Solutions for a quasilinear Schrödinger equation : A dual approach *

Mathieu Colin (\dagger) and Louis Jeanjean (\ddagger)

(\dagger) Département de Mathématiques
Université Paris-Sud
Bâtiment 425, 91405 Orsay Cedex
Mathieu.Colin@math.u-psud.fr
(\ddagger) Equipe de Mathématiques (UMR CNRS 6623)
Université de Franche-Comté
16 Route de Gray, 25030 Besançon, France
jeanjean@math.univ-fcomte.fr

Abstract

We consider quasilinear stationary Schrödinger equations of the form $$
\begin{equation*} -\Delta u-\Delta\left(u^{2}\right) u=g(x, u), \quad x \in \mathbb{R}^{N} . \tag{0.1} \end{equation*}
$$

Introducing a change of unknown, we transform the search of solutions $u(x)$ of (0.1) into the search of solutions $v(x)$ of the semilinear equation

$$
\begin{equation*}
-\Delta v=\frac{1}{\sqrt{1+2 f^{2}(v)}} g(x, f(v)), \quad x \in \mathbb{R}^{N} \tag{0.2}
\end{equation*}
$$

where f is suitably chosen. If v is a classical solution of (0.2) then $u=f(v)$ is a classical solution of (0.1). Variational methods are then used to obtain various existence results.

[^0]
1 Introduction

In this paper we deal with equations of the form

$$
\begin{equation*}
-\Delta u-\Delta\left(u^{2}\right) u=g(x, u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.1}
\end{equation*}
$$

These equations model several physical phenomena but until recently little had been done to prove rigorously the existence of solutions.

A major difficulty associated with (1.1) is the following; one may seek to obtain solutions by looking for critical points of the associated "natural" functional, $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
J(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x+\int_{\mathbb{R}^{N}}|\nabla u|^{2} u^{2} d x-\int_{\mathbb{R}^{N}} G(x, u) d x
$$

where $G(x, s)=\int_{0}^{s} g(x, t) d t$. However except when $N=1$ this functional is not defined on all $H^{1}\left(\mathbb{R}^{N}\right)$.

The first existence results for equations of the form of (1.1) are, up to our knowledge, due to [12, 8]; papers to which we refer for a presentation of the physical motivations of studying (1.1). In [12, 8], however, the main existence results are obtained, through a constrained minimization argument, only up to an unknown Lagrange multiplier.

Subsequently a general existence result for (1.1) was derived in [7]. To overcome the undefiniteness of J the idea in [7] is to introduce a change of variable and to rewrite the functional J with this new variable. Then critical points are search in an associated Orlicz space (see [7] for details).

The aim of the present paper is to give a simple and shorter proof of the results of [7], which do not use Orlicz spaces, but rather is developed in the usual $H^{1}\left(\mathbb{R}^{N}\right)$ space. The fact that we work in $H^{1}\left(\mathbb{R}^{N}\right)$ also permit to cover a different class of nonlinearities. In particular we give full treatment of the autonomous case and for non autonomous problems we do not assume that,

$$
\left.s \rightarrow \frac{g(x, s)}{s}:\right] 0, \infty[\rightarrow \mathbb{R} \text { is non decreasing in } s
$$

Following the strategy developed in [4] on a related problem we also make use of a change of unknown $v=f^{-1}(u)$ and define an associated equation that we shall call dual. If $v \in H^{1}\left(\mathbb{R}^{N}\right)$ is classical solution of

$$
\begin{equation*}
-\Delta v=\frac{1}{\sqrt{1+2 f^{2}(v)}} g(x, f(v)) \tag{1.2}
\end{equation*}
$$

$u=f(v)$ is a classical solution of (1.1).
Equations of the form (1.2) are of semilinear elliptic type and one can try to solve them by a variational approach. In particular we shall see that, under very
general conditions on g, the "natural" functional associated to (1.2), $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow$ \mathbb{R} given by

$$
I(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x-\int_{\mathbb{R}^{N}} G(x, f(v)) d x
$$

is well defined and of class C^{1} on $H^{1}\left(\mathbb{R}^{N}\right)$.
The dual approach is introduced in Section 2. In Section 3 we deal with autonomous problems, when (1.1) is of the form,

$$
\begin{equation*}
-\Delta u-\Delta\left(u^{2}\right) u=g(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.3}
\end{equation*}
$$

Autonomous problems seems to play an important role in physical phenomena (see [3] for example) and we obtain here an existence result under assumptions we believe to be nearly optimal. We assume that the nonlinear term g satisfies :
(g0) $g(s)$ is locally Hölder continuous on $[0, \infty[$.
(g1) $-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}=-\nu<0$ for $N \geq 3$,
$\lim _{s \rightarrow 0} \frac{g(s)}{s}=-\nu \in(-\infty, 0)$ for $N=1,2$.
(g2) When $N \geq 3, \lim _{s \rightarrow \infty} \frac{|g(s)|}{s^{\frac{3 N+2}{N-2}}}=0$.
When $N=2$, for any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$$
|g(s)| \leq C_{\alpha} e^{\alpha s^{2}} \quad \text { for all } s \geq 0
$$

(g3) When $N \geq 2$, there exists $\xi_{0}>0$ such that $G\left(\xi_{0}\right)>0$, When $\mathrm{N}=1$, there exists $\xi_{0}>0$ such that

$$
G(\xi)<0 \text { for all } \xi \in] 0, \xi_{0}\left[, G\left(\xi_{0}\right)=0 \text { and } g\left(\xi_{0}\right)>0\right.
$$

Remark 1.1 An easy calculation shows that (g0)-(g3) are satisfied in the model case $g(s)=|s|^{2} s-\nu s$.

Theorem 1.2 Assume that (g0)-(g3) hold. Then (1.3) admits a solution $u_{0} \in$ $H^{1}\left(\mathbb{R}^{N}\right)$ having the following properties :
(i) $u_{0}>0$ on \mathbb{R}^{N}.
(ii) u_{0} is spherically symmetric : $u_{0}(x)=u_{0}(r)$ with $r=|x|$ and u_{0} decreases with respect to r.
(iii) $u_{0} \in C^{2}\left(\mathbb{R}^{N}\right)$.
(iv) u_{0} together with its derivatives up to order 2 have exponential decay at infinity

$$
\left|D^{\alpha} u_{0}(x)\right| \leq C e^{-\delta|x|}, x \in \mathbb{R}^{N}
$$

for some $C, \delta>0$ and for $|\alpha| \leq 2$.
We prove Theorem 1.2 searching for a critical point of the functional I, which is here autonomous. As we shall see the existence of a critical point follows almost directly, from classical results on scalar field equations due to Berestycki-Lions [1] when $N=1$ or $N \geq 3$ and Berestycki-Gallouët-Kavian [2] when $N=2$.

In Section 4 we assume that (1.1) is of the form,

$$
\begin{equation*}
-\Delta u-\Delta\left(u^{2}\right) u+V(x) u=h(u) \tag{1.4}
\end{equation*}
$$

We require $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and $h \in C\left(\mathbb{R}^{+}, \mathbb{R}\right)$, to be Hölder continuous and to satisfy
(V0) There exists $V_{0}>0$ such that $V(x) \geq V_{0}>0$ on \mathbb{R}^{N}.
$(\mathrm{V} 1) \lim _{|x| \rightarrow \infty} V(x)=V(\infty)$ and $V(x) \leq V(\infty)$ on \mathbb{R}^{N}.
(h0) $\lim _{s \rightarrow 0} \frac{h(s)}{s}=0$.
(h1) There exists $p<\infty$ if $N=1,2$ and $p<\frac{3 N+2}{N-2}$ if $N \geq 3$ such that $|h(s)| \leq$ $C\left(1+|s|^{p}\right), \forall s \in \mathbb{R}$, for a $C>0$.
(h2) There exists $\mu \geq 4$ such that, $\forall s>0$,

$$
0<\mu H(s) \leq h(s) s \text { with } H(s)=\int_{0}^{s} h(t) d t
$$

Our main result is the following :
Theorem 1.3 Assume that (V0)-(V1) and (h0)-(h1) hold. Then (1.4) has a positive non trivial solution if one of the following conditions hold :

1) (h2) hold with a $\mu>4$.
2) (h2) hold with $\mu=4$ with $p \leq 5$ if $N=3$ and $p<\frac{3 N+4}{N}$ if $N \geq 4$ in (h1).

The proof of Theorem 1.3 also relies on the study of the functional I. We first show that I possess a mountain pass geometry and denote by $c>0$ the mountain pass level (see Lemma 4.2). To find a critical point the main difficulties to overcome are the possible unboundedness of the Palais-Smale (or Cerami) sequences and a lack of compactness since (1.4) is set on all \mathbb{R}^{N}.

For the second difficulty we use some recent results presented in [9] and [10] which imply that, under conditions (V0)-(V1), the mountain pass level $c>0$ is
below (if $V \not \equiv V(\infty)$) the first level of possible loss of compactness (see Theorem 3.4 and Lemma 4.3).

For the first difficulty we distinguish the cases $\mu>4$ and $\mu=4$ in (h2). In the case $\mu>4$, it is direct to prove that all Cerami sequences of I are bounded. To show it in the case $\mu=4$ is more involved and for this we make use of an idea introduced in [7].

Notation : Throughout the article the letter C will denote various positive constants whose exact value may change from line to line but are not essential to the analysis of the problem. Also if we take a subsequence of a sequence $\left\{v_{n}\right\}$ we shall denote it again $\left\{v_{n}\right\}$.

2 The dual formulation

We start with some preliminary results. Let f be defined by

$$
f^{\prime}(t)=\frac{1}{\sqrt{1+2 f^{2}(t)}} \text { and } f(0)=0
$$

on $[0,+\infty[$ and by $f(t)=-f(-t)$ on $]-\infty, 0]$.
Lemma 2.1 1) f is uniquely defined, C^{∞} and invertible.
2) $\left|f^{\prime}(t)\right| \leq 1$, for all $t \in \mathbb{R}$.
3) $\frac{f(t)}{t} \rightarrow 1$ as $t \rightarrow 0$.
4) $\frac{f(t)}{\sqrt{t}} \rightarrow 2^{\frac{1}{4}}$ as $t \rightarrow+\infty$.

Proof. Points 1)-3) are immediate. To see 4) we integrate

$$
\int_{0}^{t} f^{\prime}(s) \sqrt{1+2 f^{2}(s)} d s=t
$$

Using the changes of variables $x=f(s)$ and $x=\frac{1}{\sqrt{2}} S h(y)$ we obtain that

$$
\frac{1}{2 \sqrt{2}}\left[\sinh ^{-1}(\sqrt{2} f(t))\right]+\frac{1}{4 \sqrt{2}} \sinh 2\left[S h^{-1}(\sqrt{2} f(t))\right]=t .
$$

Thus, $\sinh 2\left[S h^{-1}(\sqrt{2} f(t))\right] \sim 4 \sqrt{2} t$ in the sense that, as $t \rightarrow+\infty$,

$$
\frac{\sinh 2\left[\sinh ^{-1}(\sqrt{2} f(t))\right]}{4 \sqrt{2} t} \rightarrow 1
$$

We set $a(t)=\sinh ^{-1}(\sqrt{2} f(t))$. Then $a(t)$ satisfies $\sinh [2 a(t)] \sim 4 \sqrt{2} t$ and we deduce that

$$
a(t) \sim \frac{1}{2} \ln \left(4 \sqrt{2} t+\sqrt{32 t^{2}+1}\right)
$$

Finally since $2 \sinh (t) \sim e^{t}$ it follows that

$$
2 \sqrt{2} f(t) \sim e^{\frac{1}{2} \ln \left(4 \sqrt{2} t+\sqrt{32 t^{2}+1}\right)} \sim 2 \sqrt{2} 2^{\frac{1}{4}} \sqrt{t}
$$

and the lemma is proved.
Lemma 2.2 For all $t \in \mathbb{R}$,

$$
\frac{1}{2} f(t) \leq \frac{t}{\sqrt{1+2 f^{2}(t)}} \leq f(t)
$$

Proof. To establish the first inequality we need to show that, for all $t \geq 0$,

$$
\sqrt{1+2 f^{2}(t)} f(t) \leq 2 t
$$

In this aim we study the function $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$, defined by

$$
g(t)=2 t-\sqrt{1+2 f^{2}(t)} f(t)
$$

We have $g(0)=0$ and, since $f^{\prime}(t) \sqrt{1+2 f^{2}(t)}=1, \forall t \in \mathbb{R}$, that $g^{\prime}(t)=1-$ $2 f^{\prime 2}(t) f^{2}(t)$. It follows that $g^{\prime}(t) \geq 0$ since $1-2 f^{\prime 2}(t) f^{2}(t)=f^{\prime 2}(t)$ and the first inequality is proved. The second one is derived in a similar way.

We now present our dual approach. For simplicity we set $H=H^{1}\left(\mathbb{R}^{N}\right)$ and denote by $\|\cdot\|$ its standard norm. We assume that $g(x, s)$ is such that $I: H \rightarrow \mathbb{R}$ given by

$$
I(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x-\int_{\mathbb{R}^{N}} G(x, f(v)) d x
$$

with $G(x, s)=\int_{0}^{s} g(x, t) d t$, is well defined and of class $C^{1}(f: \mathbb{R} \rightarrow \mathbb{R}$ is the function previously introduced).

Let $v \in H \cap C^{2}\left(\mathbb{R}^{N}\right)$ be a critical point of I. Since $f^{\prime 2}(t)\left(1+2 f^{2}(t)\right) \equiv 1$, it satisfies

$$
\begin{equation*}
-\Delta v=\frac{1}{\sqrt{1+2 f^{2}(v)}} g(x, f(v)) \tag{2.1}
\end{equation*}
$$

We set $u=f(v)$ (i.e. $v=f^{-1}(u)$). Clearly $u \in C^{2}\left(\mathbb{R}^{N}\right)$ and $u \in H$. Indeed $\nabla u=f^{\prime}(v) \nabla v$ and $\left|f^{\prime}(t)\right| \leq 1, \forall t \in \mathbb{R}$.

We have $\nabla v=\left(f^{-1}\right)^{\prime}(u) \nabla u$ and

$$
\begin{equation*}
\Delta v=\left(f^{-1}\right)^{\prime \prime}(u)|\nabla u|^{2}+\left(f^{-1}\right)^{\prime}(u) \Delta u \tag{2.2}
\end{equation*}
$$

Since $\left(f^{-1}\right)^{\prime}(t)=\frac{1}{f^{\prime}\left[f^{-1}(t)\right]}$, it follows that

$$
\left(f^{-1}\right)^{\prime}(t)=\sqrt{1+2 f^{2}\left(f^{-1}(t)\right)}=\sqrt{1+2 t^{2}} \text { and }\left(f^{-1}\right)^{\prime \prime}(t)=\frac{2 t}{\sqrt{1+2 t^{2}}}
$$

Thus, from (2.2), we deduce that

$$
\Delta v=\frac{2 u}{\sqrt{1+2 u^{2}}}|\nabla u|^{2}+\sqrt{1+2 u^{2}} \Delta u
$$

and consequently, from (2.1), that

$$
-\frac{2 u}{\sqrt{1+2 u^{2}}}|\nabla u|^{2}-\sqrt{1+2 u^{2}} \Delta u-\frac{1}{\sqrt{1+2 u^{2}}} g(x, u)=0 .
$$

This can be rewrite as

$$
\frac{1}{\sqrt{1+2 u^{2}}}\left[\left(-1-2 u^{2}\right) \Delta u-2 u|\nabla u|^{2}-g(x, u)\right]=0 .
$$

Since $\Delta\left(u^{2}\right) u=2 u|\nabla u|^{2}+2 u^{2} \Delta u$ it shows that $u \in H \cap C^{2}\left(\mathbb{R}^{N}\right)$ satisfies (1.1).
At this point it is clear that to obtain a classical solution of (1.1) it suffices to obtain a critical point of I of class C^{2}.

3 Autonomous cases

In this section (1.1) is of the form

$$
\begin{equation*}
-\Delta u-\Delta\left(u^{2}\right) u=g(u), \quad u \in H \tag{3.1}
\end{equation*}
$$

with the nonlinearity g satisfying (g0)-(g3). Because we look for positive solutions we may assume without restriction that $g(s)=0, \forall s \leq 0$. Following our dual approach we shall obtain the existence of solutions for (3.1) studying the associated dual equation

$$
\begin{equation*}
-\Delta v=\frac{1}{\sqrt{1+2 f^{2}(v)}} g(f(v)), \quad v \in H \tag{3.2}
\end{equation*}
$$

In this aim, we now recall some classical results due to Berestycki-Lions [1] and Berestycki-Gallouët-Kavian [2] on equations of the form

$$
\begin{equation*}
-\Delta v=k(v), \quad v \in H \tag{3.3}
\end{equation*}
$$

These authors show that the natural functional corresponding to (3.3), J:H $\rightarrow \mathbb{R}$ given by

$$
J(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x-\int_{\mathbb{R}^{N}} K(v) d x
$$

where $K(s)=\int_{0}^{s} k(t) d t$ is of class C^{1}, if k satisfies the conditions :
$(\mathrm{k} 0) k(s) \in C\left(\mathbb{R}^{+}, \mathbb{R}\right)($ and $k(s)=0, \forall s \leq 0)$.
(k1) $-\infty<\liminf _{s \rightarrow 0} \frac{k(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{k(s)}{s}=-\nu<0$ for $N \geq 3$, $\lim _{s \rightarrow 0} \frac{k(s)}{s}=-\nu \in(-\infty, 0)$ for $N=1,2$.
(k2) When $N \geq 3, \lim _{s \rightarrow \infty} \frac{|k(s)|}{s^{\frac{N+2}{N-2}}}=0$.
When $N=2$, for any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$$
|k(s)| \leq C_{\alpha} e^{\alpha s^{2}} \quad \text { for all } s \geq 0
$$

We recall that a solution $v \in H$ of (3.3) is said to be a least energy solution if and only if

$$
J(v)=m \text { where } m=\inf \{J(v), v \in H \backslash\{0\} \text { is a solution of }(3.3)\}
$$

The following result is given in [1] when $N=1$ or $N \geq 3$ and in [2] when $N=2$.

Theorem 3.1 Assume that (k0)-(k2) and (k3) hold with
(k3) When $N \geq 2$, there exists $\xi_{0}>0$ such that $K\left(\xi_{0}\right)>0$.
When $N=1$, there exists $\xi_{0}>0$ such that

$$
K(\xi)<0 \text { for all } \xi \in] 0, \xi_{0}\left[, K\left(\xi_{0}\right)=0 \text { and } k\left(\xi_{0}\right)>0\right.
$$

Then $m>0$ and there exists a least energy solution $\omega(x)$ of (3.3) which satisfies :
(i) $\omega>0$ on \mathbb{R}^{N}.
(ii) ω is spherically symmetric : $\omega(x)=\omega(r)$ with $r=|x|$ and ω decreases with respect to r.
(iii) $\omega \in C^{2}\left(\mathbb{R}^{N}\right)$.
(iv) ω together with its derivatives up to order 2 have exponential decay at infinity

$$
\left|D^{\alpha} \omega(x)\right| \leq C e^{-\delta|x|}, x \in \mathbb{R}^{N}
$$

for some $C, \delta>0$ and for $|\alpha| \leq 2$.
Now observe that equation (3.2) is of the form $-\Delta v=k(v)$ with

$$
\begin{equation*}
k(s)=\frac{1}{\sqrt{1+2 f^{2}(s)}} g(f(s)) \tag{3.4}
\end{equation*}
$$

We claim that if $g(s)$ satisfies (g0)-(g3) then $k(s)$ given by (3.4) satisfies (k0)($k 3$). Indeed the fact that ($k 0$) holds is trivial. The conditions ($k 1$), $(k 2)$ follow, respectively, from Lemma 2.1 (ii) and (iii). To check (k3) when $N \geq 2$ it suffices to notice that

$$
G\left(\xi_{0}\right)>0 \text { for a } \xi_{0}>0 \Longleftrightarrow \exists s_{0}>0 \text { such that } G\left(f\left(s_{0}\right)\right)>0
$$

Clearly (k3) also holds when $N=1$. Having proved our claim we directly obtain from Theorem 3.1:

Theorem 3.2 Assume that (g0)-(g2) hold. Then the functional $I: H \rightarrow \mathbb{R}$ given by

$$
I(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x-\int_{\mathbb{R}^{N}} G(f(v)) d x
$$

is well defined and of class C^{1}. If in addition g satisfies (g3) then (3.2) has a least energy solution $\omega(x)$ which possesses the properties (i)-(iv) of Theorem 3.1.

At this point turning back to equation (3.1), Theorem 1.2 follows directly from Theorem 3.2 and the properties of f (see Lemma 2.1).

Remark 3.3 In [1] the authors justify the growth restriction (k2) considering the special nonlinearities $k(s)=\lambda|s|^{p-1} s-m s$ where $\lambda, m>0$. They show that in this case (3.3) has no solution when $p \geq \frac{N+2}{N-2}$. In contrast, Theorem 1.2 says that solutions of (3.1) do exist for all $1<p<\frac{3 N+2}{N-2}$.
In the next section we shall use the fact that the least energy solution $\omega(x)$ given in Theorem 3.2 has a mountain pass characterization. Indeed, in [9] for $N \geq 2$ and in [10] for $N=1$, Theorem 3.1 is complemented in the following way :

Theorem 3.4 Assume that (k0)-(k3) hold. Then setting

$$
\Gamma=\{\gamma \in C([0,1], H), \gamma(0)=0 \text { and } J(\gamma(1))<0\}
$$

we have $\Gamma \neq \emptyset$ and $b=m$ with

$$
b \equiv \inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t))
$$

Moreover for any least energy solution $\omega(x)$ as given in Theorem 3.1, there exists a path $\gamma \in \Gamma$ such that $\gamma(t)(x)>0$ for all $x \in \mathbb{R}^{N}$ and $t \in(0,1]$ satisfying $\omega \in \gamma([0,1])$ and

$$
\max _{t \in[0,1]} J(\gamma(t))=b
$$

Remark 3.5 In [9], [10] it is also proved that under (k0)-(k2) there exists $\alpha_{0}>0$, $\delta_{0}>0$ such that

$$
J(v) \geq \alpha_{0}\|v\|^{2} \text { when }\|v\| \leq \delta_{0}
$$

4 Non autonomous cases

In this section we assume that (1.1) is of the form

$$
\begin{equation*}
-\Delta u-\Delta\left(u^{2}\right) u+V(x) u=h(u), \quad u \in H \tag{4.1}
\end{equation*}
$$

with the potential $V(x)$ satisfying (V0)-(V1) and the nonlinearity $h(s)$, (h0)-(h2). Here again we use our dual approach and first look to critical points of $I: H \rightarrow \mathbb{R}$ given by

$$
I(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2}+V(x) f^{2}(v) d x-\int_{\mathbb{R}^{N}} H(f(v)) d x
$$

Namely for solutions $v \in H$ of

$$
\begin{equation*}
-\Delta v=\frac{1}{\sqrt{1+2 f^{2}(v)}}[-V(x) f(v)+h(f(v))] \tag{4.2}
\end{equation*}
$$

From Section 3 we readily deduce that I is well defined and of class C^{1} under conditions (V0)-(V1) and (h0)-(h1). Let us show that I has a mountain pass geometry, in the sense that,

$$
\Gamma=\{\gamma \in C([0,1], H), \gamma(0)=0 \text { and } I(\gamma(1))<0\} \neq \emptyset
$$

and

$$
c \equiv \inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))>0
$$

For this we first mention a direct consequence of (h2).
Remark 4.1 The function $t \rightarrow H(s t) t^{-4}$ is increasing on \mathbb{R}^{+}, for all $s>0$. In particular there is $C>0$ such that $H(s) \geq C s^{4}$ for $s \geq 1$ and $\lim _{s \rightarrow+\infty} h(s) s^{-1}=\infty$.

Lemma 4.2 Under (V0)-(V1) and (h0)-(h2) I has a mountain pass geometry.
Proof. From the assumptions (V0)-(V1) we have

$$
k_{1}(s) \leq \frac{1}{\sqrt{1+2 f^{2}(v)}}[-V(x) f(v)+h(f(v))] \leq k_{2}(s)
$$

where

$$
\begin{gathered}
k_{1}(s)=\frac{1}{\sqrt{1+2 f^{2}(v)}}[-V(\infty) f(v)+h(f(v))] \quad \text { and } \\
k_{2}(s)=\frac{1}{\sqrt{1+2 f^{2}(v)}}\left[-V_{0} f(v)+h(f(v))\right]
\end{gathered}
$$

The nonlinearities $k_{1}(s)$ and $k_{2}(s)$ both satisfy assumptions (k0)-(k3). Thus, from Remark 3.5, we deduce (considering $k_{2}(s)$) that there exists $\alpha_{0}>0, \delta_{0}>0$ such that

$$
\begin{equation*}
I(v) \geq \alpha_{0}\|v\|^{2} \text { when }\|v\| \leq \delta_{0} \tag{4.3}
\end{equation*}
$$

Namely the origin is a strict local minimum. Also since the functional corresponding to $k_{1}(s)$ is negative at some point we deduce that $\Gamma \neq \emptyset$.

Lemma 4.3 Assume that (V0)-(V1) and (h0)-(h2) hold. Let $\left\{v_{n}\right\} \subset H$ be a bounded Palais-Smale sequence for I at level $c>0$. Then, up to a subsequence, $v_{n} \rightharpoonup v \neq 0$ with $I^{\prime}(v)=0$.

Proof. Since $\left\{v_{n}\right\}$ is bounded, we can assume that, up to a subsequence, $v_{n} \rightharpoonup v$. Let us prove that $I^{\prime}(v)=0$. Noting that $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in H, it suffices to check that $I^{\prime}(v) \varphi=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. But we readily have, using Lebesgue's Theorem, that

$$
\begin{aligned}
I^{\prime}\left(v_{n}\right) \varphi-I^{\prime}(v) \varphi & =\int_{\mathbb{R}^{N}} \nabla\left(v_{n}-v\right) \nabla \varphi d x \\
& +\int_{\mathbb{R}^{N}}\left(\frac{-f\left(v_{n}\right)}{\sqrt{1+2 f^{2}\left(v_{n}\right)}}+\frac{f(v)}{\sqrt{1+2 f^{2}(v)}}\right) V(x) \varphi d x \\
& +\int_{\mathbb{R}^{N}}\left(\frac{h\left(f\left(v_{n}\right)\right)}{\sqrt{1+2 f^{2}\left(v_{n}\right)}}-\frac{h(f(v))}{\sqrt{1+2 f^{2}(v)}}\right) \varphi d x \rightarrow 0
\end{aligned}
$$

since $v_{n} \rightharpoonup v$ weakly in H and strongly in $L_{l o c}^{q}\left(\mathbb{R}^{N}\right)$ for $q \in\left[2, \frac{2 N}{N-2}[\right.$ if $N \geq 3, q \geq 2$ if $N=1,2$. Thus recalling that $I^{\prime}\left(v_{n}\right) \rightarrow 0$ we indeed have $I^{\prime}(v)=0$. At this point if $v \neq 0$ the lemma is proved. Thus we assume that $v=0$. We claim that in this case $\left\{v_{n}\right\}$ is also a Palais-Smale sequence for the functional $\tilde{I}: H \rightarrow \mathbb{R}$ defined by

$$
\tilde{I}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(\infty) f^{2}(v) d x-\int_{\mathbb{R}^{N}} H(f(v)) d x
$$

at the level $c>0$. Indeed, as $n \rightarrow \infty$,

$$
\tilde{I}\left(v_{n}\right)-I\left(v_{n}\right)=\int_{\mathbb{R}^{N}}[V(\infty)-V(x)] f^{2}\left(v_{n}\right) d x \rightarrow 0
$$

since $V(x) \rightarrow V(\infty)$ as $|x| \rightarrow \infty,|f(s)| \leq|s|, \forall s \in \mathbb{R}$ and $v_{n} \rightarrow 0$ in $L_{l o c}^{2}\left(\mathbb{R}^{N}\right)$. Also, for the same reasons, we have

$$
\sup _{\|u\| \leq 1}\left|\left(\tilde{I}^{\prime}\left(v_{n}\right)-I^{\prime}\left(v_{n}\right), u\right)\right|=\sup _{\|u\| \leq 1}\left|\int_{\mathbb{R}^{N}} \frac{f\left(v_{n}\right) u}{\sqrt{1+2 f^{2}\left(v_{n}\right)}}[V(\infty)-V(x)] d x\right| \rightarrow 0
$$

Next we claim that the situation : For all $R>0$

$$
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{N}} \int_{y+B_{R}} v_{n}^{2} d x=0
$$

which we will refer to as the vanishing case cannot occurs. From (h0)-(h1) and Lemma 2.1, $\forall \varepsilon>0$ there exists a $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
h(f(s)) f(s) \leq \varepsilon s^{2}+C_{\varepsilon}|s|^{\frac{p+1}{2}} \quad \text { for all } s \in \mathbb{R} \tag{4.4}
\end{equation*}
$$

Thus, for any $v \in H$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} h(f(v)) f(v) d x \leq \varepsilon \int_{\mathbb{R}^{N}} v^{2} d x+C_{\varepsilon} \int_{\mathbb{R}^{N}}|v|^{\frac{p+1}{2}} d x \tag{4.5}
\end{equation*}
$$

and using Lemma 2.2 we see that $\forall \varepsilon>0$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} h\left(f\left(v_{n}\right)\right) \frac{v_{n}}{\sqrt{1+2 f^{2}\left(v_{n}\right)}} d x & \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} h\left(f\left(v_{n}\right)\right) f\left(v_{n}\right) d x \\
& \leq \lim _{n \rightarrow \infty}\left[\varepsilon \int_{\mathbb{R}^{N}} v_{n}^{2} d x+C_{\varepsilon} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{\frac{p+1}{2}} d x\right] \\
& \leq \varepsilon \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} v_{n}^{2} d x
\end{aligned}
$$

because, if $\left\{v_{n}\right\}$ vanish, $v_{n} \rightarrow 0$ strongly in $L^{q}\left(\mathbb{R}^{N}\right)$ for any $\left.q \in\right] 2, \frac{2 N}{N-2}[$ (a proof of this result is given in Lemma 2.18 of [5] and is a special case of Lemma I. 1 of [11]). We then deduce that,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} h\left(f\left(v_{n}\right)\right) \frac{v_{n}}{\sqrt{1+2 f^{2}\left(v_{n}\right)}} d x=0
$$

This implies, since $I^{\prime}\left(v_{n}\right) v_{n} \rightarrow 0$, that

$$
\int_{\mathbb{R}^{N}}\left|\nabla v_{n}\right|^{2}+V(x) f^{2}\left(v_{n}\right) d x \rightarrow 0
$$

in contradiction with the fact that $I\left(v_{n}\right) \rightarrow c>0$. Thus $\left\{v_{n}\right\}$ does not vanish and there exists $\alpha>0, R<\infty$ and $\left\{y_{n}\right\} \subset \mathbb{R}^{N}$ such that

$$
\lim _{n \rightarrow \infty} \int_{y_{n}+B_{R}} v_{n}^{2} d x \geq \alpha>0
$$

Let $\tilde{v_{n}}(x)=v_{n}\left(x+y_{n}\right)$. Since $\left\{v_{n}\right\}$ is a Palais-Smale sequence for $\tilde{I},\left\{\tilde{v}_{n}\right\}$ also. Arguing as in the case of $\left\{v_{n}\right\}$ we get that $\tilde{v}_{n} \rightharpoonup \tilde{v}$, up to a subsequence, with $\tilde{I}^{\prime}(\tilde{v})=0$. Since $\left\{\tilde{v}_{n}\right\}$ is non-vanishing we also have that $\tilde{v} \neq 0$.

Now observe that, because of Lemma 2.2, for all $x \in \mathbb{R}^{N}, n \in \mathbb{N}$,

$$
f^{2}\left(\tilde{v_{n}}\right)-\frac{f\left(\tilde{v_{n}}\right) \tilde{v_{n}}}{\sqrt{1+2 f^{2}\left(\tilde{v_{n}}\right)}} \geq 0
$$

also, because of condition (h2), for all $x \in \mathbb{R}^{N}, n \in \mathbb{N}$,

$$
\frac{1}{2} \frac{h\left(f\left(\tilde{v_{n}}\right)\right) \tilde{v_{n}}}{\sqrt{1+2 f^{2}\left(\tilde{v_{n}}\right)}}-H\left(f\left(\tilde{v_{n}}\right)\right) \geq 0
$$

Indeed, for all $x \in \mathbb{R}^{N}, n \in \mathbb{N}$,

$$
\frac{1}{2} \frac{h\left(f\left(\tilde{v_{n}}\right)\right) \tilde{v_{n}}}{\sqrt{1+2 f^{2}\left(\tilde{v_{n}}\right)}} \geq \frac{1}{2} h\left(f\left(\tilde{v_{n}}\right)\right) f\left(\tilde{v_{n}}\right) \geq \frac{\mu}{4} H\left(f\left(\tilde{v_{n}}\right)\right) \geq H\left(f\left(\tilde{v_{n}}\right)\right)
$$

Thus, from Fatou's lemma, we get

$$
\begin{aligned}
c & =\limsup _{n \rightarrow \infty}\left[\tilde{I}\left(\tilde{v}_{n}\right)-\frac{1}{2} \tilde{I}^{\prime}\left(\tilde{v}_{n}\right) \tilde{v}_{n}\right] \\
& =\limsup _{n \rightarrow \infty} \frac{1}{2} \int_{\mathbb{R}^{N}}\left[f^{2}\left(\tilde{v_{n}}\right)-\frac{f\left(\tilde{v_{n}}\right) \tilde{v_{n}}}{\sqrt{1+2 f^{2}\left(\tilde{\left.v_{n}\right)}\right.}}\right] V(\infty) d x \\
& +\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left[\frac{1}{2} \frac{h\left(f\left(\tilde{v_{n}}\right)\right) \tilde{v_{n}}}{\sqrt{1+2 f^{2}\left(\tilde{\left.v_{n}\right)}\right.}}-H\left(f\left(\tilde{v_{n}}\right)\right)\right] d x \\
& \geq \frac{1}{2} \int_{\mathbb{R}^{N}}\left[f^{2}(\tilde{v})-\frac{f(\tilde{v}) \tilde{v}}{\sqrt{1+2 f^{2}(\tilde{v})}}\right] V(\infty) d x+\int_{\mathbb{R}^{N}}\left[\frac{1}{2} \frac{h(f(\tilde{v})) \tilde{v}}{\sqrt{1+2 f^{2}(\tilde{v})}}-H(f(\tilde{v}))\right] d x \\
& =\tilde{I}(\tilde{v})-\frac{1}{2} \tilde{I}^{\prime}(\tilde{v}) \tilde{v}=\tilde{I}(\tilde{v}) .
\end{aligned}
$$

Namely $\tilde{v} \neq 0$ is a critical point of \tilde{I} satisfying $\tilde{I}(\tilde{v}) \leq c$. We deduce that the least energy level \tilde{m} for \tilde{I} satisfies $\tilde{m} \leq c$. We denote by $\tilde{\omega}$ a least energy solution as provided by Theorem 3.1. Now applying Theorem 3.4 to the functional \tilde{I} we can find a path $\gamma(t) \in C([0,1], H)$ such that $\gamma(t)(x)>0, \forall x \in \mathbb{R}^{N}, \forall t \in(0,1]$, $\gamma(0)=0, \tilde{I}(\gamma(1))<0, \tilde{\omega} \in \gamma([0,1])$ and

$$
\max _{t \in[0,1]} \tilde{I}(\gamma(t))=\tilde{I}(\tilde{\omega})
$$

Without restriction we can assume that $V(x) \leq V(\infty)$ but $V \not \equiv V(\infty)$ in (V1) (otherwise there is nothing to prove). Thus

$$
I(\gamma(t))<\tilde{I}(\gamma(t)) \quad \text { for all } t \in(0,1]
$$

and it follows that

$$
c \leq \max _{t \in[0,1]} I(\gamma(t))<\max _{t \in[0,1]} \tilde{I}(\gamma(t)) \leq c .
$$

This is a contradiction and the lemma is proved.
At this point to end the proof of Theorem 1.3 we just need to show that there exists a Palais-Smale sequence for I as in Lemma 4.3. From Lemma 4.2 we know (see [6]) that I possesses a Cerami sequence at the level $c>0$. Namely a sequence $\left\{v_{n}\right\} \subset H$ such that

$$
I\left(v_{n}\right) \rightarrow c \text { and }\left\|I^{\prime}\left(v_{n}\right)\right\|_{H^{-1}}\left(1+\left\|v_{n}\right\|\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Lemma 4.4 Assume that (V0)-(V1) and (h0)-(h2) hold. Then all Cerami sequences for I at the level $c>0$ are bounded in H.

Proof. First we observe that if a sequence $\left\{v_{n}\right\} \subset H$ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla v_{n}\right|^{2} d x+\int_{\mathbb{R}^{N}} V(x) f^{2}\left(v_{n}\right) d x \quad \text { is bounded } \tag{4.6}
\end{equation*}
$$

then it is bounded in H. To see this we just need to show that $\int_{\mathbb{R}^{N}} v_{n}^{2} d x$ is bounded. We write

$$
\int_{\mathbb{R}^{N}} v_{n}^{2} d x=\int_{\left\{x:\left|v_{n}(x)\right| \leq 1\right\}} v_{n}^{2} d x+\int_{\left\{x:\left|v_{n}(x)\right|>1\right\}} v_{n}^{2} d x
$$

By Remark 4.1, there exists a $C>0$ such that $H(s) \geq C s^{4}$ for all $s \geq 1$ and thus, because of the behavior of f at infinity, for a $C>0, H(f(s)) \geq C s^{2}$, for all $s \geq 1$. It follows that

$$
\int_{\left\{x:\left|v_{n}(x)\right|>1\right\}} v_{n}^{2} d x \leq \frac{1}{C} \int_{\left\{x:\left|v_{n}(x)\right|>1\right\}} H\left(f\left(v_{n}\right)\right) d x \leq \frac{1}{C} \int_{\mathbb{R}^{N}} H\left(f\left(v_{n}\right)\right) d x
$$

Also, for a $C>0$, since $f(s) \geq C s$ for all $s \in[0,1]$, (see Lemma 2.1) we also have

$$
\int_{\left\{x:\left|v_{n}(x)\right| \leq 1\right\}} v_{n}^{2} d x \leq \frac{1}{C} \int_{\left\{x:\left|v_{n}(x)\right| \leq 1\right\}} f^{2}\left(v_{n}\right) d x \leq \frac{1}{C} \int_{\mathbb{R}^{N}} f^{2}\left(v_{n}\right) d x
$$

At this point the boundedness of $\left\{v_{n}\right\} \subset H$ is clear.
Now let $\left\{v_{n}\right\} \subset H$ be an arbitrary Cerami sequence for I at the level $c>0$. We have for any $\phi \in H$

$$
\begin{align*}
\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\nabla v_{n}\right|^{2} d x & +\frac{1}{2} \int_{\mathbb{R}^{N}} V(x) f^{2}\left(v_{n}\right) d x-\int_{\mathbb{R}^{N}} H\left(f\left(v_{n}\right)\right) d x=c+o(1), \tag{4.7}\\
I^{\prime}\left(v_{n}\right) \phi & =\int_{\mathbb{R}^{N}} \nabla v_{n} \nabla \phi d x+\int_{\mathbb{R}^{N}} V(x) \frac{f\left(v_{n}\right) \phi}{\sqrt{1+2 f^{2}\left(v_{n}\right)}} d x \\
& -\int_{\mathbb{R}^{N}} \frac{h\left(f\left(v_{n}\right)\right) \phi}{\sqrt{1+2 f^{2}\left(v_{n}\right)}} d x . \tag{4.8}
\end{align*}
$$

Choosing $\phi=\phi_{n}=\sqrt{1+2 f^{2}\left(v_{n}\right)} f\left(v_{n}\right)$ we have, from Lemma 2.1, $\left\|\phi_{n}\right\|_{2} \leq$ $C\left\|v_{n}\right\|_{2}$ and

$$
\left|\nabla \phi_{n}\right|=\left(1+\frac{2 f^{2}\left(v_{n}\right)}{1+2 f^{2}\left(v_{n}\right)}\right)\left|\nabla v_{n}\right| \leq 2\left|\nabla v_{n}\right|
$$

Thus $\left\|\phi_{n}\right\| \leq C\left\|v_{n}\right\|$ and, in particular, recording that $\left\{v_{n}\right\} \subset H$ is a Cerami sequence

$$
\begin{align*}
I^{\prime}\left(v_{n}\right) \phi_{n} & =\int_{\mathbb{R}^{N}}\left(1+\frac{2 f^{2}\left(v_{n}\right)}{1+2 f^{2}\left(v_{n}\right)}\right)\left|\nabla v_{n}\right|^{2} d x+\int_{\mathbb{R}^{N}} V(x) f^{2}\left(v_{n}\right) d x \\
& -\int_{\mathbb{R}^{N}} h\left(f\left(v_{n}\right)\right) f\left(v_{n}\right) d x=o(1) \tag{4.9}
\end{align*}
$$

Now using (h2) it follows computing (4.7) $-\frac{1}{\mu}(4.9)$ that

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left(\frac{1}{2}-\frac{1}{\mu}\left(1+\frac{2 f^{2}\left(v_{n}\right)}{1+2 f^{2}\left(v_{n}\right)}\right)\right)\left|\nabla v_{n}\right|^{2} d x & +\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) f^{2}\left(v_{n}\right) d x \\
& \leq c+o(1) \tag{4.10}
\end{align*}
$$

Since $1+\frac{2 f^{2}\left(v_{n}\right)}{1+2 f^{2}\left(v_{n}\right)} \leq 2$, if $\mu>4$ we immediately deduce that (4.6) hold and thus $\left\{v_{n}\right\} \subset H$ is bounded. If $\mu=4$ we obtain from (4.10)

$$
\begin{equation*}
\frac{1}{4} \int_{\mathbb{R}^{N}} \frac{\left|\nabla v_{n}\right|^{2}}{1+2 f^{2}\left(v_{n}\right)} d x+\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) f^{2}\left(v_{n}\right) d x \leq c+o(1) \tag{4.11}
\end{equation*}
$$

Denoting $u_{n}=f\left(v_{n}\right)$, we have $\left|\nabla v_{n}\right|^{2}=\left(1+2 f^{2}\left(v_{n}\right)\right)\left|\nabla u_{n}\right|^{2}$ and (4.7), (4.11) give

$$
\begin{gather*}
\int_{\mathbb{R}^{N}}\left(1+2 u_{n}^{2}\right)\left|\nabla u_{n}\right|^{2} d x+\int_{\mathbb{R}^{N}} V(x) u_{n}^{2} d x-2 \int_{\mathbb{R}^{N}} H\left(u_{n}\right) d x=2 c+o(1) \tag{4.12}\\
\frac{1}{4} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} d x+\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} d x \leq c+o(1) \tag{4.13}
\end{gather*}
$$

From (4.13) we see that $\left\{u_{n}\right\} \subset H$ is bounded. Thus since, by (h0)-(h1),

$$
\begin{equation*}
H(s) \leq|s|^{2}+C|s|^{p+1} \tag{4.14}
\end{equation*}
$$

we see, from the Sobolev embedding, that if $p \leq \frac{N+2}{N-2}$ then $\int_{\mathbb{R}^{N}} H\left(u_{n}\right) d x$ is bounded and from (4.12) we get (4.6). When $N=3$ the condition corresponds to $p \leq 5$. In the case where we assume $p<\frac{3 N+4}{N}$ let us show that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} H\left(u_{n}\right) d x=o\left(\int_{\mathbb{R}^{N}} u_{n}^{2}\left|\nabla u_{n}\right|^{2} d x\right) \text { if } \int_{\mathbb{R}^{N}} u_{n}^{2}\left|\nabla u_{n}\right|^{2} d x \rightarrow \infty \tag{4.15}
\end{equation*}
$$

Using Holder inequality, we have for $\theta=\frac{(N-2)(p-1)}{2 N+4}$

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p+1} d x \leq C\left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2} d x\right)^{1-\theta}\left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\frac{4 N}{N-2}} d x\right)^{\theta}
$$

Also

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{N}}\left|u_{n}^{2}\right|^{\frac{2 N}{N-2}} d x\right)^{\theta} & \leq C\left(\int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n}^{2}\right)\right|^{2} d x\right)^{\frac{\theta N}{N-2}} \\
& =C\left(\int_{\mathbb{R}^{N}} u_{n}^{2}\left|\nabla u_{n}\right|^{2} d x\right)^{\frac{\theta N}{N-2}}
\end{aligned}
$$

where $\frac{\theta N}{N-2}<1$ since $p<\frac{3 N+4}{N}$. Recalling (4.14) and the boundedness of $\left\{u_{n}\right\}$ in $L^{2}\left(\mathbb{R}^{N}\right)$ this proves (4.15). Thus from (4.12) we see that $\int_{R^{N}} H\left(u_{n}\right) d x$ is bounded and thus (4.6) hold. At this point the lemma is proved.

References

[1] Berestycki H. and Lions P.L., Nonlinear scalar field equations I, Arch. Rat. Mech. Anal. 82 (1983), 313-346.
[2] Berestycki H., Gallouët T. and Kavian O., Equations de Champs scalaires euclidiens non linéaires dans le plan, C.R. Acad. Sci. Paris Ser. I Math. 297 (1983), 5, 307-310.
[3] Brizkik L., Eremko A., Piette B. and Zakrzewski W.J., Electron self-trapping in a discrete two-dimensional lattice, Physica D, 159 (2001), 71-90.
[4] Colin M., Stability of standing waves for a quasilinear Schrödinger equation in space dimension 2, Adv. Diff. Equa., 8, 1, (2003), 1-28.
[5] Coti Zelati V. and Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on \mathbb{R}^{N}, Comm. Pure and Appl. Math., Vol. XIV (1992), 12171269.
[6] Ekeland I., Convexity methods in Hamiltonian Mechanics, Springer, (1990).
[7] Liu J-Q., Wang Y-Q. and Wang Z-Q., Soliton solutions for quasilinear Schrödinger equations, II, J. Diff. Equa., 187 (2003), 473-493.
[8] Liu J-Q., Wang Z-Q., Soliton solutions for quasilinear Schrödinger equations, Proc AMS, 131 (2003), 441-448.
[9] Jeanjean L. and Tanaka K., A remark on least energy solutions in \mathbb{R}^{N}, Proc $A M S, 131$ (2003), 2399-2408.
[10] Jeanjean L. and Tanaka K., A note on a mountain pass characterization of least energy solutions, Adv. Nonli. Studies, to appear.
[11] Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II., Ann. Inst. H. Poincaré, Anal. non-lin., 1 (1984), 109-145 and 223-283.
[12] Poppenberg M., Schmitt K. and Wang Z-Q., On the existence of soliton solutions to quasilinear Schrödinger equations, Cal. Var., 14 (2002), 329-344.

[^0]: *Primary: 35J60, Secondary: 58E05.

