≤ η‖v‖2.(3.2)

Therefore, from (3.1), it follows that for ‖v‖ ≤ d,

F (λ, v) ≥ 1

2
n(λ)‖v‖2 − η‖v‖2.(3.3)

Taking η = 1
4
n(λ) and ρ(λ) = min{d, c}, this completes the proof. 2.

Lemma 3.1 show that if, for a λ ∈ [λ̄, b[, c(λ) is defined then c(λ) > 0. To
prove that c(λ) is properly defined we need to prove that Γλ is non void. This
will be done through the construction of a family of test functions for which
we benefit from several previous works [12, 13, 14, 25]. We note, however, that
the convexity of φ was so far a key tool in the construction of these functions
(see Lemma 6.2 in [25] for example). To overcome the lack of convexity, we
need to substantially modify the existing constructions.
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Lemma 3.2 Assume that (A1)-(A4) hold and that condition T (δ) is satisfied
for a δ ≥ 1. Then, there exists a sequence {vn} ⊂ V which satisfies

‖vn‖ ↑ c when n →∞, φ(vn) > 0 and lim
n→∞

< (A− bL)vn, vn >

φ(vn)δ
= 0.

As we just said, a first consequence of the existence of the test functions
{vn} ⊂ V is that Γλ is non void for any λ < b sufficiently close to b. Indeed

Proposition 3.3 We define the sequence {qn} ⊂ IR by :

qn = min

{
αφ(vn)

4K(2c)‖L‖c2
,

αφ(vn)δ

32K2‖L‖c2
,

φ(vn)

2||L||c2
,

α

2||L|| , b− λ̄

}
(3.4)

where α is defined in Section 2, K in (A4) and K(2c) := sup
u∈B2c

‖N ′(u)‖. Then,

if {vn} ⊂ Bc(V ) is the sequence obtained in Lemma 3.2, there exists n0 ∈ IN
such that

λ ∈ [b− qn, b[ ⇒ F (λ, vn) < 0, ∀n ≥ n0.(3.5)

Proof of Lemma 3.2. Since T (δ) holds there exists a sequence {un} ⊂ H
such that ‖un‖ = c, φ(un) > 0, for all n ∈ IN and

lim
n→∞

< (A− bL)un, un >

φ(un)δ
= lim

n→∞
‖(A− bL)un‖2

φ(un)δ
= 0.(3.6)

Let vn = Pun ∈ V and wn = Qun ∈ W . Since

< (A− bL)un, Qun >=< (A− bL)Qun, Qun >≤ −m(b)‖Qun‖2

we have that

‖(A− bL)un‖ ≥ m(b)‖Qun‖.(3.7)

Since φ is bounded on Bc we have, using (3.6) and (3.7)

‖(A− bL)un‖ → 0 and ‖Qun‖ → 0 when n →∞.

This proves that ‖vn‖ → c when n →∞ and, since vn = Pun, we clearly have
that ||vn|| ≤ c, ∀n ∈ IN . Now, let us show that

lim
n→∞

< (A− bL)vn, vn >

φ(vn)
= 0.(3.8)

We claim that

For n ∈ IN large enough, φ(vn) ≥ 1

2
φ(un).(3.9)

14



Indeed, by Taylor-Lagrange’s expansion, there exists θn ∈ [0, 1] such that

φ(vn) = φ(un −Qun)

= φ(un)− < N(un), Qun > +
1

2
< N ′(un − θnQun)Qun, Qun > .

By (A4),

| < N(un), Qun > | ≤ ‖N(un)‖ ‖Qun‖ ≤ Kφ(un)1− δ
2‖Qun‖.(3.10)

Also,

| < N ′(un − θnQun)Qun, Qun > | ≤ sup
u∈Bc

||N ′(u)|| ||Qun||2.(3.11)

It follows from (3.10) and (3.11), that

φ(vn) ≥ φ(un)

(
1−K

‖Qun‖
φ(un)

δ
2

− sup
u∈Bc

||N ′(u)||‖Qun‖2

2φ(un)

)
.

But combining (3.6) and (3.7) and since δ ≥ 1 in T (δ) we have

‖Qun‖
φ(un)

δ
2

→ 0 and
‖Qun‖2

φ(un)
→ 0 when n →∞.

Therefore there does exist n0 ∈ IN such that for n ≥ n0, (3.9) is satisfied. In
particular, then φ(vn) > 0. Now for n ≥ n0, by (3.7) and (3.9),

< (A− bL)vn, vn >

φ(vn)δ
≤ | < (A− bL)un, un > |

(1
2
φ(un))δ

+
| < (A− bL)Qun, Qun > |

(1
2
φ(un))δ

≤ 2δ

( | < (A− bL)un, un > |
φ(un)δ

+
‖A− bL‖‖Qun‖2

φ(un)δ

)

≤ 2δ

( | < (A− bL)un, un > |
φ(un)δ

+
C‖(A− bL)un‖2

φ(un)δ

)

where C = ‖A−bL‖
m(b)2

. By T (δ) the expression above tends to 0 when n → ∞
and this completes the proof of the lemma. 2

Proof of Proposition 3.3. We argue by contradiction. Suppose there exists
a subsequence of {vn} ⊂ V (still denoted {vn}) such that for a λn ≥ b− qn,

F (λn, vn) ≥ 0.(3.12)

Then, by definition of F (λn, vn),

0 ≤ 1

2
(< (A− λnL)vn, vn > + < (A− λnL)gn, gn >)− φ(vn + gn)
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where gn := g(λn, vn). Combining Lemma 2.1 and the fact that φ(u) ≥ 0,∀u ∈
H, we deduce that

0 ≤< (A− λnL)vn, vn > −m(λn)‖gn‖2

or equivalently that

m(λn)‖gn‖2 ≤< (A− bL)vn, vn > +(b− λn) < Lvn, vn > .

Thus,

m(λn)‖gn‖2 ≤< (A− bL)vn, vn > +(b− λn)‖L‖c2

and, since λn ≥ 0,

‖gn‖2 ≤ 1

α

(
< (A− bL)vn, vn > +(b− λn)‖L‖c2

)
.(3.13)

Now observe that by Lemma 3.2, for any η > 0, there exists n0 = n0(η) ∈ IN
such that

< (A− bL)vn, vn >

φ(vn)
≤ η ∀n ≥ n0(3.14)

< (A− bL)vn, vn >

φ(vn)δ
≤ η ∀n ≥ n0 and(3.15)

< (A− bL)vn, vn >≤ 1

2
αc2 ∀n ≥ n0.(3.16)

In the rest of the proof we always assume that n ≥ n0. Now, using (3.13), the
definition of qn and the fact that 0 ≤ (b− λn) ≤ qn, (3.14) implies that

‖gn‖2 ≤ η

α
φ(vn) +

φ(vn)

4K(2c)
= c0φ(vn)(3.17)

where c0 = η
α

+ 1
4K(2c)

. Similarly (3.15) implies that

‖gn‖2 ≤ η

α
φ(vn)δ +

φ(vn)δ

32K2
= c1φ(vn)δ(3.18)

where c1 = η
α

+ 1
32K2 . Finally, still from (3.13), we get using (3.16)

||gn||2 ≤ 1

2
c2 +

qn||L||c2

α
≤ c2.
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Now, as in the proof of Lemma 3.2 (see (3.10) and (3.11)), we have for η > 0
sufficiently small

φ(vn + gn) ≥ φ(vn)−Kφ(vn)1− δ
2‖gn‖ − 1

2
K(2c)‖gn‖2

≥ φ(vn)

(
1−K

||gn||
φ(vn)

δ
2

−K(2c)
||gn||2
2φ(vn)

)

≥ φ(vn)
(
1−Kc

1
2
1 −

1

2
K(2c)c0

)

≥ φ(vn)

2
.

Thus, taking η > 0 sufficiently small, it follows that

0 ≤ F (λn, vn) ≤ 1

2
< (A− λnL)vn, vn > −φ(vn + gn)

≤ 1

2
< (A− bL)vn, vn > +

qn‖L‖c2

2
− φ(vn)

2

≤ 1

2
ηφ(vn) +

φ(vn)

4
− φ(vn)

2
< 0.

This contradiction completes the proof. 2

Setting λ0 = b− qn0 where qn0 is defined in Proposition 3.3 we have, as a
consequence of the above results, that for all λ ∈ [λ0, b[ the following holds:
(i) Γλ is non void and (ii) λ → c(λ) is monotone decreasing. Indeed the path
γ defined by γ(t) = tvn0 for t ∈ [0, 1], belongs to Γλ for all λ ∈ [λ0, b[; this
gives (i). Now for λ0 ≤ λ1 ≤ λ2 < b we have, by Proposition 2.4, for any
γ ∈ Γλ1 , F (λ2, γ(t)) ≤ F (λ1, γ(t)). Thus, Γλ1 ⊂ Γλ2 and, from the definition
of c(λ), it follows that c(λ2) ≤ c(λ1).

We will end this section by deriving some a priori estimates on c(λ).

Proposition 3.4 For the sequence {qn} ⊂ IR defined in Proposition 3.3 we
have

(i) There exists n0 ∈ IN such that for n ≥ n0 and λ ∈ [b− qn, b[ :

0 < c(λ) ≤ K(q)(< (A− λL)vn, vn >)
q

q−2 φ(vn)
−2
q−2

where K(q) > 0 is a constant depending only on q.

(ii) Setting

αn =

{
b− <(A−bL)vn,vn>

4‖L‖c2 if < (A− bL)vn, vn >> 0

b− qn

n
if < (A− bL)vn, vn >= 0,
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we have αn → b when n →∞ and

lim
n→∞

c(αn)

(b− αn)θ+1
= 0

where θ = 2
q−2

(1− 1
δ
).

Proof. (i) Remark that, by definition of c(λ), Lemmas 3.1 and Proposition
3.3, we have for λ in [b− qn, b[

0 < c(λ) ≤ max
t∈[0,1]

F (λ, tvn) = F (λ, t̂vn)(3.19)

for a t̂ ∈]0, 1]. Setting gn = g(λ, t̂vn), we have

F (λ, t̂vn) =
1

2

(
(t̂)2 < (A− λL)vn, vn > + < (A− λL)gn, gn >

)
(3.20)

− φ(t̂vn + gn)

and thus, since φ(t̂vn + gn) ≥ 0, (3.19) implies that

0 ≤ t̂2 (< (A− bL)vn, vn > +(b− λ) < Lvn, vn >) + < (A− λL)gn, gn > .

Therefore, for λ ≥ b− qn ≥ 0, we obtain that

α

∥∥∥∥
gn

t̂

∥∥∥∥
2

≤< (A− bL)vn, vn > +(b− λ) < Lvn, vn > .(3.21)

By Lemma 3.2, there exists n0 ∈ IN such that for all n ≥ n0,

< (A− bL)vn, vn >≤ α

4K(2c)
φ(vn)(3.22)

< (A− bL)vn, vn >≤ α

32K2
φ(vn)δ.(3.23)

< (A− bL)vn, vn >≤ 1

2
αc2.(3.24)

Combining (3.21) and (3.22), we deduce that

∥∥∥∥
gn

t̂

∥∥∥∥
2

≤ φ(vn)

4K(2c)
+

qn‖L‖c2

α
≤ 1

2K(2c)
φ(vn).(3.25)

Combining (3.21) and (3.23), we deduce that

∥∥∥∥
gn

t̂

∥∥∥∥
2

≤ φ(vn)δ

32K2
+

qn‖L‖c2

α
≤ 1

16K2
φ(vn)δ.(3.26)
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Finally, from (3.21) and (3.24) we have

∥∥∥∥
gn

t̂

∥∥∥∥
2

≤ 1

2
c2 +

qn||L||c2

α
≤ c2.

Now, by (2.1), since 0 ≤ t̂ ≤ 1 we have

φ(t̂vn + gn) ≥ (t̂)qφ(vn +
gn

t̂
).(3.27)

As in the proof of Lemma 3.2, for a θn ∈ [0, 1] using (3.25) and (3.26):

φ(vn +
gn

t̂
) = φ(vn)+ < N(vn),

gn

t̂
> +

1

2
< N ′(vn + θ

gn

t̂
)
gn

t̂
,
gn

t̂
>

≥ φ(vn)−Kφ(vn)1− δ
2‖gn

t̂
‖ − 1

2
K(2c)‖gn

t̂
‖2

≥ φ(vn)

(
1−K

||gn

t̂
||

φ(vn)
δ
2

−K(2c)
||gn

t̂
||2

2φ(vn)

)

≥ φ(vn)

2
.

Thus (3.27) yields

φ(t̂vn + gn) ≥ (t̂)q

2
φ(vn).(3.28)

Now for n ≥ n0, (3.19), (3.20) and (3.28) lead to

c(λ) ≤ (t̂)2

2
< (A− λL)vn, vn > −(t̂)q

2
φ(vn)

≤ max
t∈ [0,1]

{
t2

2
< (A− λL)vn, vn > −tq

2
φ(vn)

}

= K(q)
< (A− λL)vn, vn >

q
q−2

φ(vn)
2

q−2

where K(q) = 1
2

(
(2

q
)

2
q−2 − (2

q
)

q
q−2

)
> 0. This proves (i).

(ii) By definition of αn, qn and by Lemma 3.2 clearly for any m ∈ IN large
enough, 0 < b− qn < αn. Moreover αn → b when n →∞. Now, remark that

< (A− αnL)vn, vn > ≤ < (A− bL)vn, vn > +(b− αn)‖L‖c2

≤ 5(b− αn)‖L‖c2(3.29)

if < (A− bL)vn, vn >> 0 and

< (A− αnL)vn, vn >≤ qn

n
‖L‖c2 if < (A− bL)vn, vn >= 0.(3.30)
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Setting γ = 2
(q−2)δ

and θ = 2
(q−2)

(1− 1
δ
), we have by Point (i),

c(αn) ≤ K(q) < (A− αnL)vn, vn >1+θ

(
< (A− αnL)vn, vn >

φ(vn)δ

)γ

.(3.31)

Hence, using (3.29), it follows that

c(αn) ≤ K(q)(5(b− αn)‖L‖c2)1+θ(
< (A− αnL)vn, vn >

φ(vn)δ
)γ(3.32)

if < (A− bL)vn, vn >> 0. In the same way, using (3.30), if
< (A− bL)vn, vn >= 0,

c(αn) ≤ K(q)((b− αn)‖L‖c2)1+θ(
qn‖L‖c2

nφ(vn)δ
)γ.(3.33)

Now, by Lemma 3.2 and the definition of αn, if
< (A− bL)vn, vn >> 0,

< (A− αnL)vn, vn >

φ(vn)δ
→ 0 when n →∞(3.34)

and if < (A− bL)vn, vn >= 0,

qn‖L‖c2

nφ(vn)δ
≤ α

32K2n
→ 0 when n →∞ .(3.35)

Combining (3.32), (3.34) and (3.33), (3.35) we obtain (ii). The proof of the
proposition is now completed. 2

4 Existence of a bifurcating sequence for (P )

In this last section we prove Theorem 1.1. To overcome the lack of a priori
bounds on the Palais-Smale sequences of F (λ, ·), λ ∈ [λ0, b[ we need to develop
an original variational approach. We start with the following result

Proposition 4.1 There exists a strictly increasing sequence {λn} ∈ [λ0, b[,
λn → b such that c(λn) → 0 and c′(λn) → 0.

Proof. First note that since λ → c(λ) is non increasing, by Proposition 3.4
(ii), c(λ) → 0 when λ → b−. Another consequence of the monotonicity is
that c′(λ) exists almost everywhere. We claim that there is λn → b− with
c′(λn) → 0. Seeking a contradiction, we assume that

a0 := lim inf
λ→b−

(−c′(λ)) > 0.
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Since λ → c(λ) is non increasing and positive we have for λ < b sufficiently
close to b,

c(λ) = c(λ)− lim
h→b−

c(h)

≥ lim
h→b−

∫ h

λ
−c′(t) dt

≥ lim
h→b−

∫ h

λ

a0

2
dt

=
a0

2
(b− λ).

Thus, making the choice λ = αn (for n ∈ IN large) we obtain that

lim
n→∞

c(αn)

(b− αn)
≥ a0

2

and this contradicts the a priori estimates of Proposition 3.4 (ii). 2

The next result is the key point of our variational approach. Let λ ∈]λ0, b[
be an arbitrary but fixed value where c′(λ) exists. Let {λm} ⊂]a, λ[ be a
strictly increasing sequence with λm → λ. Finally let β(λ) > 0 be such that

β2(λ) :=
4

β
[(2 + 3b)c(λ)− bc′(λ)].

Proposition 4.2 For any η > 0 there exists a sequence of paths {γm} ⊂ Γλ

such that, for m ∈ IN sufficiently large

(i) 1
2

< Lγm(t), γm(t) >≤ −c′(λ) + 3η when

F (λ, γm(t)) ≥ c(λ)− η(λ− λm),(4.1)

(ii) max
t∈ [0,1]

F (λ, γm(t)) ≤ c(λ) + (−c′(λ) + 2η)(λ− λm).

Moreover making the choice η = c(λ) > 0 we have when (4.1) hold

||γm(t)|| ≤ β(λ).

Proof. Let {γm} ⊂ Γλ be an arbitrary sequence such that

max
t∈ [0,1]

F (λm, γm(t)) ≤ c(λm) + η(λ− λm).(4.2)

We note that such sequence exists since Γλm ⊂ Γλ for all m ∈ IN. Now let
m0 = m0(η, λ) be such that, for all m ≥ m0,

0 ≤ c(λm)− c(λ)

λ− λm

≤ −c′(λ) + η.(4.3)
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When (4.1) is satisfied, it follows that for m ≥ m0,

0 ≤ F (λm, γm(t))− F (λ, γm(t))

λ− λm

≤ c(λm) + η(λ− λm)− c(λ) + η(λ− λm)

λ− λm

=
c(λm)− c(λ)

λ− λm

+ 2η

≤ −c′(λ) + 3η.(4.4)

But, using Proposition 2.4, we also have

0 ≤ 1

2
< Lγm(t), γm(t) > =

J(λm, γm(t))− J(λ, γm(t))

λ− λm

≤ F (λm, γm(t))− F (λ, γm(t))

λ− λm

which yields, together with (4.4),

1

2
< Lγm(t), γm(t) >≤ −c′(λ) + 3η

when (4.1) is satisfied. This proves (i). Now, by Proposition 2.4, (4.2), (4.3)
and since λm ↑ λ, we have that for m ≥ m0,

max
t∈ [0,1]

F (λ, γm(t)) ≤ max
t∈ [0,1]

F (λm, γm(t)) ≤ c(λm) + η(λ− λm)

≤ c(λ) + (2η − c′(λ))(λ− λm).

Thus (ii) also holds. Now if we choose η = c(λ) > 0, then when (4.1) is
satisfied and m ∈ IN is sufficiently large

1

2
< Lγm(t), γm(t) >≤ −c′(λ) + 3c(λ)(4.5)

and

F (λ, γm(t)) ≤ 2c(λ).(4.6)

Since J(λ, γm(t)) ≤ F (λ, γm(t)) by Proposition 2.3 (i), we have using the
definition of J(λ, ·)

1

2
< Aγm(t), γm(t) > ≤ F (λ, γm(t)) +

λ

2
< Lγm(t), γm(t) >

+ φ(γm(t)).
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It implies, using (2.2), that

1

4
< Aγm(t), γm(t) >≤ F (λ, γm(t)) +

b

2
< Lγm(t), γm(t) >

from which it follows that

β

4
||γm(t)||2 ≤ F (λ, γm(t)) +

b

2
< Lγm(t), γm(t) > .

Thus using (4.5) and (4.6) we deduce that

β

4
||γm(t)||2 ≤ 2c(λ) + b(−c′(λ) + 3c(λ))

and the proposition is proved. 2

We use Proposition 4.2 in the following way. Suppose that for a λ ∈ [λ0, b[,
c(λ) and c′(λ) are defined and sufficiently small so that 4β(λ) ≤ c. Then

Proposition 4.3 Setting

F λ
α :=

{
v ∈ B2β(λ)(V ) / |F (λ, v)− c(λ)| ≤ α

}

we have

inf
{
‖∇vF (λ, v)‖/v ∈ F λ

α

}
= 0 for any α > 0.(4.7)

Proof. Seeking a contradiction we assume that (4.7) does not hold. Thus,
we can choose a a > 0 such that for any v ∈ F λ

a

‖∇vF (λ, v)‖ ≥ a and 0 < a <
1

2
c(λ).

Then, a classical deformation argument says that there exist µ ∈]0, a[ and a
C1- map τ : Bc(V ) → Bc(V ) such that

τ(v) = v if |F (λ, v)− c(λ)| ≥ a,(4.8)

F (λ, τ(v)) ≤ F (λ, v) ∀ v ∈ Bc(V ).(4.9)

Moreover for v ∈ Bβ(λ)(V ) with F (λ, v) ≤ c(λ) + µ,

F (λ, τ(v)) ≤ c(λ)− µ.(4.10)

Now consider the sequence {γm} ⊂ Γλ obtained in Proposition 4.2 where the
choice η = c(λ) > 0 is made. Fix a k ∈ IN sufficiently large so that

(2c(λ)− c′(λ))(λ− λk) < µ.(4.11)
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¿From (4.11), if (4.1) is satisfied in Proposition 4.2 we have that

‖γk(t)‖ ≤ β(λ) and F (λ, γk(t)) ≤ c(λ) + µ.(4.12)

Thus, from (4.10) and (4.12) it follows that

F (λ, τ(γk(t))) ≤ c(λ)− µ.(4.13)

Now, if (4.1) is not satisfied, then

F (λ, γk(t)) < c(λ)− c(λ)(λ− λk)(4.14)

which implies together with (4.9) that

F (λ, τ(γk(t))) ≤ F (λ, γk(t)) < c(λ)− c(λ)(λ− λk).(4.15)

Therefore, on one hand combining (4.13) and (4.15) we get

max
t∈[0,1]

F (λ, τ(γk(t))) < c(λ).(4.16)

On the other hand, since a < 1
2
c(λ), by (4.8), τ(γk(·)) belongs to Γλ . This

contradiction proves the proposition. 2

Gathering the results obtained in Propositions 4.1, 4.2 and 4.3 we deduce
that there exists a sequence {λn} with β(λn) → 0 as λn → b such that, for
any n ∈ IN , F (λn, ·) has a Palais-Smale sequence at the level c(λn) contained
in the ball a radius 2β(λn) centred at the origin. By definition, this means
that for any fixed n ∈ IN there exists a sequence {vm} ⊂ B2β(λn)(V ) such that

F (λn, vm) → c(λn) > 0 and ∇vF (λn, vm) → 0 as m →∞.(4.17)

The proof of Theorem 1.1 will be completed once we have shown

Proposition 4.4 For any n ∈ IN , J(λn, ·) has a nontrivial critical point uλn

with ||uλn|| ≤ 4β(λn).

Proof. By definition of F (λ, .), setting um := vm + g(λn, vm) we have by
(4.17) that, as m →∞,

J(λn, um) = F (λn, vm) → c(λn) > 0

and
∇uJ(λn, um) = ∇vF (λn, vm) → 0.

Now, if (A5)(ii) holds, the proof is straighforward. Indeed, by definition,
there exist uλn ∈ H\{0} and wm ∈ Θ(um) such that, up to a subsequence,
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wm ⇀ uλn and ∇uJ(λn, uλn) = 0. Also ||uλn|| ≤ lim inf ||wm|| ≤ 4β(λn). If
(A5)(i) holds, namely if N is compact, we proceed as follows. Passing to a
subsequence we may assume that um ⇀ uλn and ||N(um)− wλn|| → 0 where
uλn , wλn ∈ H. Since λn ∈]a, b[, A− λnL is invertible and so there exists zλn

such that (A− λnL)zλn = wλn . Now,

M(λn)‖um − zλn‖ ≤ ‖(A− λnL)(um − zλn)‖
= ‖(A− λnL)um − wλn‖
= ‖∇uJ(λn, um) + N(um)− wλn‖
≤ ‖∇uJ(λn, um)‖+ ‖N(um)− wλn‖.

Hence, since M(λn) > 0, ||um − zλn|| → 0 and thus um → uλn . By continuity,
it follows that ||uλn|| ≤ 4β(λn) and that∇uJ(λn, uλn) = lim∇uJ(λn, um) = 0.
Also J(λn, uλn) = c(λn) > 0 and in particular uλn 6= 0. 2
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Poincaré, Anal. Non Lin., 10, 1993, 377–404.

[8] B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of a nontrivial so-
lution to a strongly indefinite semilinear equation, Proc. A.M.S., 119,
1993, 179–186.

25



[9] V. Coti-Zelati, I. Ekeland and E. Séré, A variational approach to homo-
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