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Abstract

We consider quasilinear stationary Schrödinger equations of the form

−∆u−∆(u2)u = g(x, u), x ∈ RN . (0.1)

Introducing a change of unknown, we transform the search of solutions u(x)
of (0.1) into the search of solutions v(x) of the semilinear equation

−∆v =
1p

1 + 2f2(v)
g(x, f(v)), x ∈ RN , (0.2)

where f is suitably chosen. If v is a classical solution of (0.2) then u = f(v)
is a classical solution of (0.1). Variational methods are then used to obtain
various existence results.

∗Primary: 35J60, Secondary: 58E05.



1 Introduction

In this paper we deal with equations of the form

−∆u−∆(u2)u = g(x, u), u ∈ H1(RN ). (1.1)

These equations model several physical phenomena but until recently little had
been done to prove rigorously the existence of solutions.

A major difficulty associated with (1.1) is the following; one may seek to ob-
tain solutions by looking for critical points of the associated “natural” functional,
J : H1(RN ) → R given by

J(u) =
1
2

∫

RN

|∇u|2 dx +
∫

RN

|∇u|2u2 dx−
∫

RN

G(x, u) dx

where G(x, s) =
∫ s

0
g(x, t) dt. However except when N = 1 this functional is not

defined on all H1(RN ).
The first existence results for equations of the form of (1.1) are, up to our

knowledge, due to [12, 8]; papers to which we refer for a presentation of the physical
motivations of studying (1.1). In [12, 8], however, the main existence results are
obtained, through a constrained minimization argument, only up to an unknown
Lagrange multiplier.

Subsequently a general existence result for (1.1) was derived in [7]. To over-
come the undefiniteness of J the idea in [7] is to introduce a change of variable
and to rewrite the functional J with this new variable. Then critical points are
search in an associated Orlicz space (see [7] for details).

The aim of the present paper is to give a simple and shorter proof of the
results of [7], which do not use Orlicz spaces, but rather is developed in the usual
H1(RN ) space. The fact that we work in H1(RN ) also permit to cover a different
class of nonlinearities. In particular we give full treatment of the autonomous case
and for non autonomous problems we do not assume that,

s → g(x, s)
s

: ]0,∞[→ R is non decreasing in s.

Following the strategy developed in [4] on a related problem we also make use of
a change of unknown v = f−1(u) and define an associated equation that we shall
call dual. If v ∈ H1(RN ) is classical solution of

−∆v =
1√

1 + 2f2(v)
g(x, f(v)), (1.2)

u = f(v) is a classical solution of (1.1).
Equations of the form (1.2) are of semilinear elliptic type and one can try to

solve them by a variational approach. In particular we shall see that, under very
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general conditions on g, the “natural” functional associated to (1.2), I : H1(RN ) →
R given by

I(v) =
1
2

∫

RN

|∇v|2 dx−
∫

RN

G(x, f(v)) dx

is well defined and of class C1 on H1(RN ).
The dual approach is introduced in Section 2. In Section 3 we deal with

autonomous problems, when (1.1) is of the form,

−∆u−∆(u2)u = g(u), u ∈ H1(RN ). (1.3)

Autonomous problems seems to play an important role in physical phenomena
(see [3] for example) and we obtain here an existence result under assumptions we
believe to be nearly optimal. We assume that the nonlinear term g satisfies :

(g0) g(s) is locally Hölder continuous on [0,∞[.

(g1) −∞ < lim inf
s→0

g(s)
s

≤ lim sup
s→0

g(s)
s

= −ν < 0 for N ≥ 3,

lim
s→0

g(s)
s

= −ν ∈ (−∞, 0) for N = 1, 2.

(g2) When N ≥ 3, lim
s→∞

|g(s)|
s

3N+2
N−2

= 0.

When N = 2, for any α > 0 there exists Cα > 0 such that

|g(s)| ≤ Cαeαs2
for all s ≥ 0.

(g3) When N ≥ 2, there exists ξ0 > 0 such that G(ξ0) > 0,
When N=1, there exists ξ0 > 0 such that

G(ξ) < 0 for all ξ ∈]0, ξ0[, G(ξ0) = 0 and g(ξ0) > 0.

Remark 1.1 An easy calculation shows that (g0)-(g3) are satisfied in the model
case g(s) = |s|2s− νs.

Theorem 1.2 Assume that (g0)-(g3) hold. Then (1.3) admits a solution u0 ∈
H1(RN ) having the following properties :

(i) u0 > 0 on RN .

(ii) u0 is spherically symmetric : u0(x) = u0(r) with r = |x| and u0 decreases
with respect to r.

(iii) u0 ∈ C2(RN ).
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(iv) u0 together with its derivatives up to order 2 have exponential decay at in-
finity

|Dαu0(x)| ≤ Ce−δ|x|, x ∈ RN ,

for some C, δ > 0 and for |α| ≤ 2.

We prove Theorem 1.2 searching for a critical point of the functional I, which
is here autonomous. As we shall see the existence of a critical point follows almost
directly, from classical results on scalar field equations due to Berestycki-Lions [1]
when N = 1 or N ≥ 3 and Berestycki-Gallouët-Kavian [2] when N = 2.

In Section 4 we assume that (1.1) is of the form,

−∆u−∆(u2)u + V (x)u = h(u). (1.4)

We require V ∈ C(RN ,R) and h ∈ C(R+,R), to be Hölder continuous and to
satisfy

(V0) There exists V0 > 0 such that V (x) ≥ V0 > 0 on RN .

(V1) lim|x|→∞ V (x) = V (∞) and V (x) ≤ V (∞) on RN .

(h0) lim
s→0

h(s)
s

= 0.

(h1) There exists p < ∞ if N = 1, 2 and p < 3N+2
N−2 if N ≥ 3 such that |h(s)| ≤

C(1 + |s|p), ∀s ∈ R, for a C > 0.

(h2) There exists µ ≥ 4 such that, ∀s > 0,

0 < µH(s) ≤ h(s)s with H(s) =
∫ s

0

h(t) dt.

Our main result is the following :

Theorem 1.3 Assume that (V0)-(V1) and (h0)-(h1) hold. Then (1.4) has a pos-
itive non trivial solution if one of the following conditions hold :

1) (h2) hold with a µ > 4.

2) (h2) hold with µ = 4 with p ≤ 5 if N = 3 and p < 3N+4
N if N ≥ 4 in (h1).

The proof of Theorem 1.3 also relies on the study of the functional I. We first show
that I possess a mountain pass geometry and denote by c > 0 the mountain pass
level (see Lemma 4.2). To find a critical point the main difficulties to overcome
are the possible unboundedness of the Palais-Smale (or Cerami) sequences and a
lack of compactness since (1.4) is set on all RN .

For the second difficulty we use some recent results presented in [9] and [10]
which imply that, under conditions (V0)-(V1), the mountain pass level c > 0 is
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below (if V 6≡ V (∞)) the first level of possible loss of compactness (see Theorem
3.4 and Lemma 4.3).

For the first difficulty we distinguish the cases µ > 4 and µ = 4 in (h2). In
the case µ > 4, it is direct to prove that all Cerami sequences of I are bounded.
To show it in the case µ = 4 is more involved and for this we make use of an idea
introduced in [7].

Notation : Throughout the article the letter C will denote various positive
constants whose exact value may change from line to line but are not essential to
the analysis of the problem. Also if we take a subsequence of a sequence {vn} we
shall denote it again {vn}.

2 The dual formulation

We start with some preliminary results. Let f be defined by

f ′(t) =
1√

1 + 2f2(t)
and f(0) = 0

on [0,+∞[ and by f(t) = −f(−t) on ]−∞, 0].

Lemma 2.1 1) f is uniquely defined, C∞ and invertible.

2) |f ′(t)| ≤ 1, for all t ∈ R.

3)
f(t)

t
→ 1 as t → 0.

4)
f(t)√

t
→ 2

1
4 as t → +∞.

Proof. Points 1)-3) are immediate. To see 4) we integrate

∫ t

0

f ′(s)
√

1 + 2f2(s) ds = t.

Using the changes of variables x = f(s) and x = 1√
2

Sh(y) we obtain that

1
2
√

2
[sinh−1(

√
2f(t))] +

1
4
√

2
sinh2[Sh−1(

√
2f(t))] = t.

Thus, sinh2[Sh−1(
√

2f(t))] ∼ 4
√

2t in the sense that, as t → +∞,

sinh2[sinh−1(
√

2f(t))]
4
√

2t
→ 1.
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We set a(t) = sinh−1(
√

2f(t)). Then a(t) satisfies sinh[2a(t)] ∼ 4
√

2t and we
deduce that

a(t) ∼ 1
2
ln(4

√
2t +

√
32t2 + 1).

Finally since 2sinh(t) ∼ et it follows that

2
√

2f(t) ∼ e

1
2
ln(4

√
2t +

√
32t2 + 1) ∼ 2

√
2 2

1
4
√

t

and the lemma is proved. ♠

Lemma 2.2 For all t ∈ R,

1
2
f(t) ≤ t√

1 + 2f2(t)
≤ f(t).

Proof. To establish the first inequality we need to show that, for all t ≥ 0,
√

1 + 2f2(t) f(t) ≤ 2t.

In this aim we study the function g : R+ → R, defined by

g(t) = 2t−
√

1 + 2f2(t) f(t).

We have g(0) = 0 and, since f ′(t)
√

1 + 2f2(t) = 1, ∀t ∈ R, that g′(t) = 1 −
2f ′2(t)f2(t). It follows that g′(t) ≥ 0 since 1 − 2f ′2(t)f2(t) = f ′2(t) and the first
inequality is proved. The second one is derived in a similar way. ♠

We now present our dual approach. For simplicity we set H = H1(RN ) and
denote by || · || its standard norm. We assume that g(x, s) is such that I : H → R
given by

I(v) =
1
2

∫

RN

|∇v|2 dx−
∫

RN

G(x, f(v)) dx

with G(x, s) =
∫ s

0
g(x, t) dt, is well defined and of class C1 (f : R → R is the

function previously introduced).
Let v ∈ H ∩ C2(RN ) be a critical point of I. Since f ′2(t)(1 + 2f2(t)) ≡ 1, it

satisfies

−∆v =
1√

1 + 2f2(v)
g(x, f(v)). (2.1)

We set u = f(v) (i.e. v = f−1(u)). Clearly u ∈ C2(RN ) and u ∈ H. Indeed
∇u = f ′(v)∇v and |f ′(t)| ≤ 1, ∀t ∈ R.

We have ∇v = (f−1)′(u)∇u and

∆v = (f−1)′′(u) |∇u|2 + (f−1)′(u) ∆u. (2.2)
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Since (f−1)′(t) =
1

f ′[f−1(t)]
, it follows that

(f−1)′(t) =
√

1 + 2f2(f−1(t)) =
√

1 + 2t2 and (f−1)′′(t) =
2t√

1 + 2t2
.

Thus, from (2.2), we deduce that

∆v =
2u√

1 + 2u2
|∇u|2 +

√
1 + 2u2 ∆u

and consequently, from (2.1), that

− 2u√
1 + 2u2

|∇u|2 −
√

1 + 2u2 ∆u− 1√
1 + 2u2

g(x, u) = 0.

This can be rewrite as
1√

1 + 2u2

[
(−1− 2u2)∆u− 2u|∇u|2 − g(x, u)

]
= 0.

Since ∆(u2)u = 2u|∇u|2 + 2u2∆u it shows that u ∈ H ∩ C2(RN ) satisfies (1.1).
At this point it is clear that to obtain a classical solution of (1.1) it suffices

to obtain a critical point of I of class C2.

3 Autonomous cases

In this section (1.1) is of the form

−∆u−∆(u2)u = g(u), u ∈ H. (3.1)

with the nonlinearity g satisfying (g0)-(g3). Because we look for positive solutions
we may assume without restriction that g(s) = 0, ∀s ≤ 0. Following our dual
approach we shall obtain the existence of solutions for (3.1) studying the associated
dual equation

−∆v =
1√

1 + 2f2(v)
g(f(v)), v ∈ H. (3.2)

In this aim, we now recall some classical results due to Berestycki-Lions [1] and
Berestycki-Gallouët-Kavian [2] on equations of the form

−∆v = k(v), v ∈ H. (3.3)

These authors show that the natural functional corresponding to (3.3), J : H → R
given by

J(v) =
1
2

∫

RN

|∇v|2 dx−
∫

RN

K(v) dx

where K(s) =
∫ s

0
k(t) dt is of class C1, if k satisfies the conditions :

7



(k0) k(s) ∈ C(R+,R) (and k(s) = 0, ∀s ≤ 0).

(k1) −∞ < lim inf
s→0

k(s)
s

≤ lim sup
s→0

k(s)
s

= −ν < 0 for N ≥ 3,

lim
s→0

k(s)
s

= −ν ∈ (−∞, 0) for N = 1, 2.

(k2) When N ≥ 3, lim
s→∞

|k(s)|
s

N+2
N−2

= 0.

When N = 2, for any α > 0 there exists Cα > 0 such that

|k(s)| ≤ Cαeαs2
for all s ≥ 0.

We recall that a solution v ∈ H of (3.3) is said to be a least energy solution if and
only if

J(v) = m where m = inf{J(v), v ∈ H\{0} is a solution of (3.3)}.

The following result is given in [1] when N = 1 or N ≥ 3 and in [2] when
N = 2.

Theorem 3.1 Assume that (k0)-(k2) and (k3) hold with

(k3) When N ≥ 2, there exists ξ0 > 0 such that K(ξ0) > 0.
When N=1, there exists ξ0 > 0 such that

K(ξ) < 0 for all ξ ∈]0, ξ0[, K(ξ0) = 0 and k(ξ0) > 0.

Then m > 0 and there exists a least energy solution ω(x) of (3.3) which satisfies :

(i) ω > 0 on RN .

(ii) ω is spherically symmetric : ω(x) = ω(r) with r = |x| and ω decreases with
respect to r.

(iii) ω ∈ C2(RN ).

(iv) ω together with its derivatives up to order 2 have exponential decay at infinity

|Dαω(x)| ≤ Ce−δ|x|, x ∈ RN ,

for some C, δ > 0 and for |α| ≤ 2.

Now observe that equation (3.2) is of the form −∆v = k(v) with

k(s) =
1√

1 + 2f2(s)
g(f(s)). (3.4)
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We claim that if g(s) satisfies (g0)-(g3) then k(s) given by (3.4) satisfies (k0)-
(k3). Indeed the fact that (k0) holds is trivial. The conditions (k1),(k2) follow,
respectively, from Lemma 2.1 (ii) and (iii). To check (k3) when N ≥ 2 it suffices
to notice that

G(ξ0) > 0 for a ξ0 > 0 ⇐⇒ ∃s0 > 0 such that G(f(s0)) > 0.

Clearly (k3) also holds when N = 1. Having proved our claim we directly obtain
from Theorem 3.1 :

Theorem 3.2 Assume that (g0)-(g2) hold. Then the functional I : H → R given
by

I(v) =
1
2

∫

RN

|∇v|2 dx−
∫

RN

G(f(v)) dx

is well defined and of class C1. If in addition g satisfies (g3) then (3.2) has a least
energy solution ω(x) which possesses the properties (i)-(iv) of Theorem 3.1.

At this point turning back to equation (3.1), Theorem 1.2 follows directly from
Theorem 3.2 and the properties of f (see Lemma 2.1).

Remark 3.3 In [1] the authors justify the growth restriction (k2) considering the
special nonlinearities k(s) = λ|s|p−1s − ms where λ,m > 0. They show that in
this case (3.3) has no solution when p ≥ N+2

N−2 . In contrast, Theorem 1.2 says that
solutions of (3.1) do exist for all 1 < p < 3N+2

N−2 .

In the next section we shall use the fact that the least energy solution ω(x) given
in Theorem 3.2 has a mountain pass characterization. Indeed, in [9] for N ≥ 2 and
in [10] for N = 1, Theorem 3.1 is complemented in the following way :

Theorem 3.4 Assume that (k0)-(k3) hold. Then setting

Γ = {γ ∈ C([0, 1],H), γ(0) = 0 and J(γ(1)) < 0},

we have Γ 6= ∅ and b = m with

b ≡ inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

Moreover for any least energy solution ω(x) as given in Theorem 3.1, there exists
a path γ ∈ Γ such that γ(t)(x) > 0 for all x ∈ RN and t ∈ (0, 1] satisfying
ω ∈ γ([0, 1]) and

max
t∈[0,1]

J(γ(t)) = b.

Remark 3.5 In [9], [10] it is also proved that under (k0)-(k2) there exists α0 > 0,
δ0 > 0 such that

J(v) ≥ α0 ||v||2 when ||v|| ≤ δ0.
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4 Non autonomous cases

In this section we assume that (1.1) is of the form

−∆u−∆(u2)u + V (x)u = h(u), u ∈ H. (4.1)

with the potential V (x) satisfying (V0)-(V1) and the nonlinearity h(s), (h0)-(h2).
Here again we use our dual approach and first look to critical points of I : H → R
given by

I(v) =
1
2

∫

RN

|∇v|2 + V (x)f2(v) dx−
∫

RN

H(f(v)) dx.

Namely for solutions v ∈ H of

−∆v =
1√

1 + 2f2(v)
[−V (x)f(v) + h(f(v))]. (4.2)

From Section 3 we readily deduce that I is well defined and of class C1 under
conditions (V0)-(V1) and (h0)-(h1). Let us show that I has a mountain pass
geometry, in the sense that,

Γ = {γ ∈ C([0, 1],H), γ(0) = 0 and I(γ(1)) < 0} 6= ∅,
and

c ≡ inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0.

For this we first mention a direct consequence of (h2).

Remark 4.1 The function t → H(st)t−4 is increasing on R+, for all s > 0. In
particular there is C > 0 such that H(s) ≥ Cs4 for s ≥ 1 and lim

s→+∞
h(s)s−1 = ∞.

Lemma 4.2 Under (V0)-(V1) and (h0)-(h2) I has a mountain pass geometry.

Proof. From the assumptions (V0)-(V1) we have

k1(s) ≤ 1√
1 + 2f2(v)

[−V (x)f(v) + h(f(v))] ≤ k2(s)

where
k1(s) =

1√
1 + 2f2(v)

[−V (∞)f(v) + h(f(v))] and

k2(s) =
1√

1 + 2f2(v)
[−V0f(v) + h(f(v))].

The nonlinearities k1(s) and k2(s) both satisfy assumptions (k0)-(k3). Thus, from
Remark 3.5, we deduce (considering k2(s)) that there exists α0 > 0, δ0 > 0 such
that

I(v) ≥ α0 ||v||2 when ||v|| ≤ δ0. (4.3)

Namely the origin is a strict local minimum. Also since the functional correspond-
ing to k1(s) is negative at some point we deduce that Γ 6= ∅. ♠
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Lemma 4.3 Assume that (V0)-(V1) and (h0)-(h2) hold. Let {vn} ⊂ H be a
bounded Palais-Smale sequence for I at level c > 0. Then, up to a subsequence,
vn ⇀ v 6= 0 with I ′(v) = 0.

Proof. Since {vn} is bounded, we can assume that, up to a subsequence, vn ⇀ v.
Let us prove that I ′(v) = 0. Noting that C∞0 (RN ) is dense in H, it suffices to
check that I ′(v)ϕ = 0 for all ϕ ∈ C∞0 (RN ). But we readily have, using Lebesgue’s
Theorem, that

I ′(vn)ϕ− I ′(v)ϕ =
∫

RN

∇(vn − v)∇ϕ dx

+
∫

RN

(
−f(vn)√

1 + 2f2(vn)
+

f(v)√
1 + 2f2(v)

)
V (x)ϕ dx

+
∫

RN

(
h(f(vn))√
1 + 2f2(vn)

− h(f(v))√
1 + 2f2(v)

)
ϕ dx → 0,

since vn ⇀ v weakly in H and strongly in Lq
loc(RN ) for q ∈ [2, 2N

N−2 [ if N ≥ 3, q ≥ 2
if N = 1, 2. Thus recalling that I ′(vn) → 0 we indeed have I ′(v) = 0. At this point
if v 6= 0 the lemma is proved. Thus we assume that v = 0. We claim that in this
case {vn} is also a Palais-Smale sequence for the functional Ĩ : H → R defined by

Ĩ(v) =
1
2

∫

RN

|∇v|2 dx +
1
2

∫

RN

V (∞)f2(v) dx−
∫

RN

H(f(v)) dx

at the level c > 0. Indeed, as n →∞,

Ĩ(vn)− I(vn) =
∫

RN

[V (∞)− V (x)]f2(vn) dx → 0

since V (x) → V (∞) as |x| → ∞, |f(s)| ≤ |s|, ∀s ∈ R and vn → 0 in L2
loc(RN ).

Also, for the same reasons, we have

sup
||u||≤1

|(Ĩ ′(vn)− I ′(vn), u)| = sup
||u||≤1

|
∫

RN

f(vn)u√
1 + 2f2(vn)

[V (∞)− V (x)] dx| → 0.

Next we claim that the situation : For all R > 0

lim
n→∞

sup
y∈RN

∫

y+BR

v2
n dx = 0,

which we will refer to as the vanishing case cannot occurs. From (h0)-(h1) and
Lemma 2.1, ∀ε > 0 there exists a Cε > 0 such that

h(f(s))f(s) ≤ εs2 + Cε|s|
p+1
2 for all s ∈ R. (4.4)
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Thus, for any v ∈ H,
∫

RN

h(f(v))f(v) dx ≤ ε

∫

RN

v2 dx + Cε

∫

RN

|v| p+1
2 dx (4.5)

and using Lemma 2.2 we see that ∀ε > 0,

lim
n→∞

∫

RN

h(f(vn))
vn√

1 + 2f2(vn)
dx ≤ lim

n→∞

∫

RN

h(f(vn))f(vn) dx

≤ lim
n→∞

[
ε

∫

RN

v2
n dx + Cε

∫

RN

|vn|
p+1
2 dx

]

≤ ε lim
n→∞

∫

RN

v2
n dx,

because, if {vn} vanish, vn → 0 strongly in Lq(RN ) for any q ∈]2, 2N
N−2 [ (a proof

of this result is given in Lemma 2.18 of [5] and is a special case of Lemma I.1 of
[11]). We then deduce that,

lim
n→∞

∫

RN

h(f(vn))
vn√

1 + 2f2(vn)
dx = 0.

This implies, since I ′(vn)vn → 0, that
∫

RN

|∇vn|2 + V (x)f2(vn) dx → 0

in contradiction with the fact that I(vn) → c > 0. Thus {vn} does not vanish and
there exists α > 0, R < ∞ and {yn} ⊂ RN such that

lim
n→∞

∫

yn+BR

v2
n dx ≥ α > 0.

Let ṽn(x) = vn(x + yn). Since {vn} is a Palais-Smale sequence for Ĩ, {ṽn} also.
Arguing as in the case of {vn} we get that ṽn ⇀ ṽ, up to a subsequence, with
Ĩ ′(ṽ) = 0. Since {ṽn} is non-vanishing we also have that ṽ 6= 0.

Now observe that, because of Lemma 2.2, for all x ∈ RN , n ∈ N,

f2(ṽn)− f(ṽn)ṽn√
1 + 2f2(ṽn)

≥ 0,

also, because of condition (h2), for all x ∈ RN , n ∈ N,

1
2

h(f(ṽn))ṽn√
1 + 2f2(ṽn)

−H(f(ṽn)) ≥ 0.

Indeed, for all x ∈ RN , n ∈ N,

1
2

h(f(ṽn))ṽn√
1 + 2f2(ṽn)

≥ 1
2

h(f(ṽn))f(ṽn) ≥ µ

4
H(f(ṽn)) ≥ H(f(ṽn)).

12



Thus, from Fatou’s lemma, we get

c = lim sup
n→∞

[
Ĩ(ṽn)− 1

2
Ĩ ′(ṽn)ṽn

]

= lim sup
n→∞

1
2

∫

RN

[
f2(ṽn)− f(ṽn)ṽn√

1 + 2f2(ṽn)

]
V (∞) dx

+ lim sup
n→∞

∫

RN

[
1
2

h(f(ṽn))ṽn√
1 + 2f2(ṽn)

−H(f(ṽn))

]
dx

≥ 1
2

∫

RN

[
f2(ṽ)− f(ṽ)ṽ√

1 + 2f2(ṽ)

]
V (∞) dx +

∫

RN

[
1
2

h(f(ṽ))ṽ√
1 + 2f2(ṽ)

−H(f(ṽ))

]
dx

= Ĩ(ṽ)− 1
2
Ĩ ′(ṽ)ṽ = Ĩ(ṽ).

Namely ṽ 6= 0 is a critical point of Ĩ satisfying Ĩ(ṽ) ≤ c. We deduce that the
least energy level m̃ for Ĩ satisfies m̃ ≤ c. We denote by ω̃ a least energy solution
as provided by Theorem 3.1. Now applying Theorem 3.4 to the functional Ĩ we
can find a path γ(t) ∈ C([0, 1],H) such that γ(t)(x) > 0, ∀x ∈ RN , ∀ t ∈ (0, 1],
γ(0) = 0, Ĩ(γ(1)) < 0, ω̃ ∈ γ([0, 1]) and

max
t∈[0,1]

Ĩ(γ(t)) = Ĩ(ω̃).

Without restriction we can assume that V (x) ≤ V (∞) but V 6≡ V (∞) in (V1)
(otherwise there is nothing to prove). Thus

I(γ(t)) < Ĩ(γ(t)) for all t ∈ (0, 1]

and it follows that

c ≤ max
t∈[0,1]

I(γ(t)) < max
t∈[0,1]

Ĩ(γ(t)) ≤ c.

This is a contradiction and the lemma is proved. ♠
At this point to end the proof of Theorem 1.3 we just need to show that there

exists a Palais-Smale sequence for I as in Lemma 4.3. From Lemma 4.2 we know
(see [6]) that I possesses a Cerami sequence at the level c > 0. Namely a sequence
{vn} ⊂ H such that

I(vn) → c and ||I ′(vn)||H−1(1 + ||vn||) → 0 as n →∞.

Lemma 4.4 Assume that (V0)-(V1) and (h0)-(h2) hold. Then all Cerami se-
quences for I at the level c > 0 are bounded in H.
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Proof. First we observe that if a sequence {vn} ⊂ H satisfies
∫

RN

|∇vn|2 dx +
∫

RN

V (x)f2(vn) dx is bounded (4.6)

then it is bounded in H. To see this we just need to show that
∫
RN v2

ndx is bounded.
We write

∫

RN

v2
n dx =

∫

{x : |vn(x)|≤1}
v2

n dx +
∫

{x : |vn(x)|>1}
v2

n dx.

By Remark 4.1, there exists a C > 0 such that H(s) ≥ Cs4 for all s ≥ 1 and thus,
because of the behavior of f at infinity, for a C > 0, H(f(s)) ≥ Cs2, for all s ≥ 1.
It follows that

∫

{x : |vn(x)|>1}
v2

n dx ≤ 1
C

∫

{x : |vn(x)|>1}
H(f(vn)) dx ≤ 1

C

∫

RN

H(f(vn)) dx.

Also, for a C > 0, since f(s) ≥ Cs for all s ∈ [0, 1], (see Lemma 2.1) we also have
∫

{x : |vn(x)|≤1}
v2

n dx ≤ 1
C

∫

{x : |vn(x)|≤1}
f2(vn) dx ≤ 1

C

∫

RN

f2(vn) dx.

At this point the boundedness of {vn} ⊂ H is clear.
Now let {vn} ⊂ H be an arbitrary Cerami sequence for I at the level c > 0.

We have for any φ ∈ H

1
2

∫

RN

|∇vn|2 dx +
1
2

∫

RN

V (x)f2(vn) dx−
∫

RN

H(f(vn)) dx = c + o(1), (4.7)

I ′(vn)φ =
∫

RN

∇vn∇φ dx +
∫

RN

V (x)
f(vn)φ√

1 + 2f2(vn)
dx

−
∫

RN

h(f(vn))φ√
1 + 2f2(vn)

dx. (4.8)

Choosing φ = φn =
√

1 + 2f2(vn)f(vn) we have, from Lemma 2.1, ||φn||2 ≤
C||vn||2 and

|∇φn| = (1 +
2f2(vn)

1 + 2f2(vn)
)|∇vn| ≤ 2|∇vn|.

Thus ||φn|| ≤ C||vn|| and, in particular, recording that {vn} ⊂ H is a Cerami
sequence

I ′(vn)φn =
∫

RN

(1 +
2f2(vn)

1 + 2f2(vn)
)|∇vn|2 dx +

∫

RN

V (x)f2(vn) dx

−
∫

RN

h(f(vn))f(vn) dx = o(1). (4.9)
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Now using (h2) it follows computing (4.7)− 1
µ (4.9) that

∫

RN

(
1
2
− 1

µ
(1 +

2f2(vn)
1 + 2f2(vn)

))|∇vn|2 dx +
1
4

∫

RN

V (x)f2(vn) dx

≤ c + o(1). (4.10)

Since 1 +
2f2(vn)

1 + 2f2(vn)
≤ 2, if µ > 4 we immediately deduce that (4.6) hold and

thus {vn} ⊂ H is bounded. If µ = 4 we obtain from (4.10)

1
4

∫

RN

|∇vn|2
1 + 2f2(vn)

dx +
1
4

∫

RN

V (x)f2(vn) dx ≤ c + o(1). (4.11)

Denoting un = f(vn), we have |∇vn|2 = (1+2f2(vn))|∇un|2 and (4.7), (4.11) give
∫

RN

(1 + 2u2
n)|∇un|2 dx +

∫

RN

V (x)u2
n dx− 2

∫

RN

H(un) dx = 2c + o(1). (4.12)

1
4

∫

RN

|∇un|2 dx +
1
4

∫

RN

V (x)u2
n dx ≤ c + o(1). (4.13)

From (4.13) we see that {un} ⊂ H is bounded. Thus since, by (h0)-(h1),

H(s) ≤ |s|2 + C|s|p+1 (4.14)

we see, from the Sobolev embedding, that if p ≤ N+2
N−2 then

∫
RN H(un) dx is

bounded and from (4.12) we get (4.6). When N = 3 the condition corresponds
to p ≤ 5. In the case where we assume p < 3N+4

N let us show that
∫

RN

H(un) dx = o

(∫

RN

u2
n|∇un|2 dx

)
if

∫

RN

u2
n|∇un|2 dx →∞. (4.15)

Using Holder inequality, we have for θ = (N−2)(p−1)
2N+4

∫

RN

|un|p+1 dx ≤ C

(∫

RN

|un|2 dx

)1−θ (∫

RN

|un|
4N

N−2 dx

)θ

.

Also
(∫

RN

|u2
n|

2N
N−2 dx

)θ

≤ C

(∫

RN

|∇(u2
n)|2 dx

) θN
N−2

= C

(∫

RN

u2
n|∇un|2 dx

) θN
N−2

where θN
N−2 < 1 since p < 3N+4

N . Recalling (4.14) and the boundedness of {un} in
L2(RN ) this proves (4.15). Thus from (4.12) we see that

∫
RN H(un) dx is bounded

and thus (4.6) hold. At this point the lemma is proved. ♠
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