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1 Introduction and main results
Consider the first order Hamiltonian system

(HS) ż = JHz(t, z),

where z = (p, q) ∈ R2N , J :=
(

0 −I
I 0

)
. Here H ∈ C1(R × R2N , R) has the

form
H(t, z) =

1

2
L(t)z · z + R(t, z)

with L(t) a continuous symmetric 2N×2N -matrix valued function, Rz(t, z) =
o(|z|) as z → 0 and asymptotically linear as |z| → ∞. A solution z of (HS)
is a homoclinic orbit if z(t) 6≡ 0 and z(t) → 0 as |t| → ∞. In this paper we
study the existence and multiplicity of homoclinic orbits without assuming
periodicity conditions.

In the last years, existence and multiplicity of homoclinic orbits for the
first order systems (HS) were studied extensively by means of critical point
theory, and many results were obtained under the assumption that H(t, z)
depends periodically on t and L and R satisfy various hypotheses. In [6] Coti-
Zelati, Ekeland and Séré assume that L is constant with 0 a hyperbolic point
of the Hamiltonian operator A := −

(
J d

dt
+ L

)
, R(t, z) strictly convex in z

and satisfying the Ambrosetti-Rabinowitz growth condition, that is, there is
µ > 2 such that

(1.1) 0 < µR(t, z) ≤ Rz(t, z)z whenever z 6= 0.

They prove the existence and multiplicity of homoclinic orbits of (HS). This
result was deepened in [16, 17] when Séré established the existence of infi-
nitely many homoclinic orbits. In these papers the convexity condition on R
allows the authors to use a Mountain-Pass argument. Independently, Hofer
and Wysocki [11], using Fredholm operator theory and a linking argument,
and Tanaka [20], passing through a subharmonic approach, managed to re-
move the convexity assumption to get one homoclinic orbit. Later linking
type arguments were used in [7, 9, 2] to show the existence and multiplicity
of homoclinic orbits of (HS) when L depend periodically on t and certain
symmetries on R(t, z) are assumed for the multiplicity. See also [19] for a
periodic setting but with different nonlinearities, in particular asymptotically
linear ones.

Without assumptions of periodicity the problem is quite different in na-
ture and there is not much work done so far. For describing our results, we
use the 2N × 2N matrix J0 :=

(
0 I
I 0

)
, and the notation

R̃(t, z) :=
1

2
Rz(t, z)z −R(t, z).
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Also given a 2N × 2N matrix M , we say that M ≥ 0 if and only if

min
ξ∈R2N , |ξ|=1

Mξ · ξ ≥ 0

and that M < 0 if and only if M ≥ 0 does not hold. Also letting I2N be the
identity matrix in R2N and q ∈ R, we denote the matrix qI2N by q.

We make the following assumptions:

(R0) There is b > 0 such that the set Λb := {t ∈ R : J0L(t) < b} is
nonempty and has finite measure;

(R1) R(t, z) ≥ 0 and Rz(t, z) = o(|z|) as z → 0 uniformly in t;

(R2) Rz(t, z) = M(t)z + rz(t, z), with M a bounded, continuous symmetric
2N × 2N -matrix valued function and rz(t, z) = o(|z|) uniformly in t as
|z| → ∞;

(R3) m0 := inft∈R
[
inf(ξ∈R2N , |ξ|=1) M(t)ξ · ξ

]
> inf σ(A) ∩ (0,∞);

(R4) either (i) 0 6∈ σ(A−M) or (ii) R̃(t, z) ≥ 0 for all (t, z) and R̃(t, z) ≥ δ0

for some δ0 > 0 and all (t, z) with |z| large enough;

(R5) γ < bmax, where γ := sup|t|≥t0,z 6=0 |Rz(t, z)|/|z| for some t0 ≥ 0, and
bmax := sup{b : |Λb| < ∞}.

We will show that the set σ(A) ∩ (0, bmax) consists only of eigenvalues of
finite multiplicity. From the definitions of m0 and γ we have m0 < γ < bmax.
Let ` denote the number of eigenfunctions with corresponding eigenvalues
lying in (0, m0).

Theorem 1.1. Let (R0) − (R5) be satisfied. Then (HS) has at least one
homoclinic orbit. If in addition R(t, z) is even in z, then (HS) has at least `
pairs of homoclinic orbits.

In the works where H(t, z) is periodic, the periodicity is used to control
the lack of compactness due to the fact that (HS) is set on all R. In our
situation we manage to recover sufficient compactness by imposing a control
on the size of R(t, z) with respect to the behavior of L(t) at infinity in t, see
condition (R5). For related arguments we refer to [8, 13, 18].

We now give some examples.

Remark 1.2. Let q ∈ C1(R, R) satisfy

(q0) There is b > 0 such that 0 < |Qb| < ∞ where Qb := {t ∈ R : q(t) < b}.
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Then L(t) = q(t)J0 satisfies (R0).

Remark 1.3. The following functions satisfy (R2) − (R4) provided that
inf a(t) > 0:

Ex1. R(t, z) := a(t)|z|2
(
1− 1

ln(e+|z|)

)
.

Ex2. Rz(t, z) = h(t, |z|)z, where h(t, s) is increasing for s ∈ [0,∞), and
h(t, s) → 0 as s → 0, h(t, s) → a(t) uniformly in t as s →∞.

Note that in both examples, m0 = inf a(t) and γ = sup|t|≥t0 a(t) for an
arbitrarily fixed t0 > 0.

The paper is organized as follows. In Section 2 we first study the spec-
trum of the operator A showing, thanks to (R0), that the essential spec-
trum σe(A) ⊂ R \ (−bmax, bmax). Based on the description on σ(A), we de-
rive a variational setting for (HS) and represent the associated functional
in the form Φ(z) = 1

2
(‖z+‖2 − ‖z−‖2) −

∫
R R(t, z) with Φ being defined

on the Hilbert space E = D(|A|1/2) ↪→ H1/2(R, R2N) with decomposition
E = E− ⊕ E0 ⊕ E+, z = z− + z0 + z+, dim E± = ∞. Our existence and
multiplicity result is obtained using some critical point theorems recently de-
veloped that we present at the end of the Section. In Section 3 we show the
linking structure of Φ, that is, inf Φ(E+∩∂Bρ) > 0 for some ρ > 0 and there
are finite dimensional subspaces Y ⊂ E+ such that Φ(u) → −∞ as ‖u‖ → ∞
in EY := E− ⊕ E0 ⊕ Y . In Section 4 we show that the Cerami condition
for Φ hold. Because of the lack of (1.1) and since E0 maybe nontrivial this
require some care. Finally, in Section 5, we give the proof of Theorem 1.1.

Notation: Throughout the paper we shall denote by c > 0 various
positive constants which may vary from lines to lines and are not essential
to the problem.

2 Variational setting
In order to establish a variational setting for the system (HS) we study the
spectrum of the associated Hamiltonian operator.

Recall that A = −
(
J d

dt
+ L

)
is selfadjoint on L2(R, R2N) with domain

D(A) = H1(R, R2N) if L(t) is bounded and D(A) ⊂ H1(R, R2N) if L(t) is
unbounded. Let σ(A), σd(A) and σe(A) denote, respectively, the spectrum,
the eigenvalues of finite multiplicity, and the essential spectrum of A. Set

(2.1) µ−e := sup
(
σe(A) ∩ (−∞, 0]

)
, µ+

e := inf
(
σe(A) ∩ [0,∞)

)
.
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In what follows by | · |q we denote the usual Lq-norm, and by (·, ·)2 the usual
L2-inner product.

Proposition 2.1. Assume (R0) is satisfied. Then σe(A) ⊂ R\(−bmax, bmax),
that is, µ−e ≤ −bmax and µ+

e ≥ bmax.

Proof. Let b > 0 be such that |Λb| < ∞. Set

(J0L(t)− b)+ :=

{
J0L(t)− b if J0L(t)− b ≥ 0

0 if J0L(t)− b < 0

and (J0L(t)− b)− := (J0L(t)− b)− (J0L(t)− b)+. We have, since J 2
0 = I,

A = A1 − J0(J0L(t)− b)− where

A1 = −
(
J d

dt
+ J0(J0L− b)+

)
− bJ0.

Observe that J0J = −JJ0. Thus, for z ∈ D(A),

(2.2)

(A1z, A1z)2 =|A1z|22 =

∣∣∣∣(J d

dt
+ J0(J0L− b)+

)
z + bJ0z

∣∣∣∣2
2

=

∣∣∣∣(J d

dt
+ J0(J0L− b)+

)
z

∣∣∣∣2
2

+ b2|z|22

+ (J ż, bJ0z)2 + (bJ0z, J ż)2

+
(
J0(J0L− b)+z, bJ0z

)
2
+

(
bJ0z, J0(J0L− b)+z

)
2

=

∣∣∣∣(J d

dt
+ J0(J0L− b)+

)
z

∣∣∣∣2
2

+ b2|z|22

+ 2b((J0L− b)+z, z)2

≥b2|z|22 .

Here we have used the fact that (J ż, bJ0z)2 + (bJ0z, J ż)2 = 0. Indeed for
z = (u, v) ∈ C∞0 one has

(J ż, bJ0z)2 + (bJ0z, J ż)2

= 2b

∫
R
(u̇u− v̇v) = b

∫
R

d

dt
(u2(t)− v2(t)))

= b lim
t→∞

(|u(t)|2 − |u(−t)|2 − |v(t)|2 + |v(−t)|2) = 0.

Thus, by density, we get the result. Now (2.2) implies that σ(A1) ⊂ R \
(−b, b).
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We claim that σe(A) ∩ (−b, b) = ∅. Assume by contradiction that there
is λ ∈ σe(A) with |λ| < b. Let (zn) ⊂ D(A) with |zn|2 = 1, zn ⇀ 0 in L2 and
|(A−λ)zn|2 → 0. Then ‖zn‖H1 stays bounded, hence |J0(J0L−b)−zn|2 → 0.
We get

o(1) = |(A− λ)zn|2 = |A1zn − λzn − J0(J0L− b)−zn|2
≥ |A1zn|2 − |λ| − o(1)

≥ b− |λ| − o(1)

which implies that 0 < b − |λ| ≤ 0, a contradiction. Since the claim is true
for any b > 0 with |Λb| < ∞, one sees that σe(A) ⊂ R \ (−bmax, bmax).

Since 0 may belong to σ(A), some care is necessary for getting the suitable
variational framework. Observe that D(A) is a Hilbert space with the graph
inner product

(z, w)A := (Az, Aw)2 + (z, w)2

and the induced norm |z|A := (z, z)
1/2
A . Let (Fλ)λ∈R denotes the spectral

family and |A| the absolute value of A. A has the polar decomposition
A = U |A| with U = 1 − F0 − F−0. Proposition 2.1 induces an orthogonal
decomposition of L2 := L2(R, R2N)

L2 = L− ⊕ L0 ⊕ L+, z = z− + z0 + z+

so that A is negative definite on L−, positive definite on L+ and L0 = ker A.
In fact, L± = {u ∈ L2 : Uu = ±u} and L0 = {u ∈ L2 : Uu = 0}
(see Theorem IV, 3.3 in [10]). Note that Proposition 2.1 also implies that
dim(L0) < ∞. Let P 0 : L2 → L0 denote the associated projector. Then P 0

commutes with A and |A|. On D(A) we introduce the inner product

〈z, w〉A := (Az, Aw)2 + (P 0z, P 0w)2 = (|A|z, |A|w)2 + (P 0z, w)2

whose induced norm will be denoted by ||z||A. Since 0 is at most an isolated
eigenvalue of finite multiplicity, it is clear that | · |A and || · ||A are equivalent
norms on D(A): d1|z|A ≤ ||z||A ≤ d2|z|A, for all z ∈ D(A). Define

Ã := |A|+ P 0.

Then D(Ã) = D(A). Noting that P 0|A| = |A|P 0 = 0 we have for z, w ∈
D(A),

(Ãz, Ãw)2 = (|A|z, |A|w)2 + (|A|z, P 0w)2 + (P 0z, |A|w)2 + (P 0z, P 0w)2

= (|A|z, |A|w)2 + (P 0z, P 0w)2 = 〈z, w〉A,
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hence,

(2.3) d1|z|A ≤ ||z||A = |Ãz|2 ≤ d2|z|A, for all z ∈ D(A).

Let E := D(|A|1/2) be the domain of the self-adjoint operator |A|1/2 which
is a Hilbert space equipped with the inner product

(z, w) =
(
|A|1/2z, |A|1/2w

)
2
+ (P 0z, P 0w)2

and the induced norm ‖z‖ = (z, z)1/2. E has the following decomposition

E = E− ⊕ E0 ⊕ E+ where E± = E ∩ L± and E0 = L0

orthogonal with respect to both (·, ·)2 and (·, ·) inner products. In fact, the
(·, ·)2 orthogonality follows from the decomposition of L2. To show the (·, ·)
orthogonality, observe that, for z± ∈ L± ∩ D(A),

(z+, z−) = (|A|1/2z+, |A|1/2z−)2 = (|A|z+, z−)2 = (|A|Uz+, z−)2

= (Az+, z−)2 = (z+, Az−)2 = (z+, |A|Uz−)2 = −(z+, |A|z−)2

= −(|A|1/2z+, |A|1/2z−)2 = −(z+, z−),

hence (z+, z−) = 0. Since D(A) is dense in E, one sees that E+ and E−

are orthogonal in (·, ·). Similarly one checks that E± are orthogonal to E0 in
(·, ·). Observe that for all z ∈ D(A) and w ∈ D(|A|1/2)

(Ã1/2z, Ã1/2w)2 = (Ãz, w)2 = ((|A|+ P 0)z, w)2 = (|A|z, w)2 + (P 0z, w)2

= (|A|1/2z, |A|1/2w)2 + (P 0z, P 0w)2 = (z, w).

Consequently, since D(A) = D(Ã) is a core of Ã1/2 we have

(z, w) = (Ã1/2z, Ã1/2w)2 for all z, w ∈ D(|A|1/2)

which implies in particular that

(2.4) ‖z‖ = |Ã1/2z|2 for all z ∈ E.

The self adjoint operator A0 = J d
dt

+J0 acts on L2 with D(A0) = H1 :=

H1(R, R2N). Then A2
0 = − d2

dt2
+ 1 and, letting |Ã0| denote the absolute value

of A0, we have for all z ∈ H1,

(2.5) ||A0|z|22 = |A0z|22 = (A0z, A0z)2 = (A2
0z, z)2 = ||z||2H1 .

Lemma 2.2. The condition D(A) ⊂ H1 implies that

(2.6) ||z||H1 = ||A0|z|2 ≤ d3|Ãz|2 for all z ∈ D(A).
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Proof. Let Ar be the restriction of A0 to D(A). Ar is a linear operator from

D(A) to L2. We claim that Ar is closed. Indeed, let zn
|·|A→ z and Arzn

|·|2→ w.
Then z ∈ D(A), and since A0 is closed, Arzn = A0zn → A0z = Arz, hence
the claim. Now the Closed Graph Theorem implies that Ar : D(A) → L2

is a bounded linear operator, so |A0z|2 = |Arz|2 ≤ d4|z|A for all z ∈ D(A).
This together with (2.3) and (2.5), implies (2.6).

By interpolation theory we have that H1/2 = [H1, L2]1/2 (see Theorem
2.4.1 of [15]). Noting that D(|A0|0) = L2 one has by (2.5),

H1/2 = [D(|A0|),D(|A0|0)]1/2

with equivalent norms. It then follows from Theorem 1.18.10 of [15] that

H1/2 = [D(|A0|),D(|A0|0)]1/2 = D(|A0|0)]1/2,

hence ||z||H1/2 and ||A0|1/2z|2 are equivalent norm on H1/2 :

(2.7) d5||z||H1/2 ≤ ||A0|1/2z|2 ≤ d6||z||H1/2 for all z ∈ H1/2.

Lemma 2.3. E embeds continuously into H1/2(R, R2N), hence, E embeds
continuously into Lp for all p ≥ 2 and compactly into Lp

loc for all p ≥ 1.

Proof. By (2.6),
||A0|z|2 ≤ d3|Ãz|2 = |(d3Ã)z|2

for all z ∈ D(A). Thus (|A0|z, z)2 ≤ (d3Ãz, z)2 for all z ∈ D(A) (see Propo-
sition III 8.11 of [10]). This implies

||A0|1/2z|22 = (|A0|z, z)2 ≤ (d3Ãz, z)2 = d3|Ã1/2z|22

for all z ∈ D(A) (see Proposition III 8.12 of [10]). Since D(A) is a core of
Ã1/2 we obtain that ||A0|1/2z|22 ≤ d3|Ã1/2z|22 for all z ∈ E. This, jointly with
(2.4), shows that

||A0|1/2z|22 ≤ d3||z||2 for all z ∈ E

which, together with (2.7), implies that

‖z‖H1/2 ≤ d6‖z‖ for all z ∈ E

ending the proof.
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From now on we fix a number b with

(2.8) γ < b < bmax

where γ appears in (R5). Let k be the number of the eigenfunctions with
corresponding eigenvalues lying in [−b, b]. We write fi (1 ≤ i ≤ k) for the
eigenfunctions. Setting

Ld := span{f1, · · · , fk},

we have another orthogonal decomposition

L2 = Ld ⊕ Le, u = ud + ue.

Correspondingly, E has the decomposition:

(2.9) E = Ed ⊕ Ee with Ed = Ld and Ee = E ∩ Le,

orthogonal with respect to both the inner products (·, ·)2 and (·, ·). Remark
that by Proposition 2.1

(2.10) b|z|22 ≤ ‖z‖2 for all z ∈ Ee.

Now, note that, using A, the system (HS) can be rewritten as

(2.11) Az = Rz(t, z).

On E we define the functional

(2.12) Φ(z) :=
1

2
‖z+‖2 − 1

2
‖z−‖2 −Ψ(z) where Ψ(z) =

∫
R

R(t, z).

Our hypotheses on H(t, z) imply that Φ ∈ C1(E, R) and a standard argument
shows that critical points of Φ are homoclinic orbits of (HS) (cf. [9]). We
write Φ′ for the derivative of Φ.

In order to study the critical points of Φ, we now recall some abstract
critical point theory developed recently in [5]; see also [3] and [14] for earlier
results on that direction.

Let E be a Banach space with direct sum decomposition E = X⊕Y and
corresponding projections PX , PY onto X,Y , respectively. For a functional
Φ ∈ C1(E, R) we write Φa = {z ∈ E : Φ(z) ≥ a}, Φb = {z ∈ E : Φ(z) ≤ b}
and Φb

a = Φa∩Φb. Recall that Φ is said to be weakly sequentially lower semi-
continuous if for any zn ⇀ z in E one has Φ(z) ≤ lim infn→∞ Φ(zn), and Φ′

is said to be weakly sequentially continuous if limn→∞ Φ′(zn)w = Φ′(z)w for
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each w ∈ E. A sequence (zn) ⊂ E is said to be a (C)c-sequence if Φ(zn) → c
and (1 + ‖zn‖)Φ′(zn) → 0. Φ is said to satisfy the (C)c-condition if any
(C)c-sequence has a convergent subsequence.

From now on we assume that X is separable and reflexive, and we fix a
countable dense subset S ⊂ X∗. For each s ∈ S there is a semi-norm on E
defined by

ps : E → R, ps(z) = |s(x)|+ ‖y‖ for z = x + y ∈ X ⊕ Y.

We denote by TS the induced topology. Let w∗ denote the weak*-topology
on E∗.

Suppose:

(Φ0) For any c ∈ R, Φc is TS-closed, and Φ′ : (Φc, TS) → (E∗, w∗) is contin-
uous.

(Φ1) For any c > 0, there exists ζ > 0 such that ‖z‖ < ζ‖PY z‖ for all z ∈ Φc.

(Φ2) There exists ρ > 0 with κ := inf Φ(SρY ) > 0 where SρY := {z ∈ Y :
‖z‖ = ρ}.

The following theorem is a special case of the Theorem 4.4 of [5] (see also
[4]).

Theorem 2.4. Let (Φ0)–(Φ2) be satisfied and suppose there are R > ρ > 0
and e ∈ Y with ‖e‖ = 1 such that sup Φ(∂Q) ≤ κ where Q = {z = x + te :
t ≥ 0, x ∈ X, ‖z‖ < R}. If Φ satisfies the (C)c-condition for all c ≤ c̄ :=
sup Φ(Q) then Φ has a critical point z with κ ≤ Φ(z) ≤ c̄.

For our next result on multiple critical points we assume:

(Φ3) There is a finite-dimensional subspace Y0 ⊂ Y and R > ρ such that
we have for E0 := X ⊕ Y0 and B0 := {z ∈ E0 : ‖z‖ ≤ R} that
c̄ := sup Φ(E0) < ∞ and sup Φ(E0 \B0) < inf Φ(Bρ ∩ Y ).

A special case of Theorem 4.6 of [5] is

Theorem 2.5. If Φ is even, satisfies (Φ0), (Φ2), (Φ3) and the (C)c condition
for all c ∈ [κ, c̄], then it has at least m := dim Y0 pairs of critical points with
critical values less or equal to c̄.
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3 Linking structure
We now study the linking structure of Φ. Remark that under (R1) − (R2),
given p ≥ 2, for any ε > 0, there is Cε > 0 such that

(3.1) |Rz(t, z)| ≤ ε|z|+ Cε|z|p−1

and

(3.2) R(t, z) ≤ ε|z|2 + Cε|z|p

for all (t, z). First we have the following lemma.

Lemma 3.1. Let (R0) − (R2) be satisfied. Then there is ρ > 0 such that
κ := inf Φ(S+

ρ ) > 0 where S+
ρ = ∂Bρ ∩ E+.

Proof. Choose p > 2 such that (3.2) holds for any ε > 0. This yields

Ψ(z) ≤ ε|z|22 + Cε|z|pp ≤ C(ε‖z‖2 + Cε‖z‖p)

for all z ∈ E. Now the lemma follows from the form of Φ (see (2.12)).

In the following, we arrange all the eigenvalues (counted with multiplic-
ity) of A in (0, m0) by 0 < µ1 ≤ µ2 ≤ ... ≤ µ` < m0 and let ej de-
note the corresponding eigenfunctions: Aej = µjej for j = 1, ..., `. Set
Y0 := span{e1, ..., e`}. Note that

(3.3) µ1|w|22 ≤ ‖w‖2 ≤ µ`|w|22 for all w ∈ Y0.

For any finite dimensional subspace W of Y0 set EW = E− ⊕ E0 ⊕W .

Lemma 3.2. Let (R0)− (R2) be satisfied and ρ > 0 be given by Lemma 3.1.
Then for any subspace W of Y0, sup Φ(EW ) < ∞, and there is RW > 0 such
that Φ(z) < inf Φ(Bρ ∩ E+) for all z ∈ EW with ‖z‖ ≥ RW .

Proof. It is sufficient to show that Φ(z) → −∞ as z ∈ EW , ‖z‖ → ∞.
Arguing indirectly we assume that for some sequence (zj) ⊂ EW with ‖zj‖ →
∞, there is a > 0 such that Φ(zj) ≥ −a for all j. Then, setting wj = zj/‖zj‖,
we have ‖wj‖ = 1, wj ⇀ w, w−

j ⇀ w−, w0
j → w0, w+

j → w+ ∈ Y and

(3.4) − a

‖zj‖2
≤ Φ(zj)

‖zj‖2
=

1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

R

R(t, zj)

‖zj‖2
.

We claim that w+ 6= 0. Indeed, if not it follows from (3.4) and (R1) that
‖w−

j ‖ → 0 and thus wj → w = w0. Also
∫

R
R(t,zj)

‖zj‖2 → 0.
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Recall that R(t, z) = 1
2
M(t)z · z + r(t, z) and r(t, z)/|z|2 → 0 uniformly

in t as |z| → ∞. Thus, since |zj(t)| → ∞ if w(t) 6= 0,

(3.5)

∫
R

r(t, zj)

‖zj‖2
=

∫
R

r(t, zj)

|zj|2
|wj|2

≤
∫

R

|r(t, zj)|
|zj|2

|wj − w|2 +

∫
R

|r(t, zj)|
|zj|2

|w|2

= o(1) +

∫
w(t) 6=0

|r(t, zj)|
|zj|2

|w|2 = o(1).

Also, by (R3),

(3.6)
1

2

∫
R

M(t)zj · zj

‖zj‖2
=

1

2

∫
R

M(t)zj · zj

|zj|2
|wj|2 ≥

m0

2
|wj|22.

From (3.5)-(3.6) and since
∫

R
R(t,zj)

‖zj‖2 → 0 it follows that |wj|2 → 0. Then
1 = ‖wj‖ → 0 and this contradiction implies that w+ 6= 0. Now since

‖w+‖2 − ‖w−‖2 −
∫

R
M(t)w · w ≤ ‖w+‖2 − ‖w−‖2 −m0|w|22

≤ −
(
(m0 − µ`)|w+|22 + ‖w−‖2 + m0|w0|22

)
< 0,

there is a > 0 such that

(3.7) ‖w+‖2 − ‖w−‖2 −
∫ a

−a

M(t)w · w < 0.

As in (3.5) it follows from the fact |wj − w|L2(−a,a) → 0 that

lim
j→∞

∫ a

−a

r(t, zj)

‖zj‖2
= lim

j→∞

∫ a

−a

r(t, zj)|wj|2

|zj|2
= 0.

Thus (3.4) and (3.7) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫ a

−a

R(t, zj)

‖zj‖2

)
≤ 1

2

(
‖w+‖2 − ‖w−‖2 −

∫ a

−a

M(t)w · w
)

< 0,

a contradiction.

As a special case we have

Lemma 3.3. Let (R0)− (R2) be satisfied and κ > 0 be given by Lemma 3.1.
Then, letting e ∈ Y0 with ‖e‖ = 1, there is r0 > 0 such that sup Φ(∂Q) ≤ κ
where Q := {u = u− + u0 + se : u− + u0 ∈ E− ⊕ E0, s ≥ 0, ‖u‖ ≤ r0}.
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4 The (C)-sequences
Here we discuss the Cerami condition.

Lemma 4.1. Let (R0)− (R2) and (R4)− (R5) be satisfied. Then any (C)c-
sequence is bounded.

Proof. Let (zj) ⊂ E be such that

(4.1) Φ(zj) → c and (1 + ‖zj‖)Φ′(zj) → 0.

Then, for a C0 > 0,

(4.2) C0 ≥ Φ(zj)−
1

2
Φ′(zj)zj =

∫
R

R̃(t, zj) .

To prove that (zj) is bounded we develop a contradiction argument related
to the one introduced in [12] (see also [13, 19]). We assume that, up to a
subsequence, ‖zj‖ → ∞ and set vj = zj/‖zj‖. Then ‖vj‖ = 1, |vj|s ≤
γs‖vj‖ = γs for all s ∈ [2,∞), and passing to a subsequence if necessary,
vj ⇀ v in E, vj → v in Ls

loc for all s ≥ 1, vj(t) → v(t) for a.e. t ∈ R.
Since, by (R2), |rz(t, z)| = o(z) as |z| → ∞ uniformly in t and |zj(t)| → ∞ if
v(t) 6= 0, it is easy to see that∫

R

Rz(t, zj(t))ϕ(t)

||zj||
→

∫
R

M(t)vϕ

for all ϕ ∈ C∞0 (R, R2N). From this we deduce, using (4.1), that

(4.3) J d

dt
v + (L(t) + M(t))v = 0.

Multiplying (4.3) by J−1 = −J we also get

(4.4)
d

dt
v = J (L(t) + M(t))v.

We claim that v 6= 0. Arguing by contradiction we assume that v = 0.
Then vd

j → 0 in E and vj → 0 in Ls
loc. Set I0 := (−t0, t0) and Ic

0 := R \ I0

where t0 > 0 is the number given in (R5). It follows from

(4.5)
Φ′(zj)(z

e+
j − ze−

j )

‖zj‖2
= ‖ve

j‖2 −
∫

R

Rz(t, zj)

|zj|
(ve+

j − ve−
j )|vj|

13



that
‖ve

j‖2 =

∫
I0

Rz(t, zj)

|zj|
(ve+

j − ve−
j )|vj|

+

∫
Ic
0

Rz(t, zj)

|zj|
(ve+

j − ve−
j )|vj|+ o(1)

≤ c

∫
I0

|vj||ve+
j − ve−

j |+ γ

∫
Ic
0

|vj||ve+
j − ve−

j |+ o(1)

≤ γ|ve
j |22 + o(1).

By (2.10) one gets (
1− γ

b

)
‖ve

j‖2 ≤ o(1),

which implies, by (2.8), that ‖ve
j‖2 → 0. Hence 1 = ‖vj‖2 = ‖vd

j ‖2 +‖ve
j‖2 →

0, a contradiction.
Therefore, v 6= 0 which is impossible if (i) of (R4) is satisfied. Thus we

assume (ii) of (R4). Let Ωj(0, r) := {t ∈ R : |zj(t)| < r}, Ωj(r,∞) := {t ∈
R : |zj(t)| ≥ r}, and set for r ≥ 0

g(r) := inf
{

R̃(t, z) : t ∈ R and z ∈ R2N with |z| ≥ r
}

.

By assumption there is r0 > 0 such that g(r0) > 0, hence one has by (4.2)
that |Ωj(r0,∞)| ≤ C0/g(r0). Set Ω := {t : v(t) 6= 0}. Since v satisfies (4.4)
it follows from Cauchy Uniqueness Principle that Ω = R. Indeed otherwise
v ≡ 0 on R contradicting the fact that v 6= 0. Now since |Ω| = ∞ there exists
ε > 0 and ω ⊂ Ω such that |v(t)| ≥ 2ε for t ∈ ω and 2C0/g(r0) ≤ |ω| < ∞.
By an Egoroff’s theorem we can find a set ω′ ⊂ ω with |ω′| > C0/g(r0) such
that vj → v uniformly on ω′. So for almost all j, |vj(t)| ≥ ε and |zj(t)| ≥ r
in ω′. Then

C0

g(r0)
< |ω′| ≤ |Ωj(r,∞)| ≤ C0

g(r0)
,

a contradiction.

Let (zj) ⊂ E be an arbitrary (C)c-sequence. By Lemma 4.1 it is bounded,
hence, we may assume without loss of generality that zj ⇀ z in E, zj → z
in Lq

loc for q ≥ 1 and zj(t) → z(t) a.e. in t. Plainly z is a critical point of Φ.
Choose p > 2 such that |Rz(t, z)| ≤ |z| + C1|z|p−1 for all (t, z), and let q

stands for either 2 or p. Set Ia := [−a, a] for a > 0.

Lemma 4.2. Let q ≥ 2 and assume that (R0) − (R2) and (R4) − (R5) are
satisfied. Along a subsequence, for any ε > 0, there exists rε > 0 such that

(4.6) lim sup
n→∞

∫
In\Ir

|zjn|q ≤ ε

14



for all r ≥ rε.

Proof. Note that, for each n ∈ N,
∫

In
|zj|q →

∫
In
|z|q as j →∞. There exists

in ∈ N such that∫
In

(|zj|q − |z|q) <
1

n
for all j = in + m, m = 1, 2, 3, ....

Without loss of generality we can assume in+1 ≥ in. In particular, for jn =
in + n we have ∫

In

(|zjn|q − |z|q) <
1

n
.

Observe that there is rε satisfying

(4.7)
∫

R\Ir

|z|q < ε

for all r ≥ rε. Since∫
In\Ir

|zjn|q =

∫
In

(|zjn|q − |z|q) +

∫
In\Ir

|z|q +

∫
Ir

(|z|q − |zjn|q)

≤ 1

n
+

∫
R\Ir

|z|q +

∫
Ir

(|z|q − |zjn|q) ,

the lemma now follows easily.

Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if s ≤
1, η(s) = 0 if s ≥ 2. At this point we make use of techniques first developed
in [1] (see also [8]). Define z̃n(t) = η(2|t|/n)z(t) and set hn := z − z̃n. Since
z is a homoclinic orbit, we have by definition that hn ∈ H1 and

(4.8) ‖hn‖ → 0 and |hn|∞ → 0 as n →∞.

Lemma 4.3. Assume that (R0)− (R2) and (R4)− (R5) are satisfied. Then
Φ′(zjn − z̃n) → 0.

Proof. Observe that, for any ϕ ∈ E,

Φ′(zjn − z̃n)ϕ = Φ′(zjn)ϕ− Φ′(z̃n)ϕ

+

∫
R

(
Rz(t, zjn)−Rz(t, zjn − z̃n)−Rz(t, z̃n)

)
ϕ.

Now, (4.7) and the compactness of Sobolev embeddings imply that, for any
r > 0,

lim
n→∞

∣∣∣∣∫
Ir

(Rz(t, zjn)−Rz(t, zjn − z̃n)−Rz(t, z̃n)) ϕ

∣∣∣∣ = 0
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uniformly in ‖ϕ‖ ≤ 1. For any ε > 0 let rε > 0 be so large that (4.6) and
(4.7) hold. Then

lim sup
n→∞

∫
In\Ir

|z̃n|q ≤
∫

R\Ir

|z|q ≤ ε

for all r ≥ rε. Using (4.6) for q = 2, p we have

lim sup
n→∞

∣∣∣∣∫
R

(Rz(t, zjn)−Rz(t, zjn − z̃n)−Rz(t, z̃n)) ϕ

∣∣∣∣
= lim sup

n→∞

∣∣∣∣∫
In\Ir

(Rz(t, zjn)−Rz(t, zjn − z̃n)−Rz(t, z̃n)) ϕ

∣∣∣∣
≤ c1 lim sup

n→∞

∫
In\Ir

(|zjn|+ |z̃n|) |ϕ|

+ c2 lim sup
n→∞

∫
In\Ir

(
|zjn|p−1 + |z̃n|p−1

)
|ϕ|

≤ c1 lim sup
n→∞

(
|zjn|L2(In\Ir) + |z̃n|L2(In\Ir)

)
|ϕ|2

+ c2 lim sup
n→∞

(
|zjn|

p−1
Lp(In\Ir) + |z̃n|p−1

Lp(In\Ir)

)
|ϕ|p

≤ c3ε
1/2 + c4ε

(p−1)/p.

Thus we get

lim
n→∞

∫
R

(
Rz(t, zjn)−Rz(t, zjn − z̃n)−Rz(t, z̃n)

)
ϕ = 0

uniformly in ‖ϕ‖ ≤ 1 and this proves the lemma.

Lemma 4.4. Let (R0)− (R2) and (R4)− (R5) be satisfied. Then Φ satisfies
the (C)c-condition.

Proof. Let (zj) ⊂ E be an arbitrary (C)c-sequence. The conclusions of Lem-
mas 4.2 and 4.3 apply to it. Now we use the decomposition E = Ed ⊕ Ee

(see (2.9)). Recall that dim(Ed) < ∞. Write

yn := zjn − z̃n = yd
n + ye

n.

Then yd
n = (zd

jn
− zd) + (zd − z̃d

n) → 0 and, by Lemma 4.3, Φ′(yn) → 0. Set
ȳe

n = ye+
n − ye−

n . Observe that

(4.9) o(1) = Φ′(yn)ȳe
n = ‖ye

n‖2 −
∫

R
Rz(t, yn)ȳe

n.
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Thus it follows that, for I = [−t0, t0] where t0 ≥ 0 is defined in (R5),

‖ye
n‖2 ≤ o(1) +

∫
I0

|Rz(t, yn)|
|yn|

|yn||ȳe
n|+

∫
Ic
0

|Rz(t, yn)|
|yn|

|yn||ȳe
n|

≤ o(1) + c

∫
I0

|yn||ȳe
n|+ γ

∫
Ic
0

|yn||ȳe
n|

≤ o(1) + γ|ye
n|22 ≤ o(1) +

γ

b
‖ye

n‖2.

Hence (1− γ
b
)‖ye

n‖2 → 0, and so ‖yn‖ → 0. Remark that zjn−z = yn+(z̃n−z),
hence ‖zjn − z‖ → 0. This ends the proof.

5 Proof of Theorem 1.1
In order to apply the abstract Theorems 2.4 and 2.5 to Φ, we choose X =
E−⊕E0 and Y = E+. X is separable and reflexive and let S be a countable
dense subset of X∗. First we have

Lemma 5.1. Φ satisfies (Φ0).

Proof. We first show that Φa is TS-closed for every a ∈ R. Consider a
sequence (zn) in Φa which TS-converges to z ∈ E, and write zn = z−n + z0

n +
z+

n , z = z− + z0 + z+. Observe that (z+
n ) converges to z+ in norm. Since Ψ

is bounded from below it follows from

1

2
‖z−n ‖2 =

1

2
‖z+

n ‖2 − Φ(zn)−Ψ(zn) ≤ C

that (z−n ) is bounded, hence it converges weakly towards z−. Since dim E0 <
∞, the TS-convergence coincides with the weak convergence. Therefore zn ⇀
z. It is standard to show that Ψ is weakly sequentially lower semi-continuous.
Thus, from the form of Φ it follows that Φ(z) ≥ lim inf Φ(zn) ≥ a, so z ∈ Φa.
Next we show that Φ′ : (Φa, TS) → (E∗, Tw∗) is continuous. Suppose (zn)
TS-converges towards z in Φa. As above it follows that (zn) is bounded and
converges weakly towards z. Then, since clearly Ψ′ is weakly sequentially
continuous, Φ′(zn)

w∗
→ Φ′(z).

Lemma 5.2. Under (R0)− (R2), for any c > 0, there is ζ > 0 such that :

‖z‖ < ζ‖z+‖ for all z ∈ Φc.
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Proof. We assume by contradiction that for some c > 0 there is a sequence
(zn) with Φ(zn) ≥ c and ‖zn‖2 ≥ n‖z+

n ‖2. The form of Φ implies

‖z−n + z0
n‖2 ≥ (n− 1)‖z+‖2 ≥ (n− 1)

(
2c + ‖z−n ‖2 + 2

∫
R

R(t, zn)

)
,

or
‖z0

n‖2 ≥ (n− 1)2c + (n− 2)‖z−n ‖2 + 2(n− 1)

∫
R

R(t, zn).

Since c > 0 and R(t, z) ≥ 0, it follows that ‖z0
n‖ → ∞, hence ‖zn‖ → ∞.

Set wn = zn/‖zn‖. We have ‖w+
n ‖2 ≤ 1/n → 0. By

1 ≥ ‖w0
n‖2 ≥ (n− 1)2c

‖zn‖2
+ (n− 2)‖w−

n ‖2 + 2(n− 1)

∫
R

R(t, zn)

‖zn‖2
,

we also have ‖w−
n ‖2 ≤ 1/(n − 2) → 0. Therefore, wn → w = w0 in E and

‖w0‖ = 1. Recall that R(t, z) = 1
2
M(t)z · z + r(t, z) with |r(t, z)|/|z|2 → 0 as

|z| → ∞. Therefore, since |zn(t)| → ∞ for w(t) 6= 0,∫
R

r(t, zn)

‖zn‖2
=

∫
w(t) 6=0

r(t, zn)

|zn|2
|wn|2 +

∫
w(t)=0

r(t, zn)

|zn|2
|wn − w|2

≤ 2

∫
w(t) 6=0

|r(t, zn)|
|zn|2

|w|2 + c|wn − w|22 → 0.

This implies

1

2(n− 1)
≥

∫
R

R(t, zn)

‖zn‖2
=

1

2

∫
R

M(t)wn · wn +

∫
R

r(t, zn)

‖zn‖2

≥ m0

2
|wn|22 + o(1),

consequently, w0 = 0, a contradiction.

Proof of Theorem 1.1 (Existence). With X = E− ⊕ E0 and Y = E+ the
condition (Φ0) holds by Lemma 5.1 and (Φ1) holds by Lemma 5.2. Lemma
3.1 implies (Φ2). Lemma 3.3 shows that Φ possesses the linking structure of
Theorem 2.4. Finally, Φ satisfies the (C)c-condition by virtue of Lemma 4.4.
Therefore, Φ has at least one critical point z with Φ(z) ≥ κ > 0.

(Multiplicity) Assume moreover that R(t, z) is even in z. Then Φ is even.
Lemma 3.2 says that Φ satisfies (Φ3) with dim Y = `. Therefore, Φ has at
least ` pairs of nontrivial critical points by Theorem 2.5.
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