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Abstract. In this work we consider the magnetic NLS equation(
�

i
∇− A(x)

)2

u + V (x)u − f(|u|2)u = 0 in R
N (0.1)

where N ≥ 3, A : R
N → R

N is a magnetic potential, possibly unbounded, V : R
N → R is a multi-well

electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence
of a semiclassical multi-peak solution u : R

N → C to (0.1), under conditions on the nonlinearity which
are nearly optimal.
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1. Introduction

We study the existence of a standing wave solution ψ(x, t) = exp(−iEt/�)u(x), E ∈ R, u : RN → C to the
time-dependent nonlinear Schrödinger equation in the presence of an external electromagnetic field

i�
∂ψ

∂t
=
(

�

i
∇−A(x)

)2

ψ + V (x)ψ − f(|ψ|2)ψ, (t, x) ∈ R × R
N . (1.1)

Here � is the Planck’s constant, i the imaginary unit, A : RN → RN denotes a magnetic potential and V : RN →
R an electric potential. This leads us to solve the complex semilinear elliptic equation(

�

i
∇−A(x)

)2

u+ (V (x) − E)u− f(|u|2)u = 0 , x ∈ R
N . (1.2)
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In the work we are interested to seek for solutions of (1.2), which exist for small value of the Planck constant
� > 0. From a mathematical point of view, the transition from quantum to classical mechanics can be formally
performed by letting � → 0, and such solutions, which are usually referred semiclassical bound states, have an
important physical meaning.

For simplicity and without loss of generality, we set � = ε and we shift E to 0. Set v(x) = u(εx), Aε(x) =
A(εx) and Vε(x) = V (εx), equation (1.2) is equivalent to

(
1
i
∇−Aε(x)

)2

v + Vε(x)v − f(|v|2)v = 0, x ∈ R
N . (1.3)

In recent years a considerable amount of work has been devoted to investigating standing wave solutions
of (1.1) in the case A = 0. Among others we refer to [1,2,7,9–11,13,17,18,24–26,28,30,34,36,38,40,45]. On
the contrary still relatively few papers deal with the case A �= 0, namely when a magnetic field is present.
The first result on magnetic NLS equations is due to Esteban and Lions. In [27], they prove the existence of
standing waves to (1.1) by a constrained minimization approach, in the case V (x) = 1, for � > 0 fixed and
for special classes of magnetic fields. Successively in [35], Kurata showed that equation (1.3) admits, under
some assumptions linking the magnetic and electric potentials, a least energy solution and that this solution
concentrates near the set of global minima of V , as � → 0. It is also proved that the magnetic potential A
only contributes to the phase factor of the solution of (1.3) for � > 0 sufficiently small. A multiplicity result for
solutions of (1.3) near global minima of V has been obtained in [16] using topological arguments. A solution
that concentrates as � → 0 around an arbitrary non-degenerate critical point of V has been obtained in [19] but
only for bounded magnetic potentials. Subsequently this result was extended in [20] to cover also degenerate,
but topologically non trivial, critical points of V and to handle general unbounded magnetic potentials A. If A
and V are periodic functions, the existence of various type of solutions for � > 0 fixed has been proved in [3]
by applying minimax arguments. We also mention the works [4,15] that deal with critical nonlinearities.

Concerning multi-well electric potentials, an existence result of multi-peak solutions to the magnetic NLS
equation (1.3) is established by Bartsch et al. in [5], assuming that the function f is increasing on (0,+∞) and
satisfies the Ambrosetti-Rabinowitz’s superquadraticity condition. Also, in [5], an isolatedness condition on the
least energy level of the limiting equation

−Δu+ bu− f(|u|2)u = 0, u ∈ H1(RN ,C)

is required to hold for any b > 0.
In the present paper we prove an existence result of multi-peak solutions to (1.3), under conditions on f ,

that we believe to be nearly optimal. In particular we drop the isolatedness condition, required in [5] and we
cover the case of nonlinearities, which are not monotone.

Precisely, the following conditions will be retained.

(A1): A : RN → RN is of class C1.
(V1): V ∈ C0(RN ,R), 0 ≤ V0 = infx∈RN V (x) and lim inf |x|→∞ V (x) > 0.
(V2): There are bounded disjoint open sets O1, . . . , Ok such that

0 < mi = inf
x∈Oi

V (x) < min
x∈∂Oi

V (x)

for i = 1, . . . , k.

For each i ∈ {1, . . . , k}, we define

Mi = {x ∈ Oi | V (x) = mi}
and we set Z = {x ∈ RN | V (x) = 0} and m = min

i∈{1,...,k}
mi.
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On the nonlinearity f , we require that
(f0): f : (0,+∞) → R is continuous;
(f1): lim

t→0+
f(t) = 0 if Z = ∅, and lim sup

t→0+
f(t2)/tμ < +∞ for some μ > 0 if Z �= ∅;

(f2): there exists some 0 < p < 4
N−2 , N ≥ 3 such that lim supt→+∞ f(t2)/tp < +∞;

(f3): there exists T > 0 such that 1
2m̂T

2 < F (T 2), where

F (t) =
∫ t

0

f(s)ds, m̂ = max
i∈{1,...,k}

mi.

Now by assumption (V1), we can fix m̃ > 0 such that

m̃ < min
{
m, lim inf

|x|→∞
V (x)

}
(1.4)

and define Ṽε(x) = max{m̃, Vε(x)}. Let Hε be the Hilbert space defined by the completion of C∞
0 (RN ,C) under

the scalar product

〈u, v〉ε = Re
∫

RN

(
1
i
∇u−Aε(x)u

)(
1
i
∇v −Aε(x)v

)
+ Ṽε(x)uv dx (1.5)

and ‖ · ‖ε the associated norm.
In the present work, we shall prove the following main theorem.

Theorem 1.1. Let N ≥ 3. Suppose that (A), (V1)–(V2) and (f0)–(f3) hold. Then for any ε > 0 sufficiently
small, there exists a solution uε ∈ Hε of (1.3) such that |uε| has k local maximum points xi

ε ∈ Oi satisfying

lim
ε→0

max
i=1,...,k

dist(εxi
ε,Mi) = 0,

and for which

|uε(x)| ≤ C1 exp
(
−C2 min

i=1,...,k
|x− xi

ε|
)

for some positive constants C1, C2. Moreover for any sequence (εn) ⊂ (0, ε] with εn → 0 there exists a
subsequence, still denoted (εn), such that for each i ∈ {1, . . . , k} there exist xi ∈ Mi with εnx

i
εn

→ xi, a
constant wi ∈ R and Ui ∈ H1(RN ,R) a positive least energy solution of

− ΔUi +miUi − f(|Ui|2)Ui = 0, Ui ∈ H1(RN ,R); (1.6)

for which one has

uεn(x) =
k∑

i=1

Ui

(
x− xi

εn

)
ei(wi+A(xi)(x−xi

εn
)) +Kn(x) (1.7)

where Kn ∈ Hεn satisfies ‖Kn‖Hεn
= o(1) as εn → 0.

Remark 1.2. Arguing as in [21], we can develop a bootstrap argument, and prove that the solution uε ∈ Hε,
found in Theorem 1.1, belongs to C1(RN ,C). Indeed, set uε = v + iw, with v, w real valued, we have

−Δv + Vεv = G := f(|uε|2)v − 2Aε · ∇w − |Aε|2v + (divAε)w

and
−Δw + Vεw = H := f(|uε|2)w + 2Aε · ∇v − |Aε|2w + (divAε)v.
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Since uε ∈ Hε, it follows that for each K bounded set in RN , uε ∈ H1(K,C). Therefore v, w ∈ H1(K,R) ⊂
L2∗

(K,R) and by (f2), G,H ∈ Ls(K,R), where s = min{2∗/(p − 1), 2}. Standard regularity theory implies
that v, w ∈W 2,s(K). If 2s < N we can argue as before and derive that v, w ∈ LNs/(N−2s)(K,R) and ∇v,∇w ∈
LNs/(N−s)(K,R). After a finite number of steps, we have that v, w ∈ W 2,q(K) for any q ∈ [1,+∞[ and by the
Sobolev embedding theorems, v, w ∈ C1,α(K,R), with 0 < α < 1.

Remark 1.3. If we assume the uniqueness of the positive least energy solutions of (1.6) it is not necessary to
pass to subsequences to get the decomposition (1.7) in Theorem 1.1.

The proof of Theorem 1.1 follows the approach which is developed in [9] to obtain multi-peak solutions when
A = 0. Roughly speaking we search directly for a solution of (1.3) which consists essentially of k disjoints parts,
each part being close to a least energy solution of (1.6) associated to the corresponding Mi. Namely in our
approach we take into account the shape and location of the solutions we expect to find. Thus on one hand we
benefit from the advantage of the Lyapunov-Schmidt reduction type approach, which is to discover the solution
around a small neighborhood of a well chosen first approximation. On the other hand our approach, which is
purely variational, does not require any uniqueness nor non-degeneracy conditions.

We remark that differently from [9], we need to overcome many additional difficulties which arise for the
presence of the magnetic potential. Indeed it is well known that, in general, there is no relationship between
the spaces Hε and H1(RN ,C), namely Hε �⊂ H1(RN ,C) nor H1(RN ,C) �⊂ Hε (see [27]). This fact explains,
for example, the need to restrict to bounded magnetic potentials A when one uses a perturbative approach
(see [19]). Our Lemma 2.1 and Corollary 2.2 give some insights of the relationship between Hε and H1(RN ,C)
which proves useful in the proof of Theorem 1.1. We also answer positively a question raised by Kurata [35],
regarding the equality between the least energy levels for the solutions of

−ΔU + bU = f(|U |2)U

when U are sought in H1(RN ,C) and H1(RN ,R) respectively. See Lemma 2.3 for the precise statement.

In contrast to [5] we do not treat here the cases N = 1 and N = 2. For such dimensions applying the
approach of [9] is more complex. It can be done when A = 0 and for the case of a single peak (see [12]) but it
is an open question if Theorem 1.1 still holds when N = 1, 2.

The work is organized as follows. In Section 2 we indicate the variational setting and prove some preliminary
results. The proof of Theorem 1.1 is derived in Section 3.

2. Variational setting and preliminary results

For any set B ⊂ RN and ε > 0, let Bε = {x ∈ RN | εx ∈ B}.
Lemma 2.1. Let K ⊂ RN be an arbitrary fixed bounded domain. Assume that A is bounded on K and
0 < α ≤ V ≤ β on K for some α, β > 0. Then, for any fixed ε ∈ [0, 1], the norm

‖u‖2
Kε

=
∫

Kε

∣∣∣∣ (1
i
∇−Aε(y)

)
u

∣∣∣∣2 + Vε(y)|u|2dy

is equivalent to the usual norm on H1(Kε,C). Moreover these equivalences are uniform, i.e. there exist c1, c2 > 0
independent of ε ∈ [0, 1] such that

c1‖u‖Kε ≤ ‖u‖H1(Kε,C) ≤ c2‖u‖Kε .

Proof. Our proof is inspired by the one of Lemma 2.3 in [3]. We have∫
Kε

|Aε(y)u|2dy ≤ ‖A‖L∞(K)

∫
Kε

|u|2dy
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and ∫
Kε

Vε(y)|u|2dy ≤ ‖V ‖L∞(K)

∫
Kε

|u|2dy.

Hence ∫
Kε

∣∣∣∣1i∇u−Aε(y)u
∣∣∣∣2 + Vε(y)|u|2dy ≤

∫
Kε

2
(|∇u|2 + |Aε(y)u|2

)
+ Vε(y)|u|2dy

≤ 2
∫

Kε

|∇u|2dy +
(
2‖A‖L∞(K) + ‖V ‖L∞(K)

) ∫
Kε

|u|2dy.

To prove the other inequality note that∫
Kε

∣∣∣∣1i∇u−Aε(y)u
∣∣∣∣2 + Vε(y)|u|2dy ≥

∫
Kε

∣∣|∇u|2 − |Aε(y)u|
∣∣2 + Vε(y)|u|2dy.

We shall prove that, for some d > 0 independent of ε ∈ [0, 1],∫
Kε

∣∣|∇u| − |Aε(y)u|
∣∣2 + Vε(y)|u|2dy ≥ d

∫
Kε

|∇u|2 + |u|2dy. (2.1)

Arguing by contradiction we assume that there exist sequences (εn) ⊂ [0, 1] and (uεn) ⊂ H1(Kεn ,C) with
‖uεn‖H1(Kεn ,C) = 1 such that∫

Kεn

∣∣|∇uεn | − |Aεn(y)uεn |
∣∣2 + Vεn(y)|uεn |2dy <

1
n
· (2.2)

Clearly (uεn) ⊂ H1(RN ,C) and ‖uεn‖H1(RN ,C) = 1. Passing to a subsequence, uεn ⇀ u weakly in H1(RN ,C).
Since Vεn ≥ α > 0 on Kεn we see from (2.2) that necessarily∫

Kεn

|uεn |2dy → 0.

Thus uεn → 0 in L2(RN ,C) strongly and in particular uεn ⇀ 0 in H1(RN ,C). Now∫
Kεn

∣∣|∇uεn | − |Aεn(y)uεn |
∣∣2dy =

∫
Kεn

|∇uεn |2 − 2|Aεn(y)uεn | |∇uεn | + |Aεn(y)uεn |2dy

with ∫
Kεn

|Aεn(y)uεn | |∇uεn |dy → 0.

Indeed we have

∫
Kεn

|Aεn(y)uεn | |∇uεn |dy ≤
(∫

Kεn

|Aεn(y)uεn |2dy
) 1

2 (∫
Kεn

|∇uεn |2dy
) 1

2

≤ ‖A‖L∞(K)

(∫
Kεn

|uεn |2dy
) 1

2

.
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Thus

0 = lim sup
n→+∞

∫
Kεn

∣∣|∇uεn | − |Aεn(y)uεn |
∣∣2dy ≥ lim sup

n→+∞

∫
Kεn

|∇uεn |2dy.

But this is impossible since otherwise we would have uεn → 0 strongly in H1(RN ,C). �

From Lemma 2.1 we immediately deduce the following corollary.

Corollary 2.2. Retain the setting of Lemma 2.1.
(i) If K is compact, for any ε ∈ (0, 1] the norm

‖u‖2
K :=

∫
K

∣∣∣∣(1
i
∇−Aε(y)

)
u

∣∣∣∣2 + Vε(y)|u|2dy

is uniformly equivalent to the usual norm on H1(K,C).
(ii) For A0 ∈ R

N and b > 0 fixed, the norm

‖u‖2 :=
∫

RN

∣∣∣∣(1
i
∇−A0

)
u

∣∣∣∣2 + b|u|2dy

is equivalent to the usual norm on H1(RN ,C).
(iii) If (uεn) ⊂ H1(RN ,C) satisfies uεn = 0 on RN \Kεn for any n ∈ N and uεn → u in H1(RN ,C) then

‖uεn − u‖εn → 0 as n→ ∞.

Proof. Indeed (i) is trivial, to see (ii) just put ε = 0 in Lemma 2.1. Now (iii) follows from the uniformity of the
equivalence derived in Lemma 2.1. �

For future reference we recall the following
Diamagnetic inequality: For every u ∈ Hε,∣∣∣∣(∇

i
−Aε

)
u

∣∣∣∣ ≥ ∣∣∇|u|∣∣, a.e. in RN . (2.3)

See [27] for a proof. As a consequence of (2.3), |u| ∈ H1(RN ,R) for any u ∈ Hε.

Now we define

M =
k⋃

i=1

Mi, O =
k⋃

i=1

Oi

and for any set B ⊂ RN and α > 0, Bδ = {x ∈ RN | dist(x,B) ≤ δ}. For u ∈ Hε, let

Fε(u) =
1
2

∫
RN

|Dεu|2 + Vε|u|2dy −
∫

RN

F (|u|2)dy (2.4)

where we set Dε = (∇i −Aε). Define

χε(y) =

{
0 if y ∈ Oε,

ε−6/μ if y /∈ Oε,
χi

ε(y) =

{
0 if y ∈ (Oi)ε,

ε−6/μ if y /∈ (Oi)ε,

and

Qε(u) =
(∫

RN

χε|u|2dy − 1
) p+2

2

+

, Qi
ε(u) =

(∫
RN

χi
ε|u|2dy − 1

)p+2
2

+

. (2.5)
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The functional Qε will act as a penalization to force the concentration phenomena to occur inside O. This type
of penalization was first introduced in [11]. Finally we define the functionals Γε,Γ1

ε, . . . ,Γ
k
ε : Hε → R by

Γε(u) = Fε(u) +Qε(u), Γi
ε(u) = Fε(u) +Qi

ε(u), i = 1, . . . , k. (2.6)

It is easy to check, under our assumptions, and using the diamagnetic inequality (2.3), that the function-
als Γε,Γi

ε ∈ C1(Hε). So a critical point of Fε corresponds to a solution of (1.3). To find solutions of (1.3) which
concentrate in O as ε→ 0, we shall look for a critical point of Γε for which Qε is zero.

Let us consider for a > 0 the scalar limiting equation of (1.3)

−Δu + au = f(|u|2)u, u ∈ H1(RN ,R). (2.7)

Solutions of (2.7) correspond to critical points of the limiting functional La : H1(RN ,R) → R defined by

La(u) =
1
2

∫
RN

(|∇u|2 + a|u|2)dy − ∫
RN

F (|u|2)dy. (2.8)

In [6], Berestycki and Lions proved that, for any a > 0, under the assumptions (f0)–(f2) and (f3) with m̂ = a,
there exists a least energy solution and that each solution U of (2.7) satisfies the Pohozaev’s identity

N − 2
2

∫
RN

|∇U |2dy +N

∫
RN

a
|U |2
2

− F (|U |2)dy = 0. (2.9)

From this we immediately deduce that, for any solution U of (2.7),

1
N

∫
RN

|∇U |2dy = La(U). (2.10)

We also consider the complex valued equation, for a > 0,

−Δu + au = f(|u|2)u, u ∈ H1(RN ,C). (2.11)

In turn solutions of (2.11) correspond to critical points of the functional Lc
a : H1(RN ,C) → R, defined by

Lc
a(v) =

1
2

∫
RN

(|∇v|2 + a|v|2) dy −
∫

RN

F (|v|2)dy. (2.12)

In [43] the Pohozaev’s identity (2.9) and thus (2.10) is given for complex-valued solutions of (2.11). The following
result relates the least energy levels of (2.7) and (2.11) and positively answers to a question of Kurata [35] (see
also [42] for some elements of proof in that direction). When N = 2 we say that (f2) holds if

for all α > 0 there exists Cα > 0 such that |f(t2)| ≤ Cαeαt2 , for all t ≥ 0.

Lemma 2.3. Suppose that (f0)–(f2) and (f3) with m̂ = a hold and that N ≥ 2. Let Ea and Ec
a denote the

least energy levels corresponding to equations (2.7) and (2.11). Then

Ea = Ec
a. (2.13)

Moreover any least energy solution of (2.11) has the form eiτU where U is a positive least energy solution of (2.7)
and τ ∈ R.
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Proof. The inequality Ec
a ≤ Ea is obvious and thus to establish that Ec

a = Ea we just need to prove that
Ea ≤ Ec

a.
We know from [43] that each solution of (2.11) satisfies the Pohozaev’s identity P (u) = 0 where P : H1(RN ,C) →

R is defined by

P (u) =
N − 2

2

∫
RN

|∇u|2dy +N

∫
RN

a
|u|2
2

− F (|u|2)dy.
By Lemma 3.1 of [32] we have that

inf
u∈H1(RN ,R)

P (u)=0

La(u) = Ea. (2.14)

Also it is well known (see for example [31]) that for any u ∈ H1(R,C) one has∫
RN

∣∣∇|u|∣∣2dy ≤
∫

RN

|∇u|2dy. (2.15)

Now let U be a solution of (2.11). If N = 2 we see from the definition of P that P (|U |) = 0 and from (2.15)
that La(|U |) ≤ Lc

a(U). Thus Ea ≤ Ec
a follows from (2.14). In addition, if U is a least energy solution of (2.11),

necessarily ∫
RN

∣∣∇|U |∣∣2dy =
∫

RN

|∇U |2dy (2.16)

and |U | is a least energy solution of (2.7). If N ≥ 3 we see from (2.15) that either
(i) P (|U |) = 0 and La(|U |) = Lc

a(U).
(ii) P (|U |) < 0 and there exists θ ∈ ]0, 1[ such that, for Uθ(·) = U(·/θ) we have P (|Uθ|) = 0. Then, since

P (|Uθ|) = 0, it follows that

La(|Uθ|) =
1
N

∫
RN

∣∣∇|Uθ|
∣∣2dy =

θN−2

N

∫
RN

∣∣∇|U |∣∣2dy
and thus

La(|Uθ|) < 1
N

∫
RN

∣∣∇|U |∣∣2dy ≤ 1
N

∫
RN

|∇U |2dy = Lc
a(U).

In both cases we deduce from (2.14) that Ea ≤ Ec
a. In addition if U is a least energy solution of (2.11) then

(2.16) holds and in particular |U | is a least energy solution of (2.7).
Now, for any N ≥ 2, let U be a least energy solution of (2.11). Since |U | is a solution of (2.7) we get by

elliptic regularity theory and the maximum principle that |U | ∈ C1(RN ,R) and |U | > 0. At this point, using
(2.16), the rest of the proof of the lemma is exactly the same as the proof of Theorem 4.1 in [31]. �

Remark 2.4. When N = 1 conditions which assure that (2.7) has, up to translation, a unique positive solution
are given in [6] (see also [33] for alternative conditions). Now following the proof of Theorem 8.1.6 in [14] we
deduce that any solution of (2.11) is of the form eiθρ where θ ∈ R and ρ > 0 is a solution of (2.7). Thus, under
the assumptions of [6,33], the result of Lemma 2.3 also holds when N = 1 and the positive least energy solution
is unique.

Now let Sa be the set of least energy solutions U of (2.11) satisfying

|U(0)| = max
y∈RN

|U(y)|.

By standard regularity any solution of (2.11) is at least C1. Since f is not assumed to be locally Hölder
continuous we do not know, in contrast to [5], if any least energy solution is radially symmetric. However the
following compactness result can still be proved.



MULTI-PEAK SOLUTIONS FOR MAGNETIC NLS EQUATIONS 9

Proposition 2.5. For each a > 0 and N ≥ 3, Sa is compact in H1(RN ,C). Moreover, there exist C, c > 0,
independent of U ∈ Sa, such that

|U(y)| ≤ C exp(−c|y|).
Proof. In [7], the same results are proved when Sa is restricted to real solutions. Since, by Lemma 2.3, any least
energy solution of (2.11) is of the form eiτ Ũ with Ũ a least energy solution of (2.7) it proves the lemma. �

3. Proof of Theorem 1.1

Let

δ =
1
10

min
{

dist(M,RN \O),min
i�=j

dist(Oi, Oj), dist(O,Z )
}
.

We fix a β ∈ (0, δ) and a cutoff ϕ ∈ C∞
0 (RN ) such that 0 ≤ ϕ ≤ 1, ϕ(y) = 1 for |y| ≤ β and ϕ(y) = 0 for

|y| ≥ 2β. Also, setting ϕε(y) = ϕ(εy) for each xi ∈ (Mi)β and Ui ∈ Smi , we define

Ux1,...,xk
ε (y) =

k∑
i=1

eiA(xi)(y− xi
ε )ϕε

(
y − xi

ε

)
Ui

(
y − xi

ε

)
·

We will find a solution, for sufficiently small ε > 0, near the set

Xε = {Ux1,...,xk
ε (y) | xi ∈ (Mi)β and Ui ∈ Smi for each i = 1, . . . , k}.

For each i ∈ {1, . . . , k} we fix an arbitrary xi ∈ Mi and an arbitrary Ui ∈ Smi and we define

W i
ε(y) = eiA(xi)(y− xi

ε )ϕε

(
y − xi

ε

)
Ui

(
y − xi

ε

)
·

Setting

W i
ε,t(y) = eiA(xi)(y−xi

ε )ϕε

(
y − xi

ε

)
Ui

(y
t
− xi

εt

)
,

we see that limt→0 ‖W i
ε,t‖ε = 0 (recall that N ≥ 3) and that Γε(W i

ε,t) = Fε(W i
ε,t) for t ≥ 0. In the next

proposition we shall prove that there exists Ti > 0 such that Γε(W i
ε,Ti

) < −2 for any ε > 0 sufficiently small.
Assuming this holds true, let γi

ε(s) = W i
ε,s for s > 0 and γi

ε(0) = 0. For s = (s1, . . . , sk) ∈ T = [0, T1]×. . .×[0, Tk]
we define

γε(s) =
k∑

i=1

W i
ε,si

and Dε = max
s∈T

Γε(γε(s)).

Finally for each i ∈ {1, . . . , k}, let Emi = Lc
mi

(U) for U ∈ Smi . In what follows, we set Em = min
i∈{1,...,k}

Emi and

E =
∑k

i=1 Emi . For a set A ⊂ Hε and α > 0, we let Aα = {u ∈ Hε | ‖u−A‖ε ≤ α}.
Proposition 3.1. We have

(i) lim
ε→0

Dε = E;

(ii) lim sup
ε→0

max
s∈∂T

Γε(γε(s)) ≤ Ẽ = max{E − Emi | i = 1, . . . , k} < E;

(iii) for each d > 0, there exists α > 0 such that for sufficiently small ε > 0,

Γε(γε(s)) ≥ Dε − α implies that γε(s) ∈ Xd/2
ε .
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Proof. Since supp(γε(s)) ⊂ M2β
ε for each s ∈ T, it follows that Γε(γε(s)) = Fε(γε(s)) =

∑k
i=1 Fε(γi

ε(s)). Now,
for each i ∈ {1, . . . , k}, we claim that

lim
ε→0

∫
RN

∣∣∣∣(∇
i
−Aε(y)

)
W i

ε,si

∣∣∣∣2 dy = sN−2
i

∫
RN

|∇Ui|2dy. (3.1)

Indeed∫
RN

∣∣∣∣(∇
i
−Aε(y)

)
W i

ε,si

∣∣∣∣2dy =
∫

RN

(
|∇W i

ε,si
|2 + |Aε(y)|2|W i

ε,si
|2 − 2 Re

[
1
i
∇W i

ε,si
· Aε(y)W i

ε,si

])
dy (3.2)

with ∫
RN

|∇W i
ε,si

|2dy =
∫

RN

∣∣∣∣iA(xi)Ui

(
y

si
− xi

εsi

)
ϕε

(
y − xi

ε

)
+

1
si
∇Ui

(
y

si
− xi

εsi

)
ϕε

(
y − xi

ε

)
+ ε∇τϕ (εy − xi)Ui

(
y

si
− xi

εsi

) ∣∣∣∣2dy
=

∫
RN

|A(xi)|2
∣∣∣∣Ui

(
y

si

)∣∣∣∣2 |ϕε (y)|2 dy

+
∫

RN

∣∣∣∣ 1si
∇Ui

(
y

si

)
ϕε (y) + ε∇τϕ (εy)Ui

(
y

si

) ∣∣∣∣2dy. (3.3)

Moreover we have ∫
RN

|Aε(y)|2|W i
ε,si

|2dy =
∫

RN

|Aε(y)|2
∣∣∣∣Ui

(
y

si
− xi

εsi

)∣∣∣∣2 ∣∣∣ϕε

(
y − xi

ε

)∣∣∣2 dy (3.4)

and ∫
RN

Re
[
1
i
∇W i

ε,si
· Aε(y)W i

ε,si

]
dy =

∫
RN

Aε(xi) · Aε(y)
∣∣∣∣Ui

(
y

si
− xi

εsi

)∣∣∣∣2 ∣∣∣ϕε

(
y − xi

ε

)∣∣∣2 dy. (3.5)

Since, as ε→ 0,

∫
RN

|Aε(y)|2
∣∣∣∣Ui

(
y

si
− xi

εsi

)∣∣∣∣2 ∣∣∣ϕε

(
y − xi

ε

)∣∣∣2 dy →
∫

RN

|A(xi)|2
∣∣∣∣Ui

(
y

si

)∣∣∣∣2 dy,

and ∫
RN

Aε(xi) · Aε(y)
∣∣∣∣Ui

(
y

si
− xi

εsi

)∣∣∣∣2 ∣∣∣ϕε

(
y − xi

ε

)∣∣∣2 dy →
∫

RN

|A(xi)|2
∣∣∣∣Ui

(
y

si

)∣∣∣∣2 dy,

taking into account (3.2)–(3.5) it follows that,

∫
RN

∣∣∣∣(∇
i
−Aε(y)

)
W i

ε,si

∣∣∣∣2dy → 1
s2i

∫
RN

∣∣∣∣∇Ui

( y
si

)∣∣∣∣2 dy = sN−2
i

∫
RN

|∇Ui|2dy (3.6)
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and this proves (3.1). Similarly using the exponential decay of Ui we have, as ε→ 0,∫
RN

Vε(y)|W i
ε,si

|2dy →
∫

RN

mi

∣∣∣∣Ui

(
y

si

)∣∣∣∣2 dy = mis
N
i

∫
RN

|Ui|2dy (3.7)

∫
RN

F (|W i
ε,si

|2)dy →
∫

RN

F

(∣∣∣∣Ui

(
y

si

)∣∣∣∣2
)

dy = sN
i

∫
RN

F (|Ui|2)dy. (3.8)

Thus, from (3.1), (3.7) and (3.8),

Fε(γi
ε(si)) =

1
2

∫
RN

∣∣∣∣(∇
i
−Aε(y)

)
γi

ε(si)
∣∣∣∣2dy + Vε(y)|γi

ε(si)|2dy −
∫

RN

F (|γi
ε(si)|2)dy

=
sN−2

i

2

∫
RN

|∇Ui|2dy + sN
i

∫
RN

1
2
mi|Ui|2 − F (|Ui|2)dy + o(1).

Then, from the Pohozaev identity (2.9), we see that

Fε(γi
ε(si)) =

(
sN−2

i

2
− N − 2

2N
sN

i

)∫
RN

|∇Ui|2dy + o(1).

Also

max
t∈(0,∞)

(
tN−2

2
− N − 2

2N
tN
)∫

RN

|∇Ui|2dy = Emi .

At this point we deduce that (i) and (ii) hold. Clearly also the existence of a Ti > 0 such that Γε(W i
ε,Ti

) < −2

is justified. To conclude we just observe that for g(t) = tN−2

2 − N−2
2N tN ,

g′(t)

⎧⎪⎨⎪⎩
> 0 for t ∈ (0, 1),
= 0 for t = 1,
< 0 for t > 1,

and g′′(1) = 2 −N < 0. �

Now let
Φi

ε = {γ ∈ C([0, Ti], Hε)|γ(si) = γi
ε(si) for si = 0 or Ti} (3.9)

and
Ci

ε = inf
γ∈Φi

ε

max
si∈[0,Ti]

Γi
ε(γ(si)).

For future reference we need the following estimate.

Proposition 3.2. For i = 1, . . . , k,
lim inf

ε→0
Ci

ε ≥ Emi .

Proof. Arguing by contradiction, we assume that lim infε→0 C
i
ε < Emi . Then, there exists α > 0, εn → 0 and

γn ∈ Φi
εn

satisfying Γi
εn

(γn(s)) < Emi − α for s ∈ (0, Ti).
We fix an εn > 0 such that

mi

2
εμ

n(1 + (1 +Emi)
2/(p+2)) < min{α, 1}

and Fεn(γn(Ti)) < −2 and denote εn by ε and γn by γ.
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Since Fε(γ(0)) = 0 we can find s0 ∈ (0, 1) such that Fε(γ(s)) ≥ −1 for s ∈ [0, s0] and Fε(γ(s0)) = −1. Then
for any s ∈ [0, s0] we have

Qi
ε(γ(s)) ≤ Γi

ε(γ(s)) + 1 ≤ Emi − α+ 1
so that ∫

RN\Oi
ε

|γ(s)|2dy ≤ ε6/μ
(
1 + (1 +Emi)

2/(p+2)
) ∀s ∈ [0, s0].

Now we notice that for any s ∈ [0, Ti], |γ(s)| ∈ H1(RN ,R) and by the diamagnetic inequality (2.3)∫
RN

∣∣∇|γ(s)|∣∣2 dy ≤
∫

RN

|Dεγ(s)|2 dy. (3.10)

Then by (3.10) we have that for s ∈ [0, s0]

Fε(γ(s)) =
1
2

∫
RN

|Dεγ(s)|2 dy +
mi

2

∫
RN

|γ(s)|2 dy −
∫

RN

F (|γ(s)|2) dy

+
1
2

∫
RN

(Vε(y) −mi)|γ(s)|2 dy

≥ 1
2

∫
RN

∣∣∇|γ(s)|∣∣2 dy +
mi

2

∫
RN

|γ(s)|2 dy −
∫

RN

F (|γ(s)|2) dy

+
1
2

∫
RN\Oi

ε

(Vε(y) −mi)|γ(s)|2 dy

≥ 1
2

∫
RN

∣∣∇|γ(s)|∣∣2 dy +
mi

2

∫
RN

|γ(s)|2 dy −
∫

RN

F (|γ(s)|2) dy

− mi

2

∫
RN\Oi

ε

|γ(s)|2 dy

≥ 1
2

∫
RN

∣∣∇|γ(s)|∣∣2 dy +
mi

2

∫
RN

|γ(s)|2 dy −
∫

RN

F (|γ(s)|2) dy

− mi

2
ε6/μ

(
1 + (1 +Emi)

2/(p+2)
)

= Lmi(|γ(s)|) − mi

2
ε6/μ

(
1 + (1 +Emi)

2/(p+2)
)
. (3.11)

Thus, Lmi(|γ(s0)|) < 0 and recalling that for the limiting equation (2.7) the mountain pass level corresponds
to the least energy level (see [32]) we have that

max
s∈[0,Ti]

Lmi(|γ(s)|) ≥ Emi .

Then we infer that

Emi − α ≥ max
s∈[0,Ti]

Γi
ε(γ(s)) ≥ max

s∈[0,Ti]
Fε(γ(s))

≥ max
s∈[0,s0]

Fε(γ(s))

≥ max
s∈[0,s0]

Lmi(|γ(s)|) − mi

2
ε6/μ

(
1 + (1 +Emi)

2/(p+2)
)

≥ Emi −
mi

2
ε6/μ

(
1 + (1 +Emi)

2/(p+2)
)

(3.12)

and this contradiction completes the proof. �
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Now we define
Γα

ε = {u ∈ Hε | Γε(u) ≤ α}.
Proposition 3.3. Let (εj) be such that limj→∞ εj = 0 and (uεj ) ∈ Xd

εj
such that

lim
j→∞

Γεj (uεj ) ≤ E and lim
j→∞

Γ′
εj

(uεj ) = 0. (3.13)

Then, for sufficiently small d > 0, there exist, up to a subsequence, (yi
j) ⊂ RN , i = 1, . . . , k, points xi ∈ Mi

(which should not be confused with the points xi already introduced), Ui ∈ Smi such that

lim
j→∞

|εjy
i
j − xi| = 0 and lim

j→∞
‖uεj −

k∑
i=1

eiAε(yi
j)(·−yi

j)ϕεj (· − yi
j)Ui(· − yi

j)‖εj = 0. (3.14)

Proof. For simplicity we write ε for εj. From Proposition 2.5, we know that the Smi are compact. Then there
exist Zi ∈ Smi and (xi

ε) ⊂ (Mi)β , xi ∈ (Mi)β for i = 1, . . . , k, with xi
ε → xi as ε → 0 such that, passing to a

subsequence still denoted (uε),∥∥∥∥∥uε −
k∑

i=1

eiA(xi
ε)(·−xi

ε
ε )ϕε(· − xi

ε/ε)Zi(· − xi
ε/ε)

∥∥∥∥∥
ε

≤ 2d (3.15)

for small ε > 0. We set u1,ε =
∑k

i=1 ϕε(· − xi
ε/ε)uε and u2,ε = uε − u1,ε. As a first step in the proof of the

proposition we shall prove that
Γε(uε) ≥ Γε(u1,ε) + Γε(u2,ε) +O(ε). (3.16)

Suppose there exist yε ∈ ⋃k
i=1 B(xi

ε/ε, 2β/ε) \B(xi
ε/ε, β/ε) and R > 0 satisfying

lim inf
ε→0

∫
B(yε,R)

|uε|2dy > 0

which means that

lim inf
ε→0

∫
B(0,R)

|vε|2dy > 0 (3.17)

where vε(y) = uε(y + yε). Taking a subsequence, we can assume that εyε → x0 with x0 in the closure of⋃k
i=1 B(xi, 2β)\B(xi, β). Since (3.15) holds, (vε) is bounded in Hε. Thus, since m̃ > 0, (vε) is bounded in

L2(RN ,C) and using the diamagnetic inequality (2.3) we deduce that (vε) is bounded in Lp+2(RN ,C). In
particular, up to a subsequence, vε → W ∈ Lp+2(RN ,C) weakly. Also by Corollary 2.2 (i), for any compact
K ⊂ RN , (vε) is bounded in H1(K,C). Thus we can assume that vε →W in H1(K,C) weakly for any K ⊂ RN

compact, strongly in Lp+2(K,C). Because of (3.17) W is not the zero function. Now, since limε→0 Γ′
ε(uε) = 0,

W is a non-trivial solution of

− ΔW − 2
i
A(x0) · ∇W + |A(x0)|2W + V (x0)W = f(|W |2)W. (3.18)

From (3.18) and since W ∈ Lp+2(RN ,C) we readily deduce, using Corollary 2.2 (ii) that W ∈ H1(RN ,C).

Let ω(y) = e−iA(x0)yW (y). Then ω is a non trivial solution of the complex-valued equation

−Δω + V (x0)ω(y) = f(|ω|2)ω.
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For R > 0 large we have

∫
B(0,R)

∣∣∣∣(∇
i
−A(x0)

)
W

∣∣∣∣2 dy ≥ 1
2

∫
RN

∣∣∣∣(∇
i
−A(x0)

)
W

∣∣∣∣2 dy (3.19)

and thus, by the weak convergence,

lim inf
ε→0

∫
B(yε,R)

|Dεuε|2dy = lim inf
ε→0

∫
B(0,R)

∣∣∣∣(∇
i
−Aε(y + yε)

)
vε

∣∣∣∣2 dy

≥
∫

B(0,R)

∣∣∣∣(∇
i
−A(x0)

)
W

∣∣∣∣2 dy

≥ 1
2

∫
RN

∣∣∣∣(∇
i
−A(x0)

)
W

∣∣∣∣2 dy =
1
2

∫
RN

|∇ω|2dy. (3.20)

Now recalling from [32] that Ea > Eb if a > b and using Lemma 2.3 we have Lc
V (x0)

(ω) ≥ Ec
V (x0)

= EV (x0) ≥ Em

since V (x0) ≥ m. Thus from (3.20) and (2.10) we get that

lim inf
ε→0

∫
B(yε,R)

|Dεuε|2dy ≥ N

2
Lc

V (x0)
(ω) ≥ N

2
Em > 0, (3.21)

which contradicts (3.15), provided d > 0 is small enough. Indeed, x0 �= xi, ∀i ∈ {1, ..., k} and the Zi are
exponentially decreasing.

Since such a sequence (yε) does not exist, we deduce from [37], Lemma I.1, that

lim sup
ε→0

∫
⋃

k
i=1 B(xi

ε/ε,2β/ε)\B(xi
ε/ε,β/ε)

|uε|p+2dy = 0. (3.22)

As a consequence, we can derive using (f1), (f2) and the boundedness of (‖uε‖2) that

lim
ε→0

∫
RN

F (|uε|2) − F (|u1,ε|2) − F (|u2,ε|2)dy = 0.

At this point writing

Γε(uε) = Γε(u1,ε) + Γε(u2,ε) +
k∑

i=1

∫
B(xi

ε/ε,2β/ε)\B(xi
ε/ε,β/ε)

ϕε(y − xi
ε/ε)(1 − ϕε(y − xi

ε/ε))|Dεuε|2

+ Vεϕε(y − xi
ε/ε)(1 − ϕε(y − xi

ε/ε))|uε|2dy −
∫

RN

F (|uε|2) − F (|u1,ε|2) − F (|u2,ε|2)dy + o(1),

as ε→ 0 this shows that the inequality (3.16) holds. We now estimate Γε(u2,ε). We have

Γε(u2,ε) ≥ Fε(u2,ε) =
1
2

∫
RN

|Dεu2,ε|2 + Ṽε|u2,ε|2dy − 1
2

∫
RN

(Ṽε − Vε)|u2,ε|2dy −
∫

RN

F (|u2,ε|2)dy

≥ 1
2
‖u2,ε‖2

ε −
m̃

2

∫
RN\Oi

ε

|u2,ε|2dy −
∫

RN

F (|u2,ε|2)dy. (3.23)
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Here we have used the fact that Ṽε − Vε = 0 on Oi
ε and |Ṽε − Vε| ≤ m̃ on RN \ Oi

ε. Because of (f1), (f2) for
some C1, C2 > 0,

∫
RN

F (|u2,ε|2)dy ≤ m̃

4

∫
RN

|u2,ε|2dy + C1

∫
RN

|u2,ε| 2N
N−2 dy ≤ m̃

4

∫
RN

|u2,ε|2dy + C2‖u2,ε‖
2N

N−2
ε .

Since (uε) is bounded, we see from (3.15) that ‖u2,ε‖ε ≤ 4d for small ε > 0. Thus taking d > 0 small enough
we have

1
2
‖u2,ε‖2

ε −
∫

RN

F (|u2,ε|2)dy ≥ ‖u2,ε‖2
ε

(1
4
− C2(4d)4/(N−2)

)
≥ 1

8
‖u2,ε‖2

ε. (3.24)

Now note that Fε is uniformly bounded in Xd
ε for small ε > 0. Thus, so is Qε. This implies that for some C > 0,

∫
RN\Oε

|u2,ε|2dy ≤ Cε6/μ (3.25)

and from (3.23)–(3.25) we deduce that Γε(u2,ε) ≥ o(1).
Now for i = 1, . . . , k, we define ui

1,ε(y) = u1,ε(y) for y ∈ Oi
ε, u

i
1,ε(y) = 0 for y /∈ Oi

ε. Also we set W i
ε(y) =

ui
1,ε(y+ xi

ε/ε). We fix an arbitrary i ∈ {1, . . . , k}. Arguing as before, we can assume, up to a subsequence, that
W i

ε converges weakly in Lp+2(RN ,C) to a solution W i ∈ H1(RN ,C) of

−ΔW i − 2
i
A(xi) · ∇W i + |A(xi)|2W i + V (xi)W i = f(|W i|2)W i, y ∈ R

N .

We shall prove that W i
ε tends to W i strongly in Hε. Suppose there exist R > 0 and a sequence (zε) with

zε ∈ B(xi
ε/ε, 2β/ε) satisfying

lim inf
ε→0

|zε − xi
ε/ε| = ∞ and lim inf

ε→0

∫
B(zε,R)

|u1,i
ε |2 dy > 0.

We may assume that εzε → zi ∈ Oi as ε → 0. Then W̃ i
ε(y) = W i

ε(y + zε) weakly converges in Lp+2(RN ,C) to
W̃ i ∈ H1(RN ,C) which satisfies

−ΔW̃ i − 2
i
A(zi) · ∇W̃ + |A(zi)|2W̃ i + V (zi)W̃ i = f(|W̃ i|2)W̃ i, y ∈ R

N

and as before we get a contradiction. Then using (f1), (f2) and [37], Lemma I.1, it follows that

∫
RN

F (|W i
ε |2)dy →

∫
RN

F (|W i|2)dy. (3.26)
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Then from the weak convergence of W i
ε to W i �= 0 in H1(K,C) for any K ⊂ RN compact we get, for any

i ∈ {1, . . . , k},

lim sup
ε→0

Γε(ui
1,ε) ≥ lim inf

ε→0
Fε(ui

1,ε)

≥ lim inf
ε→0

1
2

∫
B(0,R)

∣∣∣∣ (∇
i
−A(εy + xi

ε)
)
W i

ε

∣∣∣∣2
+ V (εy + xi

ε)|W i
ε |2dy −

∫
RN

F (|W i
ε |2)dy

≥ 1
2

∫
B(0,R)

∣∣∣∣ (∇
i
−A(xi)

)
W i

∣∣∣∣2 + V (xi)|W i|2dy

−
∫

RN

F (|W i|2)dy. (3.27)

Since these inequalities hold for any R > 0 we deduce, using Lemma 2.3, that

lim sup
ε→0

Γε(ui
1,ε) ≥ 1

2

∫
RN

∣∣∣∣(∇
i
−A(xi)

)
W i

∣∣∣∣2 dy +
1
2

∫
RN

V (xi)|W i|2dy

−
∫

RN

F (|W i|2)dy

=
1
2

∫
RN

|∇ωi|2 + V (xi)|ωi|2dy −
∫

RN

F (|ωi|2)dy

= Lc
V (xi)(ω

i) ≥ Ec
mi

= Emi (3.28)

where we have set ωi(y) = e−iA(xi)yW i(y). Now by (3.16),

lim sup
ε→0

(
Γε(u2,ε) +

k∑
i=1

Γε(ui
1,ε)
)

= lim sup
ε→0

(
Γε(u2,ε) + Γε(u1,ε)

)
≤ lim sup

ε→0
Γε(uε) ≤ E =

k∑
i=1

Emi . (3.29)

Thus, since Γε(u2,ε) ≥ o(1) we deduce from (3.28)–(3.29) that, for any i ∈ {1, . . . k}

lim
ε→0

Γε(ui
1,ε) = Emi . (3.30)

Now (3.28), (3.30) implies that LV (xi)(ωi) = Emi . Recalling from [32] that Ea > Eb if a > b and using
Lemma 2.3 we conclude that xi ∈ Mi. At this point it is clear that W i(y) = eiA(xi)yUi(y − zi) with Ui ∈ Smi

and zi ∈ RN .

To establish that W i
ε →W i strongly in Hε we first show that W i

ε →W i strongly in L2(RN ,C). Since (W i
ε)

is bounded in Hε the diamagnetic inequality (2.3) immediately yields that (|W i
ε |) is bounded in H1(RN ,R) and

we can assume that |W i
ε | → |W i| = |ωi| weakly in H1(RN ,R). Now since LV (xi)(ωi) = Emi , we get using the
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diamagnetic inequality, (3.26), (3.30) and the fact that V ≥ V (xi) on Oi,∫
RN

|∇ωi|2dy +
∫

RN

mi|ωi|2dy − 2
∫

RN

F (|ωi|2)dy ≥

lim sup
ε→0

∫
RN

∣∣∣∣(∇
i
−A(εy + xi

ε)
)
W i

ε

∣∣∣∣2 dy +
∫

RN

V (εy + xi
ε)|W i

ε |2dy

− 2
∫

RN

F (|W i
ε |2)dy

≥ lim sup
ε→0

∫
RN

∣∣∇|W i
ε |
∣∣2dy +

∫
RN

V (xi)|W i
ε |2dy − 2

∫
RN

F (|W i
ε |2)dy

≥
∫

RN

∣∣∇|ωi|∣∣2dy +
∫

RN

mi|ωi|2dy − 2
∫

RN

F (|ωi|2)dy. (3.31)

But from Lemma 2.3 we know that, since LV (xi)(ωi) = Emi ,∫
RN

∣∣∇|ωi|∣∣2dy =
∫

RN

∣∣∇ωi
∣∣2dy.

Thus we deduce from (3.31) that∫
RN

V (εy + xi
ε)|W i

ε |2dy →
∫

RN

V (xi)|W i|2dy. (3.32)

Thus, since V ≥ V (xi) on Oi, we deduce that

W i
ε →W i strongly in L2(RN ,C). (3.33)

From (3.33) we easily get that

lim
ε→0

∫
RN

∣∣∣∣(∇
i
−A(εy + xi

ε)
)
W i

ε

∣∣∣∣2 − ∣∣∣∣(∇
i
−A(xi)

)
W i

ε

∣∣∣∣2 dy = 0. (3.34)

Now, using (3.26), (3.31) and (3.32), we see from (3.34) that

∫
RN

∣∣∣∣(∇
i
−A(xi)

)
W i

∣∣∣∣2 dy +
∫

RN

V (xi)|W i|2dy ≥

lim sup
ε→0

∫
RN

∣∣∣∣(∇
i
−A(εy + xi

ε)
)
W i

ε

∣∣∣∣2 dy +
∫

RN

V (εy + xi
ε)|W i

ε |2dy

≥ lim sup
ε→0

∫
RN

∣∣∣∣(∇
i
−A(xi)

)
W i

ε

∣∣∣∣2 dy +
∫

RN

V (xi)|W i
ε |2 dy. (3.35)

At this point and using Corollary 2.2 (ii) we have established the strong convergence W i
ε →W i in H1(RN ,C).

Thus we have
ui

1,ε = eiA(xi)(·−xi
ε/ε)Ui(· − xi

ε/ε− zi) + o(1)

strongly in H1(RN ,C). Now setting yi
ε = xi

ε/ε+ zi and changing Ui to eiA(xi)ziUi we get that

ui
1,ε = eiA(xi)(·−yi

ε)Ui(· − yi
ε) + o(1)
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strongly in H1(RN ,C). Finally using the exponential decay of Ui et ∇Ui we have

ui
1,ε = eiAε(yi

ε)(·−yi
ε)ϕε(· − yi

ε)Ui(· − yi
ε) + o(1).

From Corollary 2.2 (iii) we deduce that this convergence also holds in Hε and thus

u1,ε =
k∑

i=1

ui
1,ε =

k∑
i=1

eiAε(yi
ε)(·−yi

ε)ϕε(· − yi
ε)Ui(· − yi

ε) + o(1)

strongly in Hε. To conclude the proof of the proposition, it suffices to show that u2,ε → 0 in Hε. Since
E ≥ limε→0 Γε(uε) and limε→0 Γε(u1,ε) = E we deduce, using (3.16) that limε→0 Γε(u2,ε) = 0. Now from
(3.23)–(3.25) we get that u2,ε → 0 in Hε. �

Proposition 3.4. For sufficiently small d > 0, there exist constants ω > 0 and ε0 > 0 such that |Γ′
ε(u)| ≥ ω

for u ∈ ΓDε
ε ∩ (Xd

ε \Xd/2
ε ) and ε ∈ (0, ε0).

Proof. By contradiction, we suppose that for d > 0 sufficiently small such that Proposition 3.3 applies, there
exist (εj) with limj→∞ εj = 0 and a sequence (uεj ) with uεj ∈ Xd

εj
\Xd/2

εj satisfying limj→∞ Γεj (uεj ) ≤ E and
limj→∞ Γ′

εj
(uεj ) = 0. By Proposition 3.3, there exist (yi

εj
) ⊂ RN , i = 1, . . . , k, xi ∈ Mi, Ui ∈ Smi such that

lim
εj→0

|εjy
i
εj

− xi| = 0,

lim
εj→0

∥∥∥uεj −
k∑

i=1

eiAεj
(yi

εj
)(·−yi

εj
)
ϕεj (· − yi

εj
)Ui(· − yi

εj
)
∥∥∥

εj

= 0.

By definition of Xεj we see that limεj→0 dist(uεj , Xεj ) = 0. This contradicts that uεj �∈ X
d/2
εj and completes the

proof. �

From now on we fix a d > 0 such that Proposition 3.4 holds.

Proposition 3.5. For sufficiently small fixed ε > 0, Γε has a critical point uε ∈ Xd
ε ∩ ΓDε

ε .

Proof. We can take R0 > 0 sufficiently large so that O ⊂ B(0, R0) and γε(s) ∈ H1
0 (B(0, R/ε)) for any s ∈ T ,

R > R0 and sufficiently small ε > 0.
We notice that by Proposition 3.1 (iii), there exists α ∈ (0, E − Ẽ) such that for sufficiently small ε > 0,

Γε(γε(s)) ≥ Dε − α =⇒ γε(s) ∈ Xd/2
ε ∩H1

0 (B(0, R/ε)).

We begin to show that for sufficiently small fixed ε > 0, and R > R0, there exists a sequence (uR
n ) ⊂ X

d/2
ε ∩

ΓDε
ε ∩H1

0 (B(0, R/ε)) such that Γ′(uR
n ) → 0 in H1

0 (B(0, R/ε)) as n→ +∞.
Arguing by contradiction, we suppose that for sufficiently small ε > 0, there exists aR(ε) > 0 such that

|Γ′
ε(u)| ≥ aR(ε) on Xd

ε ∩ ΓDε
ε ∩H1

0 (B(0, R/ε)). In what follows any u ∈ H1
0 (B(0, R/ε)) will be regarded as an

element in Hε by defining u = 0 in RN \B(0, R/ε).
Note from Proposition 3.4 that there exists ω > 0, independent of ε > 0, such that |Γ′

ε(u)| ≥ ω for u ∈
ΓDε

ε ∩ (Xd
ε \Xd/2

ε ). Thus, by a deformation argument in H1
0 (B(0, R/ε)), starting from γε, for sufficiently small

ε > 0 there exists a μ ∈ (0, α) and a path γ ∈ C([0, T ], Hε) satisfying

γ(s) = γε(s) for γε(s) ∈ ΓDε−α
ε ,

γ(s) ∈ Xd
ε for γε(s) /∈ ΓDε−α

ε
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and
Γε(γ(s)) < Dε − μ, s ∈ T. (3.36)

Let ψ ∈ C∞
0 (RN ) be such that ψ(y) = 1 for y ∈ Oδ, ψ(y) = 0 for y /∈ O2δ, ψ(y) ∈ [0, 1] and |∇ψ| ≤ 2/δ. For

γ(s) ∈ Xd
ε , we define γ1(s) = ψεγ(s) and γ2(s) = (1 − ψε)γ(s) where ψε(y) = ψ(εy). Note that

Γε(γ(s)) = Γε(γ1(s)) + Γε(γ2(s)) +
∫

RN

(
ψε(1 − ψε)|Dεγ(s)|2 + Vεψε(1 − ψε)|γ(s)|2)dy

+Qε(γ(s)) −Qε(γ1(s)) −Qε(γ2(s)) −
∫

RN

(
F (|γ(s)|2) − F (|γ1(s)|2) − F (|γ2(s)|2)

)
dy + o(1).

Since for A,B ≥ 0, (A+B − 1)+ ≥ (A− 1)+ + (B − 1)+ and since p+ 2 ≥ 2 it follows that

Qε(γ(s)) =
(∫

RN

χε|γ1(s) + γ2(s)|2dy − 1
)p+2

2

+

≥
(∫

RN

χε|γ1(s)|2dy +
∫

RN

χε|γ2(s)|2dy − 1
)p+2

2

+

≥
(∫

RN

χε|γ1(s)|2dy − 1
)p+2

2

+

+
(∫

RN

χε|γ2(s)|2dy − 1
)p+2

2

+

= Qε(γ1(s)) +Qε(γ2(s)).

Now, as in the derivation of (3.25), using the fact that Qε(γ(s)) is uniformly bounded we have, for some C > 0∫
RN\Oε

|γ(s)|2dy ≤ Cε6/μ. (3.37)

Thus denoting p + 2 = 2s + (1 − s) 2N
N−2 , s ∈ (0, 1), we see from (f1), (f2), (3.37) and using the Sobolev

inequalities, that for some C1, C2 > 0,∫
RN\Oε

F (γ(s))dy ≤ C1

∫
RN\Oε

|γ(s)|2 + |γ(s)|p+2dy

≤ C1

∫
RN\Oε

|γ(s)|2dy

+ C2

(∫
RN\Oε

|γ(s)|2dy
)s

‖γ(s)‖(1−s) 2N
N−2

ε . (3.38)

We deduce that

lim
ε→0

∫
RN\Oε

F (γ(s))dy = 0. (3.39)

Now, as ε→ 0,∫
RN

|F (γ(s)) − F (γ1(s)) − F (γ2(s))|dy =
∫

(O2δ)ε\(Oδ)ε

|F (γ(s)) − F (γ1(s)) − F (γ2(s))|dy

≤
∫

(O2δ)ε\(Oδ)ε

F (γ(s)) + F (γ1(s)) + F (γ2(s))dy = o(1)
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since (3.39) obviously hold when γ(s) is replaced by γ1(s) or γ2(s). Thus, we see that, as ε→ 0,

Γε(γ(s)) ≥ Γε(γ1(s)) + Γε(γ2(s)) + o(1).

Also

Γε(γ2(s)) ≥ −
∫

RN\Oε

F (γ2(s))dy ≥ o(1).

Therefore it follows that
Γε(γ(s)) ≥ Γε(γ1(s)) + o(1). (3.40)

For i = 1, . . . , k, we define γi
1(s)(y) = γ1(s)(y) for y ∈ (Oi)2δ

ε , γ
i
1(s)(y) = 0 for y /∈ (Oi)2δ

ε . Note that
(A1 + . . .+An − 1)+ ≥∑n

i=1(Ai − 1)+ for A1, . . . , An ≥ 0, and that (p+ 2) ≥ 2. Then, we see that,

Γε(γ1(s)) ≥
k∑

i=1

Γε(γi
1(s)) =

k∑
i=1

Γi
ε(γ

i
1(s)). (3.41)

From Proposition 3.1 (ii) and since α ∈ (0, E − Ẽ) we get that γi
1 ∈ Φi

ε, for all i ∈ {1, . . . , k}. Thus by
Proposition 3.4 in [22], Proposition 3.2, and (3.41) we deduce that, as ε→ 0,

max
s∈T

Γε(γ(s)) ≥ E + o(1).

Since lim supε→0Dε ≤ E this contradicts (3.36).

Now let (uR
n ) be a Palais-Smale sequence corresponding to a fixed small ε > 0. Since (uR

n ) is bounded in
H1

0 (B(0, R/ε)), thanks to local compactness, we deduce that (uR
n ) converges, up to subsequence, strongly to

some uR in H1
0 (B(0, R/ε)) with uR a critical point of Γε on H1

0 (B(0, R/ε)).
Arguing as in Proposition 2 in [8], we now derive that (uR) converges strongly to some uε, as R → ∞, with

uε ∈ Xd
ε ∩ ΓDε

ε a critical point of Γε.
Indeed, since uR is a critical point of Γε on H1

0 (B(0, R/ε)) it satisfies(
1
i
∇−Aε

)2

uR + Vεu
R = f(|uR|2)uR − (p+ 2)

( ∫
χε|uR|2dy − 1

) p
2

+
χεu

R in B(0, R/ε). (3.42)

Exploiting Kato’s inequality (see [41], Thm. X.33)

Δ|uR| ≥ −Re
(
ūR

|uR|
(∇
i
−Aε(y)

)2

uR

)
we obtain

Δ|uR| ≥ Vε|uR| − f(|uR|2)|uR| + (p+ 2)
(∫

χε|uR|2dy − 1
) p

2

+
χε|uR| in R

N . (3.43)

Moreover by Moser iteration [29] it follows that (‖uR‖L∞) is bounded. Then, since (Qε(uR)) is uniformly
bounded for small ε > 0, we see from elliptic estimates that for sufficiently small ε > 0, |f(|uR(y)|2)uR(y)| ≤
1
2Vε|uR(y)| if |y| ≥ 2R0 (recall that R0 > 0 can be chosen so large that Z ⊂ B(0, R0)). Applying a comparison
principle to (3.43), we see that for some C, c > 0, independent of R > R0,

|uR(y)| ≤ C exp(−(|y| − 2R0)). (3.44)

Now, observe that since (uR) is bounded in Hε, we may assume that it converges weakly to some uε in Hε as
R → ∞. Then, since uR is a solution of (3.42), we see from (3.44) that (uR) converges strongly to uε ∈ Xd

ε ∩ΓDε
ε
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and that (
1
i
∇−Aε

)2

uε + Vεuε = f(|uε|2)uε − (p+ 2)
(∫

χε|uε|2dy − 1
) p

2

+
χεuε in R

N . (3.45)

This ends the proof of the proposition. �

Completion of the Proof for Theorem 1.1. We see from Proposition 3.5 that there exists ε0 > 0 such
that, for ε ∈ (0, ε0), Γε has a critical point uε ∈ Xd

ε ∩ ΓDε
ε . From (3.45), as in the proof of Proposition 3.5, we

obtain that

Δ|uε| ≥ Vε|uε| − f(|uε|2)|uε| + (p+ 2)
(∫

χε|uε|2dy − 1
) p

2

+
χε|uε| in R

N (3.46)

and that (‖uε‖L∞) is bounded. Now by Proposition 3.3, we see that

lim
ε→0

∫
RN\(M2β)ε

|Dεuε|2 + Ṽε|uε|2dy = 0,

and thus, by elliptic estimates (see [29]), we obtain that

lim
ε→0

‖uε‖L∞(RN\(M2β)ε) = 0. (3.47)

This gives the following decay estimate for uε on R
N \ (M2β)ε ∪ (Z β)ε

|uε(y)| ≤ C exp(−c dist(y, (M2β)ε ∪ (Z β)ε)) (3.48)

for some constants C, c > 0. Indeed from (f1) and (3.47) we see that

lim
ε→0

‖f(|uε|2)‖L∞(RN\(M2β)ε∪(Zβ)ε) = 0.

Also inf{Vε(y)|y /∈ (M2β)ε ∪ (Z β)ε} > 0. Thus, we obtain the decay estimate (3.48) by applying standard
comparison principles (see [39]) to (3.46).

If Z �= ∅ we shall need, in addition, an estimate for |uε| on (Z 2β)ε. Let {Hi}i∈I be the connected components
of int(Z 3δ) for some index set I. Note that Z ⊂ ⋃i∈I H

i and Z is compact. Thus, the set I is finite. For each
i ∈ I, let (φi, λi

1) be a pair of first positive eigenfunction and eigenvalue of −Δ on (Hi)ε with Dirichlet boundary
condition. From now we fix an arbitrary i ∈ I. By elliptic estimates [29], Theorem 9.20, and using the fact that
(Qε(uε)) is bounded we see that for some constant C > 0

‖uε‖L∞((Hi)ε) ≤ Cε3/μ. (3.49)

Thus, from (f1) we have, for some C > 0

‖f(|uε|2)‖L∞((Hi)ε) ≤ Cε3.

Denote φi
ε(y) = φi(εy). Then, for sufficiently small ε > 0, we deduce that for y ∈ int((Hi)ε),

Δφi
ε(y) − Vε(x)φi

ε(y) + f(|uε(y)|2)φi
ε(y) ≤

(
Cε3 − λ1ε

2
)
φi

ε ≤ 0. (3.50)

Now, since dist(∂(Z 2β)ε, (Z β)ε) = β/ε, we see from (3.48) that for some constants C, c > 0,

‖uε‖L∞(∂(Z2β)ε) ≤ C exp(−c/ε). (3.51)
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We normalize φi requiring that

inf
y∈(Hi)ε∩∂(Z2δ)ε

φi
ε(y) = C exp(−c/ε) (3.52)

for the same C, c > 0 as in (3.51). Then, we see that for some κ > 0,

φi
ε(y) ≤ κC exp(−c/ε), y ∈ (Hi)ε ∩ (Z 2β)ε.

Now we deduce, using (3.49)–(3.52) and [44], Theorem B.6, that for each i ∈ I, |uε| ≤ φi
ε on (Hi)ε ∩ (Z 2β)ε.

Therefore
|uε(y)| ≤ C exp(−c/ε) on (Z 2δ)ε (3.53)

for some C, c > 0. Now (3.48) and (3.53) implies that Qε(uε) = 0 for ε > 0 sufficiently small and thus
uε satisfies (1.3). Now using Propositions 2.5 and 3.3, we readily deduce that the properties of uε given in
Theorem 1.1 hold. Here, in (1.7) we also use the fact, proved in Lemma 2.3, that any least energy solution of
(2.11) has the form eiτU where U is a positive least energy solution of (2.7) and τ ∈ R. �
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