Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases

Jaeyoung Byeon
Department of Mathematics, Pohang University of Science and Technology
Pohang, Kyungbuk 790-784, Republic of Korea
jbyeon@postech.ac.kr
and
Louis Jeanjean
Equipe de Mathématiques (UMR CNRS 6623)
Université de Franche-Comté
16 Route de Gray, 25030 Besançon, France
jeanjean@math.univ-fcomte.fr
and
Kazunaga Tanaka
Department of Mathematics
School of Science and Engineering Waseda University
3-4-1 Ohkubo, Shijuku-ku, Tokyo 169-8555, Japan
kazunaga@waseda.jp

April 11, 2008

Abstract

For $N=1,2$, we consider singularly perturbed elliptic equations $\varepsilon^{2} \Delta u-V(x) u+f(u)=0, u(x)>0$ on $\mathbf{R}^{N}, \lim _{|x| \rightarrow \infty} u(x)=0$. For small $\varepsilon>0$, we show the existence of a localized bound state solution concentrating at an isolated component of positive local minimum of V under conditions on f we believe to be almost optimal; when $N \geq 3$, it was shown in [6].

1 Introduction

In this paper, we deal with standing waves for the nonlinear Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}+\frac{\hbar^{2}}{2} \Delta \psi-V(x) \psi+f(\psi)=0, \quad(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \tag{1}
\end{equation*}
$$

Here \hbar denotes the Plank constant, i the imaginary unit. For the physical background of this equation, we refer to the introduction in [8]. We assume that $f(\exp (i \theta) s)=\exp (i \theta) f(s)$ for $s \in \mathbf{R}$. A solution of the form $\psi(x, t)=$ $\exp (-i E t / \hbar) v(x)$ is called a standing wave. Then, $\psi(x, t)$ is a solution of (1) if and only if the function v satisfies

$$
\begin{equation*}
\frac{\hbar^{2}}{2} \Delta v-(V(x)-E) v+f(v)=0 \quad \text { in } \quad \mathbf{R}^{N} \tag{2}
\end{equation*}
$$

We are interested in positive solutions in $H^{1}\left(\mathbf{R}^{N}\right)$ for small $\hbar>0$. For small $\hbar>0$, these standing waves are referred to as semi-classical states. For simplicity and without loss of generality, we write $V-E$ as V, i.e., we shift E to 0 . Thus, we consider the following equation

$$
\begin{equation*}
\varepsilon^{2} \Delta v-V(x) v+f(v)=0, \quad v>0, \quad v \in H^{1}\left(\mathbf{R}^{N}\right) \tag{3}
\end{equation*}
$$

where $\varepsilon>0$ is sufficiently small. Throughout the paper, the potential V will be assumed to satisfy
(V1) $V \in C\left(\mathbf{R}^{N}, \mathbf{R}\right), V_{0} \equiv \inf _{\mathbf{R}^{N}} V(x) \geq 0$ and $\liminf |x| \rightarrow \infty, ~ V(x)>0$.
An interesting class of solutions of (3) are families of solutions which concentrate and develop spike layers, peaks, around certain points in \mathbf{R}^{N} while vanishing elsewhere as $\varepsilon \rightarrow 0$. In the case $V_{0}>0$, the existence of single peak solutions was first studied by Floer and Weinstein [19].

For $N=1$ and $f(u)=u^{3}$, using a finite dimensional reduction method, they construct, for any given non-degenerate critical point $x_{0} \in \mathbf{R}$ of $V(x)$, a positive solution u_{ε} having a single peak located at x_{ε}, and such that $x_{\varepsilon} \rightarrow x_{0} \in \mathbf{R}$ as $\varepsilon \rightarrow 0$. Precisely they show that $v_{\varepsilon}(x)=u_{\varepsilon}\left(\varepsilon x+x_{\varepsilon}\right)$ converges to the unique positive solution of

$$
\Delta u-V\left(x_{0}\right) u+u^{3}=0, \quad u>0, \quad u \in H^{1}(\mathbf{R}) .
$$

Motivated by the approach in [19], many authors have obtained refined results on (3) in higher dimension and for more general f (see [2, 13, 14, 25, $26,28,29]$). Let $x_{0} \in \mathbf{R}^{N}$ denote the point where concentration occurs. In the above papers it is necessary to assume that there exists a unique positive solution U of

$$
\begin{equation*}
\Delta u-V\left(x_{0}\right) u+f(u)=0, \quad u>0, \quad u \in H^{1}(\mathbf{R}) . \tag{4}
\end{equation*}
$$

Moreover if $\Delta \phi-V\left(x_{0}\right) \phi+f^{\prime}(U) \phi=0$, then ϕ must be of the form: $\phi=$ $\sum_{i=1}^{N} a_{i} \frac{\partial U}{\partial x_{i}}$ for some $a_{i} \in \mathbf{R}$. These uniqueness and nondegeneracy conditions are known to hold only for a restricted class of f. On the contrary it is known from $[4,5]$ that under weak conditions on f a positive least energy solution of (4) exists. In addition these conditions are almost optimal.

In a different direction, a variational approach was initiated by Rabinowitz [32] and developed further by several authors (see [8, 9, 10, 11, 15, $16,17,18,21,24])$. But in this approach rather strong conditions of f are still necessary.

It is noticed in [22] and [23] that the least energy solutions of (4) found in [4] and [5] are nothing but mountain pass solutions. Since a mountain pass solution is structurally stable, it is expected that the solution would continue to exist under some perturbations. In fact, it is proved in [6] that for $N \geq 3$, this expectation is true. In this paper we prove the same phenomenon for $N=1,2$. Thus this paper is complementary to [6]. More generally than in [6], we allow the potential V to be zero on a bounded set. More precisely in addition to (V1) we assume on V.
(V2) There is a bounded open set $O \subset \mathbf{R}^{N}$ such that

$$
0<m \equiv \inf _{x \in O} V(x)<\min _{x \in \partial O} V(x) .
$$

We define

$$
\mathcal{M} \equiv\{x \in O \mid V(x)=m\}
$$

and set $\mathcal{Z} \equiv\left\{x \in \mathbf{R}^{N} \mid V(x)=0\right\}$.
We also assume that $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is continuous and satisfies the following conditions.
(f1) $\lim _{t \rightarrow 0^{+}} f(t) / t=0$;
(f1') $\limsup _{t \rightarrow 0^{+}} \frac{f(t)}{t^{1+\mu}}<\infty$ for some $\mu>0$;
(f2) if $N=2$, for any $\alpha>0$, there exists $C_{\alpha}>0$ such that $|f(t)| \leq$ $C_{\alpha} \exp \left(\alpha t^{2}\right)$ for all $t \in \mathbf{R}^{+} ;$
(f3) there exists $t_{0}>0$ such that if $N=2, \frac{1}{2} m t_{0}^{2}<F\left(t_{0}\right)$ and if $N=1$, $\frac{1}{2} m t^{2}>F(t)$ for $t \in\left(0, t_{0}\right), \frac{1}{2} m t_{0}^{2}=F\left(t_{0}\right)$ and $m t_{0}<f\left(t_{0}\right)$, where $F(t)=\int_{0}^{t} f(s) d s$.

We consider the following limiting equation

$$
\begin{equation*}
\Delta u-m u+f(u)=0, \quad u>0, \quad u \in H^{1}\left(\mathbf{R}^{N}\right) . \tag{5}
\end{equation*}
$$

If (f1-3) hold, it is known from $[4,5]$ that (5) has a least energy solution.
Theorem 1 Let $N=1,2$ and assume that (V1-2) and (f1-3) hold. If $\mathcal{Z} \neq \emptyset$ assume furthermore (f1'). Then for sufficiently small $\varepsilon>0$, there exists a positive solution v_{ε} of (3) such that for a maximum point x_{ε} of v_{ε} (which is unique for $N=1$),

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{dist}\left(x_{\varepsilon}, \mathcal{M}\right)=0
$$

and $w_{\varepsilon}(x) \equiv v_{\varepsilon}\left(\varepsilon x+x_{\varepsilon}\right)$ converges (up to a subsequence for $N=2$) uniformly to a least energy solution of (5). In addition for some $c, C>0$,

$$
v_{\varepsilon}(x) \leq C \exp \left(-\frac{c}{\varepsilon}\left|x-x_{\varepsilon}\right|\right)
$$

In $[4,5]$, the authors proved that condition (f3) is necessary for the existence of a non-trivial solution of the associated problem (5). In the case $\mathcal{Z} \neq \emptyset$ we need an additional decay condition on f at 0 , but when $\mathcal{Z}=\emptyset$, the conditions
(f1-3) are the same as in [4]. Thus, basically, the concentration phenomena occurs as soon as the equation (5) has a non-trivial solution.

The proof of Theorem 1 follows the approach introduced in [6], but is more involved. Indeed our approach requires to prove that the set S_{m} of least energy solutions U of (5) satisfying $U(0)=\max _{x \in \mathbf{R}^{N}} U(x)$ is compact. For $N=2$ it is more involved to show the compactness than for $N \geq 3$. Also at the heart of the proof in [6] is the construction of a good sample path. Such a path is easy to construct when $N \geq 3$ since it is given $\gamma(t)=U(\cdot / t)$ for some approximate solution U. However the path $\gamma(t)=U(\cdot / t)$ does not belong to the class of admissible paths when $N=1$ or $N=2$ and in the two cases a different technical construction is required (see Proposition 2). Finally when we allow $V=0$ on a compact set, there is no constant $C>0$, independent of $u \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ and of $\varepsilon>0$ small, such that

$$
\int_{\mathbf{R}^{N}} \varepsilon^{2}|\nabla u|^{2}+V(x) u^{2} d x \geq C \int_{\mathbf{R}^{N}} \varepsilon^{2}|\nabla u|^{2}+u^{2} d x .
$$

This difficulty, arising for any $N \in \mathbf{N}$, requires additional technicalities with respect to [6].

Defining $u(x)=v(\varepsilon x)$ and $V_{\varepsilon}(x)=V(\varepsilon x)$, equation (3) is equivalent to

$$
\begin{equation*}
\Delta u-V_{\varepsilon} u+f(u)=0, \quad u>0, \quad u \in H^{1}\left(\mathbf{R}^{N}\right) \tag{6}
\end{equation*}
$$

In our approach we take into account the shape and location of the solutions we expect to find. Thus on one hand we benefit from the advantage of the Lyapounov-Schmidt reduction approaches, which is to discover the solution around a small neighborhood of a well chosen first approximation. On the other hand we do not need the uniqueness nor non-degeneracy of the least energy solutions of (5). Our approach is indeed purely variational.

2 Preliminaries

As we already mention, the following equations for $m>0$ are limiting equations of (6)

$$
\begin{equation*}
\Delta u-m u+f(u)=0, \quad u>0, \quad u \in H^{1}\left(\mathbf{R}^{N}\right) \tag{7}
\end{equation*}
$$

We define an energy functional for the limiting problems (7) by

$$
\begin{equation*}
L_{m}(u)=\frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla u|^{2}+m u^{2} d x-\int_{\mathbf{R}^{N}} F(u) d x, \quad u \in H^{1}\left(\mathbf{R}^{N}\right) . \tag{8}
\end{equation*}
$$

In [4] and [5], the authors proved that, for any $m>0$, there exists a least energy solution of (7) if (f1-3) are satisfied. Also they showed that each solution U of (7) satisfies the Pohozaev's identity

$$
\begin{equation*}
\frac{N-2}{2} \int_{\mathbf{R}^{N}}|\nabla U|^{2} d x+N \int_{\mathbf{R}^{N}} m \frac{u^{2}}{2}-F(u) d x=0 . \tag{9}
\end{equation*}
$$

Let S_{m} be the set of least energy solutions U of (7) satisfying $U(0)=$ $\max _{x \in \mathbf{R}^{N}} U(x)$ and denote by E_{m} the least energy level:

$$
E_{m}=\frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla U|^{2}+m U^{2} d x-\int_{\mathbf{R}^{N}} F(U) d x, \quad U \in S_{m} .
$$

Then, we obtain the following compactness of S_{m}.
Proposition 1 Suppose that (f1-3) are satisfied. For each $m>0, S_{m}$ is compact in $H^{1}\left(\mathbf{R}^{N}\right)$ and there exist $C, c>0$, independent of $U \in S_{m}$ such that

$$
U(x) \leq C \exp (-c|x|) \quad \text { for all } x \in \mathbf{R}^{N} .
$$

Moreover, if $N=1, S_{m}$ consists of only one element, that is, there exists a unique solution of (7) up to a translation.

Proposition 1 is proved in [6] for $N \geq 3$. For $N=1$ we refer to [4] for the existence and [23] for the uniqueness. To prove Proposition 1 for $N=2$, we use the following lemma. We use the notation $B(x, r)=\left\{y \in \mathbf{R}^{N}| | y-x \mid<r\right\}$ for $x \in \mathbf{R}^{N}$ and $r>0$.

Lemma 1 Assume $N=2$ and that $G(t) \in C(\mathbf{R}, \mathbf{R})$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{G(t)}{t^{2}}=0 \tag{a}
\end{equation*}
$$

(b) For any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$$
\begin{equation*}
|G(t)| \leq C_{\alpha} e^{\alpha t^{2}} \quad \text { for all } t \in \mathbf{R}^{+} \tag{11}
\end{equation*}
$$

Then, for any H^{1}-bounded sequence $\left\{u_{n}\right\} \subset H^{1}\left(\mathbf{R}^{2}\right)$ such that

$$
\begin{equation*}
\sup _{y \in \mathbf{R}^{2}} \int_{B(y, 1)}\left|u_{n}\right|^{2} d x \rightarrow 0 \tag{12}
\end{equation*}
$$

it holds that

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} G\left(u_{n}\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

Proof. Let $\alpha \in(0,4 \pi)$ and set $\Psi(t)=e^{\alpha t^{2}}-1$. It is proved in [1] (see also [30]) that there exists $C_{\alpha}>0$ such that

$$
\begin{equation*}
\|\nabla u\|_{L^{2}}^{2} \int_{\mathbf{R}^{2}} \Psi\left(\frac{u}{\|\nabla u\|_{L^{2}}}\right) d x \leq C_{\alpha}\|u\|_{L^{2}}^{2} \quad \text { for all } u \in H^{1}\left(\mathbf{R}^{2}\right) \backslash\{0\} \tag{14}
\end{equation*}
$$

For $u \in H^{1}\left(\mathbf{R}^{2}\right)$ satisfying $\|\nabla u\|_{L^{2}} \leq M$, we have

$$
M^{2} \Psi\left(\frac{u}{M}\right)=\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{u^{2 j}}{M^{2(j-1)}} \leq \sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{u^{2 j}}{\|\nabla u\|_{L^{2}}^{2(j-1)}}=\|\nabla u\|_{L^{2}}^{2} \Psi\left(\frac{u}{\|\nabla u\|_{L^{2}}}\right) .
$$

Thus we have

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} \Psi\left(\frac{u}{M}\right) d x \leq C_{\alpha} M^{-2}\|u\|_{L^{2}}^{2} \quad \text { for }\|\nabla u\|_{L^{2}} \leq M \tag{15}
\end{equation*}
$$

Under the assumptions (10)-(11), for any $\delta, M>0$ there exists $C_{\delta, M}>0$ such that for all $t \in \mathbf{R}$

$$
\begin{equation*}
|G(t)| \leq \delta \Psi\left(\frac{t}{M}\right)+C_{\delta, M} t^{4} \tag{16}
\end{equation*}
$$

Let $\left\{u_{n}\right\} \subset H^{1}\left(\mathbf{R}^{2}\right)$ be a sequence such that $\left\|u_{n}\right\|_{H^{1}} \leq M$ and (12) holds. By a result of Lions [27, Lemma I.1], (12) implies

$$
\begin{equation*}
\int_{\mathbf{R}^{2}}\left|u_{n}\right|^{4} d x \rightarrow 0 . \tag{17}
\end{equation*}
$$

Thus by (15)-(17), we have

$$
\limsup _{n \rightarrow \infty} \int_{\mathbf{R}^{2}} G\left(u_{n}\right) d x \leq \delta C_{\alpha}
$$

Since $\delta>0$ is arbitrary, we have $\int_{\mathbf{R}^{2}} G\left(u_{n}\right) d x \rightarrow 0$.

Remark 1 (i) A statement similar to Lemma 1 also holds for $N=1$. More precisely, assume $G(t) \in C(\mathbf{R}, \mathbf{R})$ satisfies (10). Then for any H^{1}-bounded sequence $\left\{u_{n}\right\} \subset H^{1}(\mathbf{R})$ such that $\sup _{y \in \mathbf{R}} \int_{B(y, 1)}\left|u_{n}\right|^{2} d x \rightarrow 0$, it holds that

$$
\int_{\mathbf{R}} G\left(u_{n}\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

In fact, $\left\{u_{n}\right\}$ is bounded in $L^{\infty}(\mathbf{R})$ since $H^{1}(\mathbf{R}) \subset L^{\infty}(\mathbf{R})$. Thus for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\left|G\left(u_{n}\right)\right| \leq \varepsilon\left|u_{n}\right|^{2}+C_{\varepsilon}\left|u_{n}\right|^{4} \quad \text { for all } n \in \mathbf{N} \text { and } x \in \mathbf{R}
$$

and we can prove that $\int_{\mathbf{R}} G\left(u_{n}\right) d x \rightarrow 0$ as in Lemma 1.
(ii) In the spirit of the above proofs, under the condition $\lim \sup _{t \rightarrow 0} \frac{|G(t)|}{t^{2}}<\infty$ and in addition (11) if $N=2$, we can see that $\int_{\mathbf{R}^{N}} G(u) d x$ stays bounded if $\|u\|_{H^{1}}$ is bounded. Moreover under the condition (10) if $N=1$ and (10)-(11) if $N=2$, it holds that

$$
\lim _{\|u\|_{H^{1}} \rightarrow 0} \frac{1}{\|u\|_{H^{1}}^{2}} \int_{\mathbf{R}^{N}} G(u) d x \rightarrow 0
$$

Proof of Proposition 1 for $\mathbf{N}=\mathbf{2}$. From (9), we see that for any $U \in S_{m}$,

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} \frac{m}{2} U^{2}-F(U) d x=0 \quad \text { and } \quad \frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla U|^{2} d x=L_{m}(U)=E_{m} . \tag{18}
\end{equation*}
$$

Thus, $\left\{\int_{\mathbf{R}^{N}}|\nabla U|^{2} d x \mid U \in S_{m}\right\}$ is bounded. We claim that $\left\{\int_{\mathbf{R}^{N}} U^{2} d x \mid U \in\right.$ $\left.S_{m}\right\}$ is also bounded. Assume by contradiction that there exist $\left\{U_{j}\right\} \subset S_{m}$ satisfying $\lambda_{j} \equiv\left\|U_{j}\right\|_{L^{2}} \rightarrow \infty$ as $j \rightarrow \infty$. We define $\tilde{U}_{j}(x) \equiv U_{j}\left(\lambda_{j} x\right)$. Then, we see that

$$
\begin{equation*}
\left\|\nabla \tilde{U}_{j}\right\|_{L^{2}}^{2}=\|\nabla U\|_{L^{2}}^{2}=2 E_{m} \text { and }\left\|\tilde{U}_{j}\right\|_{L^{2}}=1 \tag{19}
\end{equation*}
$$

Thus, $\left\{\tilde{U}_{j}\right\}$ is bounded in $H^{1}\left(\mathbf{R}^{2}\right)$ and satisfies

$$
\begin{equation*}
\frac{1}{\lambda_{j}^{2}} \Delta \tilde{U}_{j}-m \tilde{U}_{j}+f\left(\tilde{U}_{j}\right)=0 \quad \text { in } \mathbf{R}^{2} \tag{20}
\end{equation*}
$$

For any sequence $\left\{x_{j}\right\} \subset \mathbf{R}^{2}$, we may assume that after taking a subsequence $\tilde{U}_{j}\left(x+x_{j}\right) \rightarrow \tilde{U}_{0}(x)$ weakly in $H^{1}\left(\mathbf{R}^{2}\right)$. It follows from (20) that $m \tilde{U}_{0}=f\left(\tilde{U}_{0}\right)$
in \mathbf{R}^{2} from which we see that $\tilde{U}_{0} \equiv 0$. Indeed, since $\tilde{U}_{0} \in H^{1}$ satisfies $m \tilde{U}_{0}=f\left(\tilde{U}_{0}\right)$, the rearrangement of $\tilde{U}_{0}-$ say $U^{*}-$ satisfies $U^{*} \in H_{r}^{1}\left(\mathbf{R}^{2}\right) \subset$ $C\left(\mathbf{R}^{2} \backslash 0\right)$ and $m U^{*}=f\left(U^{*}\right)$. Since $z=0$ is an isolated solution of $m z=f(z)$, $U^{*} \in H_{r}^{1}\left(\mathbf{R}^{2}\right)$ must be identically 0 and it implies $\tilde{U}_{0} \equiv 0$.

Since $\left\{x_{j}\right\} \subset \mathbf{R}^{2}$ is arbitrary, we have

$$
\lim _{j \rightarrow \infty} \sup _{y \in \mathbf{R}^{2}} \int_{B(y, 1)}\left|\tilde{U}_{j}(x)\right|^{2} d x=0 .
$$

Thus by Lemma 1,

$$
\left\|f\left(\tilde{U}_{j}\right)\right\|_{L^{2}}^{2}=\int_{\mathbf{R}^{2}}\left|f\left(\tilde{U}_{j}\right)\right|^{2} d x \rightarrow 0 \quad \text { as } j \rightarrow \infty .
$$

By (20),

$$
\begin{aligned}
m\left\|\mid \tilde{U}_{j}\right\|_{L^{2}}^{2} & \leq \int_{\mathbf{R}^{2}} \frac{1}{\lambda_{j}^{2}}\left|\nabla \tilde{U}_{j}\right|^{2}+m\left|\tilde{U}_{j}\right|^{2} d x=\int_{\mathbf{R}^{2}} f\left(\tilde{U}_{j}\right) \tilde{U}_{j} d x \\
& \leq\left\|f\left(\tilde{U}_{j}\right)\right\|_{L^{2}}\left\|\tilde{U}_{j}\right\|_{L^{2}} \rightarrow 0 .
\end{aligned}
$$

This is a contradiction to (19). Therefore S_{m} is bounded in $H^{1}\left(\mathbf{R}^{2}\right)$.
To show the compactness of S_{m}, we first show that for any $\delta>0$ there exists $R>0$ such that

$$
\begin{equation*}
\sup _{|x| \geq R}|U(x)| \leq \delta \quad \text { for all } U \in S_{m} \tag{21}
\end{equation*}
$$

If not, there exists $\left\{U_{j}\right\} \subset S_{m},\left\{y_{j}\right\} \subset \mathbf{R}^{2}$ such that $\left|y_{j}\right| \rightarrow \infty$ and $\liminf _{j \rightarrow \infty}$ $U_{j}\left(y_{j}\right)>0$. After extracting a subsequence, we may assume that $U_{j}(x) \rightarrow$ $U(x), U_{j}\left(x+x_{j}\right) \rightarrow V(x)$ weakly in $H^{1}\left(\mathbf{R}^{2}\right)$ with both $U(x)$ and $V(x)$ nontrivial critical points of L_{m}. In particular

$$
L_{m}(U), L_{m}(V) \geq E_{m}
$$

Therefore

$$
\begin{aligned}
L_{m}\left(U_{j}\right) & =\left.\frac{1}{2}\left|\left\|\nabla U_{j}\right\|_{L^{2}}^{2} \geq \frac{1}{2} \int_{B(0, R)}\right| \nabla U_{j}\right|^{2} d x+\frac{1}{2} \int_{B\left(y_{j}, R\right)}\left|\nabla U_{j}\right|^{2} d x \\
& \geq \frac{1}{2} \int_{B(0, R)}|\nabla U|^{2} d x+\frac{1}{2} \int_{B(0, R)}|\nabla V|^{2} d x+o(1)
\end{aligned}
$$

as $j \rightarrow \infty$ by weak convergence. Now since $R>0$ is arbitrary, we have

$$
\liminf _{j \rightarrow \infty} L_{m}\left(U_{j}\right) \geq \frac{1}{2}\|\nabla U\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla V\|_{L^{2}}^{2}=2 E_{m} .
$$

This is a contradiction and thus (21) holds.
By a classical comparison argument, we can derive from (21) that

$$
U(x)+|\nabla U(x)| \leq C \exp (-c|x|) \quad \text { for all } x \in \mathbf{R}^{2} \text { and } U \in S_{m} .
$$

Thus for any $\delta>0$ there exists $R>0$ such that

$$
\int_{|x| \geq R}|\nabla U|^{2}+m U^{2} d x \leq \delta \quad \text { for all } U \in S_{m}
$$

¿From this fact we can easily derive the compactness of S_{m} in $H^{1}\left(\mathbf{R}^{2}\right)$.
Proposition 2 Suppose that (f1-3) are satisfied. There exists some $T>0$ such that for any $\delta>0$, there exists a path $\gamma^{\delta}:[0, T] \rightarrow H^{1}\left(\mathbf{R}^{N}\right)$ satisfying
(i) $\gamma^{\delta}(0)=0, L_{m}\left(\gamma^{\delta}(T)\right)<-1, \max _{t \in[0, T]} L_{m}\left(\gamma^{\delta}(t)\right)=E_{m}$;
(ii) there exists $T_{0} \in(0, T)$ such that $\gamma^{\delta}\left(T_{0}\right) \in S_{m}, L_{m}\left(\gamma^{\delta}\left(T_{0}\right)\right)=E_{m}$ and $L_{m}\left(\gamma^{\delta}(t)\right)<E_{m}$ for $\left\|\gamma^{\delta}(t)-\gamma^{\delta}\left(T_{0}\right)\right\| \geq \delta ;$
(iii) there exist $C, c>0$ such that for any $t \in[0, T]$,

$$
\left|\gamma^{\delta}(t)(x)\right|+\left|\nabla_{x} \gamma^{\delta}(t)(x)\right| d y \leq C \exp (-c|x|)
$$

Proof. For $N \geq 3$, it is easy to see from (9) that for $U \in S_{m}$, the path defined by $\gamma(t)(x)=U\left(\frac{x}{t}\right)$ satisfies the properties (i)-(iii) for any $\delta>0$. To establish the proposition we use some elements of [22, 23]. First we deal with the case $N=1$. Then S_{m} consists of one element $U \in H^{1}(\mathbf{R})$ and in addition $U(0)=t_{0}$ where $t_{0}>0$ is given in (f3) (see [23]). Let $\varepsilon_{0}>0$ and define $h: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
h(x)= \begin{cases}U(x) & : x \in[0, \infty), \\ x^{4}+U(0) & : x \in\left[-\varepsilon_{0}, 0\right], \\ \varepsilon_{0}^{4}+U(0) & : x \in\left(-\infty,-\varepsilon_{0}\right] .\end{cases}
$$

Then, from (f3), and since $U(0)=t_{0}$, we can choose $\varepsilon_{0}>0$ so that for $x \in\left[-\varepsilon_{0}, 0\right)$,
$\frac{1}{2}\left|h^{\prime}(x)\right|^{2}+\frac{m}{2}(h(x))^{2}-F(h(x))=8 x^{6}+\frac{m}{2}\left(x^{4}+U(0)\right)^{2}-F\left(x^{4}+U(0)\right)<0$.
Now defining $\gamma:(0, T] \rightarrow H^{1}(\mathbf{R})$ by

$$
\gamma(t)(x)=h(|x|-\ln t)
$$

and $\gamma(0)=0$, we see that $\gamma:[0, T] \rightarrow H^{1}(\mathbf{R})$ is continuous. It is easy to see, using (22), that for $t>1$,

$$
L_{m}(\gamma(t))=E_{m}+2 \int_{-\ln t}^{0} \frac{1}{2}\left|h^{\prime}(x)\right|^{2}+\frac{m}{2}(h(x))^{2}-F(h(x)) d x<E_{m} .
$$

Also, using (f3), we have for $t \in(0,1)$,

$$
\begin{aligned}
L_{m}(\gamma(t)) & =E_{m}-\int_{\ln t}^{-\ln t} \frac{1}{2}\left|U^{\prime}(x)\right|^{2}+\frac{m}{2}(U(x))^{2}-F(U(x)) d x \\
& <E_{m} .
\end{aligned}
$$

Finally, from (22), it follows that

$$
\begin{aligned}
& L_{m}(\gamma(t)) \\
& \leq E_{m}+2 \int_{-\ln t+\varepsilon_{0}}^{0} \frac{1}{2}\left|h^{\prime}(x)\right|^{2}+\frac{m}{2}(h(x))^{2}-F(h(x)) d x \\
& =E_{m}+2\left(\ln t-\varepsilon_{0}\right)\left(\frac{m}{2}\left(U(0)+\varepsilon_{0}\right)^{2}-F\left(U(0)+\varepsilon_{0}\right)\right) \rightarrow-\infty
\end{aligned}
$$

as $t \rightarrow \infty$. Thus, for any large $T>0$, the path $\gamma:[0, T] \rightarrow H^{1}(\mathbf{R})$ satisfies (i)-(iii) with $T_{0}=1$ and for any $\delta>0$.

We now deal with the case $N=2$. Here we use an idea developed in [22]. However for the property (ii) to hold we need to construct a path which is slightly different from the one defined in [22]. We use the notation: $h(t)=-m t+f(t), H(t)=-\frac{m}{2} t^{2}+F(t)$. For a fixed $U \in S_{m}$, we define $g(\theta, s):(0, \infty) \times(0, \infty) \rightarrow \mathbf{R}$ by

$$
g(\theta, s)=L_{m}(\theta U(\cdot / s))=\frac{\theta^{2}}{2}\|\nabla U\|_{L^{2}}^{2}-s^{2} \int_{\mathbf{R}^{2}} H(\theta u) d x .
$$

We have

$$
\begin{aligned}
g_{\theta}(\theta, s) & =\theta\|\nabla U\|_{L^{2}}^{2}-s^{2} \int_{\mathbf{R}^{2}} h(\theta U) U d x, \\
g_{s}(\theta, s) & =-2 s \int_{\mathbf{R}^{2}} H(\theta U) d x, \\
\frac{\partial}{\partial \theta} \int_{\mathbf{R}^{2}} H(\theta U) d x & =\int_{\mathbf{R}^{2}} h(\theta U) U d x .
\end{aligned}
$$

By (7) and (18), we have $\int_{\mathbf{R}^{2}} H(U) d x=0, \int_{\mathbf{R}^{2}} h(U) U d x=\|\nabla U\|_{L^{2}}^{2}>0$. Thus there exist constants $0<\theta_{1}<1<\theta_{2}$, such that

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \int_{\mathbf{R}^{2}} H(\theta U) d x>0 \quad \text { for } \theta \in\left(\theta_{1}, \theta_{2}\right) \tag{23}
\end{equation*}
$$

Thus we have

$$
\int_{\mathbf{R}^{2}} H(\theta U) d x\left\{\begin{array}{lll}
< & 0 & \text { for }\left[\theta_{1}, 1\right), \\
> & 0 & \text { for }\left(1, \theta_{2}\right]
\end{array}\right.
$$

and

$$
g_{s}(\theta, s)\left\{\begin{array}{l}
>0 \quad \text { for } \theta \in\left[\theta_{1}, 1\right), s \in(0, \infty), \tag{24}\\
=0 \quad \text { for } \theta=1, s \in(0, \infty) \\
<0
\end{array} \text { for } \theta \in\left(1, \theta_{2}\right], s \in(0, \infty) . ~ \$\right.
$$

Since $g_{\theta}(1, s)=\|\nabla U\|_{L^{2}}^{2}-s^{2} \int_{\mathbf{R}^{2}} h(U) U d x=\left(1-s^{2}\right)\|\nabla U\|_{L^{2}}^{2}$, for any $s \neq 1$ there exists $\theta_{s}>0$ such that

$$
g_{\theta}(\theta, s) \begin{cases}>0 & \text { for } s \in(0,1), \theta \in\left[1-\theta_{s}, 1+\theta_{s}\right] \tag{25}\\ <0 & \text { for } s \in(1, \infty), \theta \in\left[1-\theta_{s}, 1+\theta_{s}\right]\end{cases}
$$

We can also find a small $s_{0} \in(0,1)$ such that

$$
\begin{equation*}
g_{\theta}(\theta, s)=\theta\left(\|\nabla U\|_{L^{2}}^{2}-s^{2} \int_{\mathbf{R}^{2}} \frac{h(\theta U)}{\theta U} U^{2} d x\right)>0 \quad \text { for } s \in\left[0, s_{0}\right], \theta \in[0,1] . \tag{26}
\end{equation*}
$$

For a fixed small $\varepsilon>0$ to be precise later let $\zeta(t)=(\theta(t), s(t)):[0, \infty) \rightarrow$ $\mathbf{R}_{(\theta, s)}^{2}$ be a piece-wise linear curve joining

$$
\begin{aligned}
& \left(0, s_{0}\right) \rightarrow\left(1-\theta_{0}, s_{0}\right) \rightarrow\left(1-\theta_{0}, 1-\varepsilon\right) \\
\rightarrow & (1,1-\varepsilon) \rightarrow(1,1) \rightarrow(1,1+\varepsilon) \\
\rightarrow & \left(1+\theta_{0}, 1+\varepsilon\right) \rightarrow\left(1+\theta_{0}, \infty\right) .
\end{aligned}
$$

Here θ_{0} is chosen such that $1-\theta_{0} \in\left[\theta_{1}, 1\right)$ and $1+\theta_{0} \in\left(1, \theta_{2}\right]$. We remark that each segment is horizontal or vertical. Let $0 \equiv t_{0}<t_{1}<\cdots<t_{6}<t_{7} \equiv \infty$ be such that for each $i=0, \cdots, 7, \zeta\left(t_{i}\right)$ is an end point of a linear segment of the piece-wise linear curve ζ. We set

$$
\hat{\gamma}_{\epsilon}(t)(x)=\theta(t) U(x / s(t)) .
$$

Then we see that the function $t \mapsto L_{m}\left(\hat{\gamma}_{\epsilon}(t)\right)=g(\zeta(t))$ is strictly increasing on $\left(t_{0}, t_{1}\right),\left(t_{1}, t_{2}\right),\left(t_{2}, t_{3}\right)$ by (26), (24), (25), respectively. We also see that the function is constant on $\left(t_{3}, t_{4}\right),\left(t_{4}, t_{5}\right)$ by (24), and strictly decreasing on $\left(t_{5}, t_{6}\right),\left(t_{6}, t_{7}\right)$ by (25), (24), respectively. Lastly, we note that $L_{m}\left(\hat{\gamma}_{\varepsilon}(t)\right)=$ $\frac{1+\theta_{\varepsilon}}{2}\|\nabla U\|_{L^{2}}^{2}-s(t)^{2} \int_{\mathbf{R}^{2}} H\left(\left(1+\theta_{\varepsilon}\right) U\right) d x \rightarrow-\infty$ as $t \rightarrow \infty$.

Thus for a given $\delta>0$ choosing $\varepsilon=\varepsilon(\delta)>0$ so that

$$
\|U(x / s)-U(x)\|<\delta \quad \text { for }|s| \leq \varepsilon
$$

we see $\gamma^{\delta}(t)=\hat{\gamma}_{\varepsilon(\delta)}(t):[0, T] \rightarrow H^{1}\left(\mathbf{R}^{2}\right)$ satisfies the properties (i)-(iii). This ends the proof of Proposition 2.

3 Proof of Theorem 1.

The variational framework follows the one of [6]. Let $\widetilde{m}>0$ be a number such that

$$
\begin{equation*}
\widetilde{m}<\min \left\{m, \liminf _{|x| \rightarrow \infty} V(x)\right\} \tag{27}
\end{equation*}
$$

and we define $\tilde{V}_{\varepsilon}(x) \equiv \max \left\{\widetilde{m}, V_{\varepsilon}(x)\right\}$. Let H_{ε} be the completion of $C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ with respect to the norm

$$
\|u\|_{\varepsilon}=\left(\int_{\mathbf{R}^{N}}|\nabla u|^{2}+\tilde{V}_{\varepsilon} u^{2} d x\right)^{1 / 2}
$$

We also denote by $\|\cdot\|_{\varepsilon}^{*}$ the corresponding dual norm on H_{ε}^{*}, that is,

$$
\|f\|_{\varepsilon}^{*}=\sup _{\|\varphi\|_{\varepsilon} \leq 1, \varphi \in H_{\varepsilon}}|\langle f, \varphi\rangle| \quad \text { for } f \in H_{\varepsilon}^{*} \text {. }
$$

We define a norm $\|\cdot\|$ on $H^{1}\left(\mathbf{R}^{N}\right)$ by

$$
\|u\|=\left(\int_{\mathbf{R}^{N}}|\nabla u|^{2}+\widetilde{m} u^{2} d x\right)^{1 / 2} .
$$

We clearly have $H_{\varepsilon} \subset H^{1}\left(\mathbf{R}^{N}\right)$. From now on, for any set $B \subset \mathbf{R}^{N}$ and $\varepsilon>0$, we define $B_{\varepsilon} \equiv\left\{x \in \mathbf{R}^{N} \mid \varepsilon x \in B\right\}$. For $u \in H_{\varepsilon}$, let

$$
\begin{equation*}
P_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla u|^{2}+V_{\varepsilon} u^{2} d x-\int_{\mathbf{R}^{N}} F(u) d x . \tag{28}
\end{equation*}
$$

Since we are concerned with positive solutions, we may assume without loss of generality that $f(t)=0$ for all $t \leq 0$. For $\nu>0$, we define

$$
\chi_{\varepsilon}(x)= \begin{cases}0 & \text { if } x \in O_{\varepsilon} \\ \varepsilon^{-\nu} & \text { if } x \notin O_{\varepsilon}\end{cases}
$$

and

$$
\begin{equation*}
Q_{\varepsilon}(u)=\left(\int_{\mathbf{R}^{N}} \chi_{\varepsilon} u^{2} d x-1\right)_{+}^{2} \tag{29}
\end{equation*}
$$

We take $\nu=6 / \mu$ if $\mathcal{Z} \neq \emptyset$, and any $\nu>0$ if $\mathcal{Z}=\emptyset$. The functional Q_{ε} will act as a penalization to force the concentration phenomena to occur inside O . This type of penalization was first introduced in [9]. Finally let $\Gamma_{\varepsilon}: H_{\varepsilon} \rightarrow \mathbf{R}$ be given by

$$
\begin{equation*}
\Gamma_{\varepsilon}(u)=P_{\varepsilon}(u)+Q_{\varepsilon}(u) \tag{30}
\end{equation*}
$$

It is standard to see that $\Gamma_{\varepsilon} \in C^{1}\left(H_{\varepsilon}\right)$. Clearly a critical point of P_{ε} corresponds to a solution of (6). To find solutions of (6) which concentrate in O as $\varepsilon \rightarrow 0$, we shall search critical points of Γ_{ε} for which Q_{ε} is zero. As we shall see the functional Γ_{ε} enjoys a mountain pass geometry for any $\varepsilon>0$ small.

For any set $B \subset \mathbf{R}^{N}$ and $\delta>0$, we define $B^{\delta} \equiv\left\{x \in \mathbf{R}^{N} \mid \operatorname{dist}(x, B) \leq \delta\right\}$. Let $10 \beta=\operatorname{dist}\left(\mathcal{M}, \mathbf{R}^{N} \backslash O\right)$ and fix a cutoff function $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ such that $0 \leq \varphi \leq 1, \varphi(x)=1$ for $|x| \leq \beta$ and $\varphi(x)=0$ for $|x| \geq 2 \beta$. Also, define $\varphi_{\varepsilon}(y)=\varphi(\varepsilon y), y \in \mathbf{R}^{N}$.

Without loss of generality we may assume that $0 \in \mathcal{M}$. We shall find a solution near the set

$$
X_{\varepsilon}=\left\{\left.\varphi_{\varepsilon}\left(y-\frac{x}{\varepsilon}\right) U\left(y-\frac{x}{\varepsilon}\right) \right\rvert\, x \in \mathcal{M}^{\beta}, U \in S_{m}\right\}
$$

for sufficiently small $\varepsilon>0$. For the curve γ^{δ} constructed in Proposition 2, we define

$$
\begin{equation*}
\gamma_{\varepsilon}^{\delta}(t)(x)=\varphi_{\varepsilon}(x) \gamma^{\delta}(t)(x) \tag{31}
\end{equation*}
$$

We see that $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)=P_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)$ for $t \in[0, T]$ and $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(0)\right)=0$. Finally we define

$$
\begin{equation*}
C_{\varepsilon}=\inf _{\gamma \in \Phi_{\varepsilon}} \max _{s \in[0,1]} \Gamma_{\varepsilon}(\gamma(s)) \tag{32}
\end{equation*}
$$

where $\Phi_{\varepsilon}=\left\{\gamma \in C\left([0,1], H_{\varepsilon}\right) \mid \gamma(0)=0, \gamma(1)=\gamma_{\varepsilon}^{\delta}(T)\right\}$. We easily check that $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(T)\right)<0$ for any sufficiently small $\varepsilon>0$.

Proposition 3

$$
\limsup _{\varepsilon \rightarrow 0} C_{\varepsilon} \leq E_{m} .
$$

Proof. Obviously, we see that

$$
C_{\varepsilon} \leq \max _{s \in[0, T]} \Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(s)\right) .
$$

Note that V_{ε} converges uniformly to m on each bounded set. Thus, from the properties (ii), (iii) of γ^{δ} in Proposition 2, we see that

$$
\lim _{\varepsilon \rightarrow 0} \max _{s \in[0, T]} \Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(s)\right) \leq E_{m} .
$$

This completes the proof.

Proposition 4

$$
\liminf _{\varepsilon \rightarrow 0} C_{\varepsilon} \geq E_{m}
$$

Proof. This was proved in [6, Proposition 3]. In fact, the proof in [6] does not depend on the space dimension and holds also for the case $V_{0} \equiv$ $\inf _{x \in \mathbf{R}^{N}} V(x)=0$.

We denote

$$
\begin{equation*}
D_{\varepsilon}^{\delta}=\max _{s \in[0, T]} \Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(s)\right) . \tag{33}
\end{equation*}
$$

By the argument in Propositions 3 and 4, we have

$$
\begin{equation*}
C_{\varepsilon} \leq D_{\varepsilon}^{\delta} \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0} C_{\varepsilon}=\lim _{\varepsilon \rightarrow 0} D_{\varepsilon}^{\delta}=E_{m} . \tag{34}
\end{equation*}
$$

Now we define

$$
\Gamma_{\varepsilon}^{\alpha}=\left\{u \in H_{\varepsilon} \mid \Gamma_{\varepsilon}(u) \leq \alpha\right\} \quad \text { for } \alpha \in \mathbf{R}
$$

and

$$
X_{\varepsilon}^{d}=\left\{u \in H_{\varepsilon} \mid \inf _{v \in X_{\varepsilon}}\|u-v\|_{\varepsilon} \leq d\right\} \quad \text { for } d>0
$$

Proposition 5 There exists a small $d_{0}>0$ such that for any $\left\{\varepsilon_{i}\right\}$ and $\left\{u_{\varepsilon_{i}}\right\}$ satisfying

$$
\begin{aligned}
u_{\varepsilon_{i}} & \in X_{\varepsilon_{i}}^{d_{0}}, \\
\lim _{i \rightarrow \infty} \varepsilon_{i} & =0, \\
\lim _{i \rightarrow \infty} \Gamma_{\varepsilon_{i}}\left(u_{\varepsilon_{i}}\right) & \leq E_{m}, \\
\lim _{i \rightarrow \infty}\left\|\Gamma_{\varepsilon_{i}}^{\prime}\left(u_{\varepsilon_{i}}\right)\right\|_{\varepsilon_{i}}^{*} & =0,
\end{aligned}
$$

there exists, up to a subsequence, $\left\{y_{i}\right\} \subset \mathbf{R}^{N}, x \in \mathcal{M}, U \in S_{m}$ such that

$$
\lim _{i \rightarrow \infty}\left|\varepsilon_{i} y_{i}-x\right|=0 \text { and } \lim _{i \rightarrow \infty}\left\|u_{\varepsilon_{i}}-\varphi_{\varepsilon_{i}}\left(\cdot-y_{i}\right) U\left(\cdot-y_{i}\right)\right\|_{\varepsilon_{i}}=0
$$

Proof. For notational convenience, we write ε for ε_{i}. Assume that $\left\{\varepsilon_{i}\right\}$ and $\left\{u_{\varepsilon_{i}}\right\} \subset X_{\varepsilon_{i}}^{d_{0}}$ satisfy the conditions in the statement of Proposition 5 (we will choose $d_{0}>0$ later sufficiently small).

By compactness of S_{m} and \mathcal{M}^{β}, there exist $Z \in S_{m}$ and $x \in \mathcal{M}^{\beta}$ such that

$$
\begin{equation*}
\left\|u_{\varepsilon}-\varphi_{\varepsilon}(\cdot-x / \varepsilon) Z(\cdot-x / \varepsilon)\right\|_{\varepsilon} \leq 2 d_{0} \tag{35}
\end{equation*}
$$

for small $\varepsilon>0$. The proof of Proposition 5 consists of several steps.
Step 1: For any $R>0$ we have

$$
\left.\lim _{\varepsilon \rightarrow 0} \sup _{z \in A\left(\frac{x}{\varepsilon} ; \frac{\beta}{2},\right.} ; \frac{3 B}{\varepsilon}\right), ~ \int_{B(z, R)}\left|u_{\varepsilon}\right|^{2} d y=0
$$

Here we use the notation:

$$
A\left(x ; r_{1}, r_{2}\right)=\left\{y \in \mathbf{R}^{N}\left|r_{1} \leq|y-x| \leq r_{2}\right\} \quad \text { for } x \in \mathbf{R}^{N} \text { and } 0<r_{1}<r_{2} .\right.
$$

Indeed, suppose by contradiction that there exist $R>0$ and a sequence $\left\{x_{\varepsilon}\right\}$ $\subset A\left(\frac{x}{\varepsilon} ; \frac{\beta}{2 \varepsilon}, \frac{3 \beta}{\varepsilon}\right)$ satisfying $\liminf _{\varepsilon \rightarrow 0} \int_{B\left(x_{\varepsilon}, R\right)}\left|u_{\varepsilon}\right|^{2} d y>0$. Taking a subsequence, we can assume that $\varepsilon x_{\varepsilon} \rightarrow x_{0}$ with $x_{0} \in A\left(x ; \frac{\beta}{2}, 3 \beta\right)$ and that $u_{\varepsilon}\left(\cdot+x_{\varepsilon}\right) \rightarrow \tilde{W}$ weakly in $H^{1}\left(\mathbf{R}^{N}\right)$ for some $\tilde{W} \in H^{1}\left(\mathbf{R}^{N}\right) \backslash\{0\}$. Moreover \tilde{W} satisfies

$$
\Delta \tilde{W}-V\left(x_{0}\right) \tilde{W}+f(\tilde{W})=0 \text { for } y \in \mathbf{R}^{N}
$$

By definition, $L_{V\left(x_{0}\right)}(\tilde{W}) \geq E_{V\left(x_{0}\right)}$. Also, for large $R>0$

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{B\left(x_{\varepsilon}, R\right)}\left|\nabla u_{\varepsilon}\right|^{2} d y \geq \frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla \tilde{W}|^{2} d y . \tag{36}
\end{equation*}
$$

Now, recalling from [22] that $E_{a}>E_{b}$ if $a>b$, we see that $E_{V\left(x_{0}\right)} \geq E_{m}$, since $V\left(x_{0}\right) \geq m$. Also, from (8), (9) we see that $\int_{\mathbf{R}^{N}}|\nabla \tilde{W}|^{2} d y=N L_{V\left(x_{0}\right)}(\tilde{W})$. Thus we get that

$$
\liminf _{\varepsilon \rightarrow 0} \int_{B\left(x_{\varepsilon}, R\right)}\left|\nabla u_{\varepsilon}\right|^{2} d y \geq \frac{N}{2} L_{V\left(x_{0}\right)}(\tilde{W}) \geq \frac{N}{2} E_{m}>0
$$

Then, taking $d_{0}>0$ sufficiently small, we get a contradiction with (35).
Step 2: Let $u_{\varepsilon}^{1}=\varphi_{\varepsilon}(\cdot-x / \varepsilon) u_{\varepsilon}$ and $u_{\varepsilon}^{2}=u_{\varepsilon}-u_{\varepsilon}^{1}$. Then

$$
\begin{equation*}
\Gamma_{\varepsilon}\left(u_{\varepsilon}\right) \geq \Gamma_{\varepsilon}\left(u_{\varepsilon}^{1}\right)+\Gamma_{\varepsilon}\left(u_{\varepsilon}^{2}\right)+o(1) . \tag{37}
\end{equation*}
$$

We have

$$
\begin{aligned}
\Gamma_{\varepsilon}\left(u_{\varepsilon}\right) & \\
= & \Gamma_{\varepsilon}\left(u_{\varepsilon}^{1}\right)+\Gamma_{\varepsilon}\left(u_{\varepsilon}^{2}\right)+\int_{\mathbf{R}^{N}} \varphi_{\varepsilon}\left(1-\varphi_{\varepsilon}\right)\left|\nabla u_{\varepsilon}\right|^{2}+V_{\varepsilon} \varphi_{\varepsilon}\left(1-\varphi_{\varepsilon}\right)\left|u_{\varepsilon}\right|^{2} d y \\
& -\int_{\mathbf{R}^{N}} F\left(u_{\varepsilon}\right)-F\left(u_{\varepsilon}^{1}\right)-F\left(u_{\varepsilon}^{2}\right) d y+o(1) \\
\geq & \Gamma_{\varepsilon}\left(u_{\varepsilon}^{1}\right)+\Gamma_{\varepsilon}\left(u_{\varepsilon}^{2}\right)-\int_{\mathbf{R}^{N}} F\left(u_{\varepsilon}\right)-F\left(u_{\varepsilon}^{1}\right)-F\left(u_{\varepsilon}^{2}\right) d y+o(1) .
\end{aligned}
$$

Now

$$
\left|\int_{\mathbf{R}^{N}} F\left(u_{\varepsilon}\right)-F\left(u_{\varepsilon}^{1}\right)-F\left(u_{\varepsilon}^{2}\right) d y\right| \leq \int_{A\left(\frac{x}{\varepsilon} ; \frac{\beta}{\varepsilon}, \frac{2 \beta}{\varepsilon}\right)}\left|F\left(u_{\varepsilon}\right)\right|+\left|F\left(u_{\varepsilon}^{1}\right)\right|+\left|F\left(u_{\varepsilon}^{2}\right)\right| d y
$$

We choose a cutoff function $\psi(x) \in C^{\infty}\left(\mathbf{R}^{N}, \mathbf{R}\right)$ such that $\psi(x)=1$ for $\beta \leq|x| \leq 2 \beta$ and $\psi(x)=0$ for $|x| \geq 3 \beta,|x| \leq \beta / 2$. Setting $w_{\varepsilon}(y)=$ $\psi(\varepsilon y-x) u_{\varepsilon}(y)$ and applying to w_{ε} Lemma 1 when $N=2$ and Remark 1 (i) when $N=1$, it follows from Step 1 that

$$
\int_{A\left(\frac{x}{\varepsilon} ; \frac{\beta}{\varepsilon}, \frac{2 \beta}{\varepsilon}\right)}\left|F\left(u_{\varepsilon}\right)\right| d y \leq \int_{\mathbf{R}^{N}}\left|F\left(w_{\varepsilon}\right)\right| d y \rightarrow 0 .
$$

In a similar way, it follows that

$$
\int_{A\left(\frac{x}{\varepsilon} ; \frac{\beta}{\varepsilon}, \frac{2 \beta}{\varepsilon}\right)}\left|F\left(u_{\varepsilon}^{1}\right)\right| d y \rightarrow 0 \quad \text { and } \quad \int_{A\left(\frac{x}{\varepsilon} ; \frac{\beta}{\varepsilon}, \frac{2 \beta}{\varepsilon}\right)}\left|F\left(u_{\varepsilon}^{2}\right)\right| d y \rightarrow 0 .
$$

Thus (37) is established.

Step 3: For small $d_{0}>0$,

$$
\Gamma_{\varepsilon}\left(u_{\varepsilon}^{2}\right) \geq \frac{1}{4}\left\|u_{\varepsilon}^{2}\right\|_{\varepsilon}^{2}+o(1) .
$$

We have

$$
\begin{align*}
\Gamma_{\varepsilon}\left(u_{\varepsilon}^{2}\right) \geq & P_{\varepsilon}\left(u_{\varepsilon}^{2}\right) \\
= & \frac{1}{2} \int_{\mathbf{R}^{N}}\left|\nabla u_{\varepsilon}^{2}\right|^{2}+\tilde{V}_{\varepsilon}\left|u_{\varepsilon}^{2}\right|^{2} d y-\frac{1}{2} \int_{\mathbf{R}^{N}}\left(\tilde{V}_{\varepsilon}-V_{\varepsilon}\right)\left|u_{\varepsilon}^{2}\right|^{2} d y \\
& -\int_{\mathbf{R}^{N}} F\left(u_{\varepsilon}^{2}\right) d y \\
\geq & \frac{1}{2}\left|\left|u_{\varepsilon}^{2} \|_{\varepsilon}^{2}-\frac{m}{2} \int_{\mathbf{R}^{N} \backslash O_{\varepsilon}}\right| u_{\varepsilon}^{2}\right|^{2} d y-\int_{\mathbf{R}^{N}} F\left(u_{\varepsilon}^{2}\right) d y . \tag{38}
\end{align*}
$$

Here we use the fact that $\tilde{V}_{\varepsilon}-V_{\varepsilon}=0$ on O_{ε} and $\left|\tilde{V}_{\varepsilon}-V_{\varepsilon}\right| \leq \widetilde{m}$ on $\mathbf{R}^{N} \backslash O_{\varepsilon}$. Note that P_{ε} is uniformly bounded in $X_{\varepsilon}^{d_{0}}$. Thus so is Q_{ε}, which implies that

$$
\begin{equation*}
\int_{\mathbf{R}^{N} \backslash O_{\varepsilon}}\left|u_{\varepsilon}^{2}\right|^{2} d y \leq C \varepsilon^{\nu} . \tag{39}
\end{equation*}
$$

Now, by Remark 1 (ii), we know that there exists $C_{\rho}>0$ satisfying $C_{\rho} \rightarrow 0$ as $\rho \rightarrow 0$ such that

$$
\int_{\mathbf{R}^{N}} F(u) d y \leq C_{\rho}\|u\|^{2} \leq C_{\rho}\|u\|_{\varepsilon}^{2} \quad \text { for all }\|u\| \leq \rho
$$

Also it follows from $u_{\varepsilon} \in X_{\varepsilon}^{d_{0}}$ that

$$
\left\|u_{\varepsilon}^{2}\right\|_{\varepsilon} \leq 2 d_{0} \quad \text { for } \varepsilon>0 \text { small. }
$$

Thus, choosing $d_{0}>0$ small, we have

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} F\left(u_{\varepsilon}^{2}\right) d y \leq \frac{1}{4}\left\|u_{\varepsilon}^{2}\right\|_{\varepsilon}^{2} \quad \text { for small } \varepsilon>0 \tag{40}
\end{equation*}
$$

The conclusion of Step 3 follows from (38)-(40).
Step 4: $\lim _{\varepsilon \rightarrow 0} \Gamma_{\varepsilon}\left(u_{\varepsilon}^{1}\right) \geq E_{m}$.
Let $W_{\varepsilon}(y)=u_{\varepsilon}^{1}(y+x / \varepsilon)$. After extracting a subsequence, we may assume that $W_{\varepsilon} \rightarrow W$ weakly in $H^{1}\left(\mathbf{R}^{N}\right)$ for some $W \in H^{1}\left(\mathbf{R}^{N}\right) \backslash\{0\}$. Moreover

$$
-\Delta W+V(x) W=f(W) \quad \text { in } \mathbf{R}^{N}
$$

Here we need to consider two cases
Case 1:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup _{z \in \mathbf{R}^{N}} \int_{B(z, 1)}\left|W_{\varepsilon}(y)-W(y)\right|^{2} d y=0 \tag{41}
\end{equation*}
$$

Case 2:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup _{z \in \mathbf{R}^{N}} \int_{B(z, 1)}\left|W_{\varepsilon}(y)-W(y)\right|^{2} d y>0 \tag{42}
\end{equation*}
$$

If Case 1 occurs, we have

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} F\left(W_{\varepsilon}\right) d y \rightarrow \int_{\mathbf{R}^{N}} F(W) d y \tag{43}
\end{equation*}
$$

Indeed, we remark that

$$
F(t)-F(w)=\int_{w}^{t} f(s) d s=(t-w) f(\theta t+(1-\theta) w)
$$

Setting $g(t)=\max _{s \in[0, t]}|f(s)|$ and $g_{\delta}(t)=(g(t)-\delta t)_{+}$for any given $\delta>0$, we have

$$
\begin{aligned}
|F(t)-F(w)| & \leq|t-w|(g(t)+g(w)) \\
& \leq|t-w|\left(\delta(|t|+|w|)+g_{\delta}(t)+g_{\delta}(w)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{\mathbf{R}^{N}}\left|F\left(W_{\varepsilon}\right)-F(W)\right| d y \\
\leq & \int_{\mathbf{R}^{N}}\left|W_{\varepsilon}-W\right|\left(\delta\left(\left|W_{\varepsilon}\right|+|W|\right)+g_{\delta}\left(u_{\varepsilon}^{1}\right)+g_{\delta}(W)\right) d y \\
\leq & \delta\left|\mid W_{\varepsilon}-W \|_{L^{2}}\left(\left\|W_{\varepsilon}\right\|_{L^{2}}+\|W\|_{L^{2}}\right)\right. \\
& +\left\|W_{\varepsilon}-W\right\|_{L^{4}}\left(\left(\int_{\mathbf{R}^{N}} g_{\delta}\left(W_{\varepsilon}\right)^{4 / 3} d y\right)^{3 / 4}+\left(\int_{\mathbf{R}^{N}} g_{\delta}(W)^{4 / 3} d y\right)^{3 / 4}\right) .
\end{aligned}
$$

Now (41) implies $\left\|W_{\varepsilon}-W\right\|_{L^{4}} \rightarrow 0$ and $g_{\delta}(t)^{4 / 3}$ satisfies (10) when $N=1$ and (10)-(11) when $N=2$. Thus,
$\limsup _{\varepsilon \rightarrow 0} \int_{\mathbf{R}^{N}}\left|F\left(W_{\varepsilon}\right)-F(W)\right| d y \leq \delta \limsup _{\varepsilon \rightarrow 0}\left\|W_{\varepsilon}-W\right\|_{L^{2}}\left(\left\|W_{\varepsilon}\right\|_{L^{2}}+\|W\|_{L^{2}}\right)$
and since $\delta>0$ is arbitrary, (43) hold. Now by (43), we have for any $R>0$

$$
\begin{aligned}
& \liminf _{\varepsilon \rightarrow 0} \Gamma_{\varepsilon}\left(u_{\varepsilon}^{1}\right) \\
& \geq \liminf _{\varepsilon \rightarrow 0} P_{\varepsilon}\left(u_{\varepsilon}^{1}\right) \\
& \geq \liminf _{\varepsilon \rightarrow 0}\left[\frac{1}{2} \int_{|y| \leq R}\left|\nabla W_{\varepsilon}\right|^{2}+V(\varepsilon y+x) W_{\varepsilon}^{2} d y-\int_{\mathbf{R}^{N}} F\left(W_{\varepsilon}\right) d y\right] \\
& \geq \frac{1}{2} \int_{|y| \leq R}|\nabla W|^{2}+V(x) W^{2} d y-\int_{\mathbf{R}^{N}} F(W) d y .
\end{aligned}
$$

Thus since $R>0$ is arbitrary, we have

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \Gamma_{\varepsilon}\left(u_{\varepsilon}^{1}\right) \geq \frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla W|^{2}+V(x) W^{2} d y-\int_{\mathbf{R}^{N}} F(W) d y \geq E_{m} \tag{44}
\end{equation*}
$$

Next we show that Case 2 does not take place. Arguing indirectly, we assume that there exists $\left\{z_{\varepsilon}\right\} \subset \mathbf{R}^{N}$ such that

$$
\lim _{\varepsilon \rightarrow 0} \int_{B\left(z_{\varepsilon}, 1\right)}\left|W_{\varepsilon}(y)-W(y)\right|^{2} d y>0
$$

Since $W_{\varepsilon}(y) \rightarrow W(y)$ weakly in $H^{1}\left(\mathbf{R}^{N}\right)$, we have

$$
\begin{equation*}
\left|z_{\varepsilon}\right| \rightarrow \infty . \tag{45}
\end{equation*}
$$

Thus we have $\int_{B\left(z_{\varepsilon}, 1\right)}|W(y)|^{2} d y \rightarrow 0$ and

$$
\lim _{\varepsilon \rightarrow 0} \int_{B\left(z_{\varepsilon}, 1\right)}\left|u_{\varepsilon}^{1}\left(y+\frac{x}{\varepsilon}\right)\right|^{2} d y>0
$$

Since $u_{\varepsilon}^{1}(y+x / \varepsilon)=\varphi_{\varepsilon}(y) u_{\varepsilon}(y+x / \varepsilon)$, it is also clear that $\left|z_{\varepsilon}\right| \leq \frac{3 \beta}{\varepsilon}$. Thus, by Step 1 , we have $\left|z_{\varepsilon}\right| \leq \frac{2}{3} \frac{\beta}{\varepsilon}$ for sufficiently small $\varepsilon>0$. Extracting a subsequence, we may assume that

$$
\begin{align*}
\varepsilon z_{\varepsilon} & \rightarrow z_{0} \in \overline{B(x, 2 \beta / 3)} \subset O \tag{46}\\
u_{\varepsilon}^{1}\left(y+z_{\varepsilon}+x / \varepsilon\right) & \rightarrow \tilde{W}(y) \not \equiv 0 \quad \text { weakly in } H^{1}\left(\mathbf{R}^{N}\right) .
\end{align*}
$$

For any $R>0$ it follows from (46) that $u_{\varepsilon}^{1}\left(y+z_{\varepsilon}+\frac{x}{\varepsilon}\right)=u_{\varepsilon}\left(y+z_{\varepsilon}+\frac{x}{\varepsilon}\right)$ in $B(0, R)$ for sufficiently small $\varepsilon>0$. Thus it follows from $\left\|\Gamma_{\varepsilon}^{\prime}\left(u_{\varepsilon}\right)\right\|_{\varepsilon}^{*} \rightarrow 0$ that

$$
-\Delta \tilde{W}+V\left(z_{0}+x\right) \tilde{W}=f(\tilde{W}) \quad \text { in } \mathbf{R}^{N}
$$

Now there exists $C>0$ independent of z_{0} and \tilde{W} such that $\|\tilde{W}\| \geq C$. Thus, because of (45), we get a contradiction with (35) if $d_{0}>0$ is sufficiently small. Thus Case 1 takes place and the conclusion of Step 4 holds.
Step 5: Conclusion
By the assumption $\lim _{\varepsilon \rightarrow 0} \Gamma_{\varepsilon}\left(u_{\varepsilon}\right) \leq E_{m}$, Steps $2-4$ show that $\left\|u_{\varepsilon}^{2}\right\|_{\varepsilon} \rightarrow 0$. By the argument in Step 4, in particular (43)-(44), we can see that $u_{\varepsilon}^{1}\left(y+\frac{x}{\varepsilon}\right) \rightarrow$ $W(y)$ strongly in $H^{1}\left(\mathbf{R}^{N}\right)$. We can also see that $x \in \mathcal{M}$ and $W(y)=$ $U(y-z)$ for some $U \in S_{m}$ and $z \in \mathbf{R}^{N}$. Setting $y_{\varepsilon}=\frac{x}{\varepsilon}+z$, we have $\left\|u_{\varepsilon}^{1}-\varphi\left(\cdot-y_{\varepsilon}\right) U\left(\cdot-y_{\varepsilon}\right)\right\|_{\varepsilon} \rightarrow 0$ and the proof is completed.

As a corollary to Proposition 5 we have
Proposition 6 Let $d_{0}>0$ be the number given in Proposition 5. Then for any $d \in\left(0, d_{0}\right)$ there exist $\varepsilon_{d}>0, \rho_{d}>0$ and $\omega_{d}>0$ such that

$$
\left\|\Gamma_{\varepsilon}^{\prime}(u)\right\|_{\varepsilon}^{*} \geq \omega_{d}
$$

for all $\varepsilon \in\left(0, \varepsilon_{d}\right)$ and $u \in \Gamma_{\varepsilon}^{E_{m}+\rho_{d}} \cap\left(X_{\varepsilon}^{d_{0}} \backslash X_{\varepsilon}^{d}\right)$.
Proof. We argue indirectly and suppose that for some $d \in\left(0, d_{0}\right)$ there exist sequences $\left\{\varepsilon_{n}\right\} \subset(0,1 / n)$ and $\left\{u_{n}\right\} \subset \Gamma_{\varepsilon_{n}}^{E_{m}+1 / n} \cap\left(X_{\varepsilon}^{d_{0}} \backslash X_{\varepsilon}^{d}\right)$ such that

$$
\left\|\Gamma_{\varepsilon_{n}}^{\prime}\left(u_{n}\right)\right\|_{\varepsilon_{n}}^{*}<\frac{1}{n}
$$

By Proposition 5 , there exists $\left\{y_{n}\right\} \subset \mathbf{R}^{N}, U \in S_{m}$ and $x \in \mathcal{M}$ such that

$$
\varepsilon_{n} y_{n} \rightarrow x \quad \text { and } \quad\left\|u_{\varepsilon_{n}}-\varphi_{\varepsilon_{n}}\left(\cdot-y_{n}\right) U\left(\cdot-y_{n}\right)\right\|_{\varepsilon_{n}} \rightarrow 0
$$

Thus by the definition of $X_{\varepsilon_{n}}$, we have $u_{\varepsilon_{n}} \in X_{\varepsilon_{n}}^{d}$ for sufficiently large n, which is a contradition to $u_{n} \in X_{\varepsilon}^{d_{0}} \backslash X_{\varepsilon}^{d}$.

We recall the definition (31) of $\gamma_{\varepsilon}^{\delta}(t)$. The following proposition follows from Proposition 2.

Proposition 7 There exists $M_{0}>0$ independent of $\delta>0$ with the following property: for any $\delta>0$ there exist $\alpha_{\delta}>0$ and $\bar{\varepsilon}_{\delta} \in(0,1]$ such that for $\varepsilon \in\left(0, \bar{\varepsilon}_{\delta}\right]$

$$
\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right) \geq E_{m}-\alpha_{\delta} \quad \text { implies } \quad \gamma_{\varepsilon}^{\delta}(t) \in X_{\varepsilon}^{M_{0} \delta}
$$

Proof. First we remark that there exists $M_{0}>0$ independent of $\varepsilon \in(0,1]$ such that

$$
\begin{equation*}
\left\|\varphi_{\varepsilon} v\right\|_{\varepsilon} \leq M_{0}\|v\| \quad \text { for all } \varepsilon \in(0,1] \text { and } v \in H_{\varepsilon} . \tag{47}
\end{equation*}
$$

By Proposition 2, there exists $\alpha_{\delta}>0$ such that

$$
\begin{equation*}
L_{m}\left(\gamma^{\delta}(t)\right) \geq E_{m}-2 \alpha_{\delta} \quad \text { implies } \quad\left\|\gamma^{\delta}(t)-\gamma^{\delta}\left(T_{0}\right)\right\| \leq \delta \tag{48}
\end{equation*}
$$

We also remark that $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)=P_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)$ and

$$
\sup _{t \in[0, T]}\left|\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)-L_{m}\left(\gamma^{\delta}(t)\right)\right|=\sup _{t \in[0, T]}\left|P_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)-L_{m}\left(\gamma^{\delta}(t)\right)\right| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Thus there exists $\bar{\varepsilon}_{\delta}>0$ such that

$$
\begin{equation*}
\sup _{t \in[0, T]}\left|\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)-L_{m}\left(\gamma^{\delta}(t)\right)\right| \leq \alpha_{\delta} \quad \text { for } \varepsilon \in\left(0, \bar{\varepsilon}_{\delta}\right] . \tag{49}
\end{equation*}
$$

For $\varepsilon \in\left(0, \bar{\varepsilon}_{\delta}\right]$, by (49), $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right) \geq E_{m}-\alpha_{\delta}$ implies

$$
L_{m}\left(\gamma^{\delta}(t)\right) \geq \Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)-\left|\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right)-L_{m}\left(\gamma^{\delta}(t)\right)\right| \geq E_{m}-2 \alpha_{\delta}
$$

and thus, by (48), we have $\left\|\gamma^{\delta}(t)-\gamma^{\delta}\left(T_{0}\right)\right\| \leq \delta$. Therefore by (47),

$$
\begin{aligned}
\left\|\gamma_{\varepsilon}^{\delta}(t)-\varphi_{\varepsilon} \gamma^{\delta}\left(T_{0}\right)\right\|_{\varepsilon} & =\left\|\varphi_{\varepsilon}\left(\gamma^{\delta}(t)-\gamma^{\delta}\left(T_{0}\right)\right)\right\|_{\varepsilon} \leq M_{0}\left\|\gamma^{\delta}(t)-\gamma^{\delta}\left(T_{0}\right)\right\| \\
& \leq M_{0} \delta
\end{aligned}
$$

Recording that, $\gamma^{\delta}\left(T_{0}\right) \in S_{m}$, we have $\gamma_{\varepsilon}^{\delta}(t) \in X_{\varepsilon}^{M_{0} \delta}$. Thus $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta}(t)\right) \geq$ $E_{m}-\alpha_{\delta}$ implies $\gamma_{\varepsilon}^{\delta}(t) \in X_{\varepsilon}^{M_{0} \delta}$ and this completes the proof.

Now we take $d_{1} \in\left(0, \frac{1}{3} d_{0}\right)$ such that

$$
\begin{equation*}
L_{\widetilde{m}}(u) \geq 0 \quad \text { for all }\|u\| \leq 3 d_{1} . \tag{50}
\end{equation*}
$$

By Proposition 6, there exist numbers $\varepsilon_{1}, \rho_{1}, \omega_{1}>0$ such that

$$
\inf _{u \in \Gamma_{\varepsilon}^{E_{m}+\rho_{1}} \cap\left(X_{\varepsilon}^{d_{0}} \backslash X_{\varepsilon}^{d_{1}}\right)}\left\|\Gamma_{\varepsilon}^{\prime}(u)\right\|_{\varepsilon}^{*} \geq \omega_{1} \quad \text { for } \varepsilon \in\left(0, \varepsilon_{1}\right) .
$$

Set $\delta_{1}=d_{1} / M_{0}$ and let $D_{\varepsilon}^{\delta_{1}}$ be the number defined in (33). We have the following

Proposition 8 For sufficiently small $\varepsilon>0$,

$$
\inf _{u \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{d_{1}}}\left\|\Gamma_{\varepsilon}^{\prime}(u)\right\|_{\varepsilon}^{*}=0 .
$$

Proof. By Proposition 7, there exists $\alpha_{d_{1}}>0$ such that for small $\varepsilon>0$

$$
\begin{equation*}
\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta_{1}}(t)\right) \geq E_{m}-\alpha_{d_{1}} \quad \text { implies } \quad \gamma_{\varepsilon}^{\delta_{1}}(t) \in X_{\varepsilon}^{M_{0} \delta_{1}} \subset X_{\varepsilon}^{d_{1}} . \tag{51}
\end{equation*}
$$

By (34) for small $\varepsilon>0$

$$
\begin{align*}
D_{\varepsilon}^{\delta_{1}} & \leq E_{m}+\min \left\{\rho_{1}, \frac{1}{12} \omega_{1} d_{0}\right\} \tag{52}\\
C_{\varepsilon} & \geq E_{m}-\frac{1}{2} \min \left\{\alpha_{\delta_{1}}, \frac{1}{12} \omega_{1} d_{0}\right\} . \tag{53}
\end{align*}
$$

Here C_{ε} is the minimax value given in (32).
Arguing indirectly, we assume that

$$
a(\varepsilon) \equiv \inf _{\substack{\delta_{i}^{\delta_{1}} \\ u \in \Gamma_{\varepsilon}^{D_{1}} \cap X_{\varepsilon}^{d_{1}}}}\left\|\Gamma_{\varepsilon}^{\prime}(u)\right\|_{\varepsilon}>0 .
$$

Then, we can construct a deformation flow $\eta:[0, \infty) \times \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \rightarrow \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}}$ such that
(i) $\eta(s, u)=u$ if $s=0$ or $u \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \backslash X_{\varepsilon}^{d_{0}}$.
(ii) $\left\|\frac{d}{d s} \eta(s, u)\right\|_{\varepsilon} \leq 1$ for all (s, u).
(iii) $\frac{d}{d s}\left(\Gamma_{\varepsilon}(\eta(s, u))\right) \leq 0$ for all (s, u).
(iv) $\frac{d}{d s}\left(\Gamma_{\varepsilon}(\eta(s, u))\right) \leq-\frac{1}{2} \omega_{1}$ if $\eta(s, u) \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap\left(X_{\varepsilon}^{\frac{2}{3} d_{0}} \backslash X_{\varepsilon}^{d_{1}}\right)$.
(v) $\frac{d}{d s}\left(\Gamma_{\varepsilon}(\eta(s, u))\right) \leq-\frac{1}{2} a(\varepsilon)$ if $\eta(s, u) \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{d_{1}}$.

We can observe from (i)-(v) that if $u \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{d_{1}}$ satisfies $\eta\left(s_{0}, u\right) \notin X_{\varepsilon}^{\frac{2}{3} d_{0}}$ for some $s_{0}>0$, then there exists an interval $\left[s_{1}, s_{2}\right] \subset\left[0, s_{0}\right]$ such that

$$
\begin{aligned}
\eta(s, u) & \in X_{\varepsilon}^{\frac{2}{3} d_{0}} \backslash X_{\varepsilon}^{d_{1}} \quad \text { for } s \in\left[s_{1}, s_{2}\right] \\
\left|s_{2}-s_{1}\right| & \geq \frac{2}{3} d_{0}-d_{1} \geq \frac{1}{3} d_{0} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\Gamma_{\varepsilon}\left(\eta\left(s_{0}, u\right)\right) \leq \Gamma_{\varepsilon}(u)-\frac{1}{2} \omega_{1}\left(s_{2}-s_{1}\right) \leq \Gamma_{\varepsilon}(u)-\frac{1}{6} \omega_{1} d_{0} . \tag{54}
\end{equation*}
$$

We define $\tilde{\gamma}(t)=\eta\left(s, \gamma_{\varepsilon}^{\delta_{1}}(t)\right)$ for a large $s>0$. We can see that

$$
\begin{equation*}
\max _{t \in[0, T]} \Gamma_{\varepsilon}(\tilde{\gamma}(t)) \leq E_{m}-\min \left\{\alpha_{\delta}, \frac{1}{12} \omega_{1} d_{0}\right\} . \tag{55}
\end{equation*}
$$

In fact, if $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta_{1}}(t)\right) \leq E_{m}-\alpha_{\delta_{1}}$, (55) follows from (iii). If $\Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta_{1}}(t)\right)>$ $E_{m}-\alpha_{\delta_{1}}$, then by (51), we have $\gamma_{\varepsilon}^{\delta_{1}}(t) \in X_{\varepsilon}^{d_{1}}$. Here we distinguish two cases:
(a) $\eta\left(s, \gamma_{\varepsilon}^{\delta_{1}}(t)\right) \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{\frac{2}{3} d_{0}}$ for all $s \in[0, \infty)$.
(b) $\eta\left(s_{0}, \gamma_{\varepsilon}^{\delta_{1}}(t)\right) \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \backslash X_{\varepsilon}^{\frac{2}{3} d_{0}}$ for some $s_{0}>0$.

If (a) occurs, we see that $\Gamma(\tilde{\gamma}(t)) \leq \Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta_{1}}(t)\right)-\frac{1}{2} \min \left\{a(\varepsilon), \omega_{1}\right\} s$ and we have (55) for large $s>0$. If (b) occurs, by (54) and (52) we have

$$
\Gamma_{\varepsilon}(\tilde{\gamma}(t)) \leq \Gamma_{\varepsilon}\left(\gamma_{\varepsilon}^{\delta_{1}}(t)\right)-\frac{1}{6} \omega_{1} d_{0} \leq E_{m}-\frac{1}{12} \omega_{1} d_{0}
$$

that is, (55) holds. Since $\tilde{\gamma} \in \Phi_{\varepsilon}$, we have

$$
C_{\varepsilon} \leq \max \Gamma_{\varepsilon}(\tilde{\gamma}(t)) \leq E_{m}-\min \left\{\alpha_{\delta_{1}}, \frac{1}{12} \omega_{1} d_{0}\right\}
$$

which is in contradition to (53). This completes the proof.
Finally we have the following proposition.
Proposition 9 For sufficiently small $\varepsilon>0, \Gamma_{\varepsilon}(u)$ has a critical point in $\Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{d_{1}}$.

Proof. By Proposition 8, for small $\varepsilon>0$ there exists a sequence $\left\{u_{n}\right\} \subset$ $\Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{d_{1}}$ such that $\left\|\Gamma_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{\varepsilon}^{*} \rightarrow 0$.

Since $X_{\varepsilon}^{d_{1}}$ is bounded in H_{ε}, we can extract a subsequence - still denoted u_{n} - such that $u_{n} \rightarrow u_{0}$ weakly in H_{ε}. In a standard way, we see that u_{0} is a critical point of Γ_{ε}. Now we write $u_{n}=v_{n}+w_{n}$ with $v_{n} \in X_{\varepsilon}$ and $\left\|w_{n}\right\|_{\varepsilon} \leq d_{1}$. Since X_{ε} is compact, after extracting a subsequence if necessary, there exist
$v_{0} \in X_{\varepsilon}$ and $w_{0} \in H_{\varepsilon}$ such that $v_{n} \rightarrow v_{0}$ strongly in H_{ε} and $w_{n} \rightarrow w_{0}$ weakly in H_{ε} as $n \rightarrow \infty$. Thus, $u_{0}=v_{0}+w_{0}$ and

$$
\left\|u_{0}-v_{0}\right\|_{\varepsilon}=\left\|w_{0}\right\|_{\varepsilon} \leq \liminf _{n \rightarrow \infty}\left\|w_{n}\right\|_{\varepsilon} \leq d_{1}
$$

This proves that $u_{0} \in X_{\varepsilon}^{d_{1}}$.
Next we show that $\Gamma_{\varepsilon}\left(u_{0}\right) \leq D_{\varepsilon}^{\delta_{1}}$. Writing $u_{n}=u_{0}+\sigma_{n}$, we have

$$
\begin{equation*}
\left\|\sigma_{n}\right\|_{\varepsilon}=\left\|u_{n}-u_{0}\right\|_{\varepsilon} \leq\left\|v_{n}-v_{0}\right\|_{\varepsilon}+\left\|w_{n}\right\|_{\varepsilon}+\left\|w_{0}\right\|_{\varepsilon} \leq 2 d_{1}+o(1) \leq 3 d_{1} \tag{56}
\end{equation*}
$$ for large $n \in \mathbf{N}$. Also $\sigma_{n} \rightarrow 0$ weakly in H_{ε} and then

$$
\begin{gathered}
\int_{\mathbf{R}^{N}}\left|\nabla u_{n}\right|^{2}+V_{\varepsilon} u_{n}^{2} d y-\int_{\mathbf{R}^{N}}\left|\nabla u_{0}\right|^{2}+V_{\varepsilon} u_{0}^{2} d y \\
=2 \int_{\mathbf{R}^{N}} \nabla u_{0} \nabla \sigma_{n}+V_{\varepsilon} u_{0} \sigma_{n} d y \rightarrow 0 \\
\int_{\mathbf{R}^{N}} F\left(u_{n}\right) d y-\int_{\mathbf{R}^{N}} F\left(u_{0}\right) d y-\int_{\mathbf{R}^{N}} F\left(\sigma_{n}\right) d y \rightarrow 0
\end{gathered}
$$

(c.f. the proof of Proposition 2.31 in [12] for example). Thus $P_{\varepsilon}\left(u_{n}\right)-$ $P_{\varepsilon}\left(u_{0}\right)-P_{\varepsilon}\left(\sigma_{n}\right) \rightarrow 0$ and since from the weak lower semi-continuity of $v \mapsto$ $\|v\|_{L^{2}\left(\mathbf{R}^{N} \backslash O_{\varepsilon}\right)}^{2} ; H_{\varepsilon} \rightarrow \mathbf{R}$

$$
Q_{\varepsilon}\left(u_{0}\right) \leq \liminf _{n \rightarrow \infty} Q_{\varepsilon}\left(u_{n}\right)
$$

we have that

$$
\begin{align*}
D_{\varepsilon}^{\delta_{1}} & \geq \liminf _{n \rightarrow \infty} \Gamma_{\varepsilon}\left(u_{n}\right)=\liminf _{n \rightarrow \infty}\left(P_{\varepsilon}\left(u_{n}\right)+Q_{\varepsilon}\left(u_{n}\right)\right) \\
& \geq P_{\varepsilon}\left(u_{0}\right)+\liminf _{n \rightarrow \infty} P_{\varepsilon}\left(\sigma_{n}\right)+Q_{\varepsilon}\left(u_{0}\right) \\
& =\Gamma_{\varepsilon}\left(u_{0}\right)+\liminf _{n \rightarrow \infty} P_{\varepsilon}\left(\sigma_{n}\right) . \tag{57}
\end{align*}
$$

Next we estimate $P_{\varepsilon}\left(\sigma_{n}\right)$. We have

$$
\begin{aligned}
P_{\varepsilon}\left(\sigma_{n}\right) & =\frac{1}{2}\left\|\sigma_{n}\right\|_{\varepsilon}^{2}-\int_{\mathbf{R}^{N}} F\left(\sigma_{n}\right) d y-\frac{1}{2} \int_{\mathbf{R}^{N}}\left(\tilde{V}_{\varepsilon}-V_{\varepsilon}\right) \sigma_{n}^{2} d y \\
& \geq L_{\widetilde{m}}\left(\sigma_{n}\right)-\frac{1}{2} \int_{\mathbf{R}^{N}}\left(\tilde{V}_{\varepsilon}-V_{\varepsilon}\right) \sigma_{n}^{2} d y
\end{aligned}
$$

By (50) and (56), we have $\liminf _{n \rightarrow \infty} L_{\widetilde{m}}\left(\sigma_{n}\right) \geq 0$. We also observe from (27) that $\tilde{V}_{\varepsilon}-V_{\varepsilon}$ has a compact support. Thus from the weak convergence of σ_{n} in H_{ε} it follows that $\int_{\mathbf{R}^{N}}\left(\tilde{V}_{\varepsilon}-V_{\varepsilon}\right) \sigma_{n}^{2} d y \rightarrow 0$. Therefore we have $\lim \inf _{n \rightarrow \infty} P_{\varepsilon}\left(\sigma_{n}\right)=0$, which implies, from (57), that

$$
\Gamma_{\varepsilon}\left(u_{0}\right) \leq D_{\varepsilon}^{\delta_{1}} .
$$

This completes the proof.
Completion of the Proof for Theorem 1. We see from Proposition 9 that $\Gamma_{\varepsilon}(u)$ has a critical point $u_{\varepsilon} \in \Gamma_{\varepsilon}^{D_{\varepsilon}^{\delta_{1}}} \cap X_{\varepsilon}^{d_{1}}$. Since u_{ε} satisfies

$$
\begin{equation*}
\Delta u_{\varepsilon}-V_{\varepsilon} u_{\varepsilon}+f\left(u_{\varepsilon}\right)=4\left(\int \chi_{\varepsilon} u_{\varepsilon}^{2} d x-1\right)_{+} \chi_{\varepsilon} u_{\varepsilon} \text { in } \mathbf{R}^{N} \tag{58}
\end{equation*}
$$

and $f(t)=0$ for $t \leq 0$, we deduce that $u_{\varepsilon}>0$ in \mathbf{R}^{N}. Since $\left\{\left\|u_{\varepsilon}\right\|_{\varepsilon}\right\}$ and $\left\{Q_{\varepsilon}\left(u_{\varepsilon}\right)\right\}$ are bounded, it follows that $\left\{\left\|u_{\varepsilon}\right\|\right\}$ is bounded. Then, for $N=1$, it follows easily that $\left\{\left\|u_{\varepsilon}\right\|_{L^{\infty}(\mathbf{R})}\right\}$ is bounded. For the case $N=2$, taking a function $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{2},[0,1]\right)$ satisfying $\|\phi\|_{L^{\infty}}+\|\nabla \phi\|_{L^{\infty}}+\|\Delta \phi\|_{L^{\infty}} \leq 1$, we see that

$$
\begin{equation*}
\Delta\left(u_{\varepsilon} \phi\right)-V_{\varepsilon}\left(u_{\varepsilon} \phi\right) \geq-f\left(u_{\varepsilon}\right) \phi+2 \nabla u_{\varepsilon} \nabla \phi+u_{\varepsilon} \Delta \phi \equiv g_{\varepsilon} . \tag{59}
\end{equation*}
$$

From the boundedness of $\left\{\left\|u_{\varepsilon}\right\|\right\}$, (f2) and Remark 1 (ii), we deduce that $\left\{\left\|f\left(u_{\varepsilon}\right)\right\|_{L^{2}}\right\}$ is bounded. This means that a set $\left\{\left\|g_{\varepsilon}\right\|_{L^{2}}\right\}$ is bounded uniformly for $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{2},[0,1]\right)$ satisfying $\|\phi\|_{L^{\infty}}+\|\nabla \phi\|_{L^{\infty}}+\|\Delta \phi\|_{L^{\infty}} \leq 1$. Then, since $V_{\varepsilon} \geq 0$, we deduce from [20, Theorem 8.15-16] that $\left\{\left\|u_{\varepsilon}\right\|_{L^{\infty}}\right\}$ is bounded. Now by Proposition 5, we see that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbf{R}^{N} \backslash \mathcal{M}_{\varepsilon}^{2 \beta}}\left|\nabla u_{\varepsilon}\right|^{2}+\tilde{V}_{\varepsilon}\left(u_{\varepsilon}\right)^{2} d x=0
$$

and thus, by elliptic estimates (see [20]), we obtain that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\mathbf{R}^{N} \backslash \mathcal{M}_{\varepsilon}^{2 \beta}\right)}=0 . \tag{60}
\end{equation*}
$$

This gives the following decay estimate for u_{ε} on $\mathbf{R}^{N} \backslash \mathcal{M}_{\varepsilon}^{2 \beta} \cup \mathcal{Z}_{\varepsilon}^{\beta}$

$$
\begin{equation*}
u_{\varepsilon}(x) \leq C \exp \left(-c \operatorname{dist}\left(x, \mathcal{M}_{\varepsilon}^{2 \beta} \cup \mathcal{Z}_{\varepsilon}^{\beta}\right)\right) \tag{61}
\end{equation*}
$$

for some constants $C, c>0$. Indeed from (f1) and (60) we see that

$$
\lim _{\varepsilon \rightarrow 0}\left\|f\left(u_{\varepsilon}\right) / u_{\varepsilon}\right\|_{L^{\infty}\left(\mathbf{R}^{N} \backslash \mathcal{M}_{\varepsilon}^{2 \beta} \cup \mathcal{Z}_{\varepsilon}^{\beta}\right)}=0 .
$$

Also $\inf \left\{V(x) \mid x \notin \mathcal{M}_{\varepsilon}^{2 \beta} \cup \mathcal{Z}_{\varepsilon}^{\beta}\right\}>0$. Thus, we obtain the decay estimate (60) by applying standard comparison principles (see [31]) to (58).

If $\mathcal{Z} \neq \emptyset$ we shall need, in addition, an estimate for u_{ε} on $\mathcal{Z}_{\varepsilon}^{2 \beta}$. Let $\left\{H_{\varepsilon}^{i}\right\}_{i \in I}$ be the connected components of $\operatorname{int}\left(\mathcal{Z}_{\varepsilon}^{3 \delta}\right)$ for some index set I. Note that $\mathcal{Z} \subset \cup_{i \in I} H_{\varepsilon}^{i}$ and \mathcal{Z} is compact. Thus, the set I is finite. For each $i \in I$, let $\left(\phi^{i}, \lambda_{1}^{i}\right)$ be a pair of first positive eigenfunction and eigenvalue of $-\Delta$ on H_{ε}^{i} with Dirichlet boundary condition. From now we fix an arbitrary $i \in I$. By elliptic estimates [20, Theorem 9.20] and using the fact that $\left\{Q_{\varepsilon}\left(u_{\varepsilon}\right)\right\}$ is bounded we see that for some constant $C>0$

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(H_{\varepsilon}^{i}\right)} \leq C \varepsilon^{3 / \mu} . \tag{62}
\end{equation*}
$$

Thus, from (f1) we have, for some $C>0$

$$
\left\|f\left(u_{\varepsilon}\right) / u_{\varepsilon}\right\|_{L^{\infty}\left(H_{\varepsilon}^{i}\right)} \leq C \varepsilon^{3} .
$$

Denote $\phi_{\varepsilon}^{i}(x)=\phi^{i}(\varepsilon x)$. Then, for sufficiently small $\varepsilon>0$, we deduce that for $x \in \operatorname{int}\left(H_{\varepsilon}^{i}\right)$,

$$
\begin{equation*}
\Delta \phi_{\varepsilon}^{i}(x)-V_{\varepsilon}(x) \phi_{\varepsilon}^{i}(x)+\frac{f\left(u_{\varepsilon}(x)\right)}{u_{\varepsilon}(x)} \phi_{\varepsilon}^{i}(x) \leq\left(C \varepsilon^{3}-\lambda_{1} \varepsilon^{2}\right) \phi_{\varepsilon}^{i} \leq 0 . \tag{63}
\end{equation*}
$$

Now, since $\operatorname{dist}\left(\partial \mathcal{Z}_{\varepsilon}^{2 \beta}, \mathcal{Z}_{\varepsilon}^{\beta}\right)=\beta / \varepsilon$, we see from (61) that for some constants $C, c>0$,

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\partial \mathcal{Z}_{\varepsilon}^{2 \beta}\right)} \leq C \exp (-c / \varepsilon) . \tag{64}
\end{equation*}
$$

We normalize ϕ^{i} requiring that

$$
\begin{equation*}
\inf \left\{\phi_{\varepsilon}^{i}(x) \mid x \in H_{\varepsilon}^{i} \cap \partial \mathcal{Z}_{\varepsilon}^{2 \delta}\right\}=C \exp (-c / \varepsilon) \tag{65}
\end{equation*}
$$

for the same $C, c>0$ as in (65). Then, we see that for some $D>0$,

$$
\phi_{\varepsilon}^{i}(x) \leq D C \exp (-c / \varepsilon), x \in H_{\varepsilon}^{i} \cap \mathcal{Z}_{\varepsilon}^{2 \beta} .
$$

Now we deduce, using (62), (63), (64), (65) and [33, B. 6 Theorem] that for each $i \in I, u_{\varepsilon} \leq \phi_{\varepsilon}^{i}$ on $H_{\varepsilon}^{i} \cap \mathcal{Z}_{\varepsilon}^{2 \beta}$. Therefore

$$
\begin{equation*}
u_{\varepsilon}(x) \leq C \exp (-c / \varepsilon) \text { on } \mathcal{Z}_{\varepsilon}^{2 \delta} \tag{66}
\end{equation*}
$$

for some $C, c>0$. Now (61) and (66) implies that $Q_{\varepsilon}\left(u_{\varepsilon}\right)=0$ for $\varepsilon>0$ sufficiently small and thus u_{ε} satisfies (6). Finally let x_{ε} be a maximum point of u_{ε}. By Propositions 1 and 5 , we readily deduce that $\varepsilon x_{\varepsilon} \rightarrow z$ for some $z \in \mathcal{M}$ as $\varepsilon \rightarrow 0$, and that for some $C, c>0$,

$$
u_{\varepsilon}(x) \leq C \exp \left(-c\left|x-x_{\varepsilon}\right|\right) .
$$

This completes the proof.

Acknowledgements. This work of the first author was supported by the Korea Research Foundation Grant(KRF-2006-013-C00072). The third author is supported in part by Grant-in-Aid for Scientific Research (C)(2)(No. 17540205) of Japan Society for the Promotion of Science.

References

[1] S. Adachi and K. Tanaka, Trudinger type inequalities in \mathbf{R}^{N} and their best exponents, Proc. Amer. Math. Soc., 128, (2000), 2051-2057.
[2] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140, (1997), 285-300.
[3] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, (2001), 253-271.
[4] H. Berestycki, T. Gallouët and O. Kavian, Equations de Champs scalaires euclidens non linéaires dans le plan, C.R. Acad. Sci; Paris Ser. I Math., 297, (1983), 307-310 and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI, (1984).
[5] H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 82, (1983), 313-346.
[6] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, to appear in Arch. Ration. Mech. Anal.
[7] J. Byeon and Y. Oshita, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations, Comm. in P.D.E., 29, (2004), 18771904.
[8] J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165, (2002), 295-316.
[9] J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calculus of Variations and PDE, 18, (2003), 207-219.
[10] S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160, (2000), 118-138.
[11] S. Cingolani and M. Nolasco, Multi-peak periodic semiclassical states for a class of nonlinear Schrodinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 128, (1998), 1249-1260.
[12] V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on \mathbf{R}^{N}, Comm. on Pure Appl. Math., 45, (1992), 1217-1269.
[13] E.N. Dancer, K.Y. Lam and S. Yan, The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations, Abstr. Appl. Anal., 3, (1998), 293-318.
[14] E.N. Dancer and S. Yan, On the existence of multipeak solutions for nonlinear field equations on \mathbf{R}^{N}, Discrete Contin. Dynam. Systems, 6, (2000), 39-50.
[15] M. Del Pino and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variations and PDE, 4, (1996), 121-137.
[16] M. Del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Functional Analysis, 149, (1997), 245-265.
[17] M. Del Pino and P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, 15, (1998), 127-149.
[18] M. Del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324, 1, (2002), 1-32.
[19] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Functional Analysis, 69, (1986), 397-408.
[20] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order; second edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, (1983).
[21] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. in P.D.E., 21, (1996), 787-820.
[22] L. Jeanjean and K. Tanaka, A remark on least energy solutions in \mathbf{R}^{N}, Proc. Amer. Math. Soc. 131, (2003), 2399-2408.
[23] L. Jeanjean and K. Tanaka, A note on a mountain pass characterization of least energy solutions, Advanced Nonlinear Studies 3, (2003), 461-471.
[24] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calculus of Variations and PDE, 21, (2004), 287-318.
[25] X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5, (2000), 899-928.
[26] Y.Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2, (1997), 955-980.
[27] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part II , Ann. Inst. Henri Poincaré, 1, (1984), 223-283.
[28] Y.G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_{a}$, Comm. P.D.E., 13, (1988), 1499-1519.
[29] Y.G. Оh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131, (1990), 223-253.
[30] T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. 14 (1990), 765-769.
[31] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, (1984).
[32] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291.
[33] M. Struwe, Variational Methods; Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, (1990).

