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Abstract. We consider a class of non autonomous Allen-Cahn equations

−∆u(x, y) + a(x)W ′(u(x, y)) = 0, (x, y) ∈ R2, (0.1)

where W ∈ C2(R,R) is a multiple-well potential and a ∈ C(R,R) is a periodic, positive,
non-constant function. We look for solutions to (0.1) having uniform limits as x → ±∞ cor-
responding to minima of W . We show, via variational methods, that under a nondegeneracy
condition on the set of heteroclinic solutions of the associated ordinary differential equation
−q̈(x) + a(x)W ′(q(x)) = 0, x ∈ R, the equation (0.1) has solutions which depends on both
the variables x and y. In contrast, when a is constant such nondegeneracy condition is not
satisfied and all such solutions are known to depend only on x.
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1 Introduction

In this paper we deal with a class of semilinear elliptic equations of the form

−∆u(x, y) + a(x)W ′(u(x, y)) = 0, (x, y) ∈ R2, (1.1)

where we assume

(H1) a ∈ C(R) is periodic and positive,
1Supported by CNR and by MURST Project ‘Metodi Variazionali ed Equazioni Differenziali Non Lineari’
3Partially supported by CNR, Italy.
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(H2) W ∈ C2(R) satisfies

(i) there exist m ≥ 2 points σ1, . . . , σm ∈ R such that W (σi) = 0, W ′′(σi) > 0
for any i = 1 . . .m and W (s) > 0 for any s ∈ R \ {σ1, . . . , σm},
(ii) there exists R0 > 0 such that W ′(s)s ≥ 0 for any |s| ≥ R0.

This kind of equation arises in various fields of Mathematical Physics and our
assumptions on W are modeled on the classical two well Ginzburg-Landau potential
W (s) = (s2 − 1)2. In fact (1.1) can be viewed as a generalization of the stationary
Allen-Cahn equation introduced in 1979 by S.M. Allen and J.W. Cahn (see [5]). We
recall that the (parabolic) Allen-Cahn equation is a model for phase transitions in
binary metallic alloys which corresponds to taking a constant function a and the
above double well potential in (1.1). In these models the function u is an order
parameter representing pointwise the state of the material. The global minima
σ1, . . . , σm of W are called the pure phases and different values of u represent a mixed
configuration. Formally, (1.1) is the Euler-Lagrange equation of the action functional
Φ(u) = 1

2

∫
|∇u|2dx dy+

∫
a(x)W (u)dx dy. Its first term is the interfacial energy and

it penalizes sharp transitions while the second one is associated to the volume energy
density and penalizes the states far away from the equilibria. Note in fact that the
global minima of Φ are exactly the pure states u(x, y) = σi (i = 1, . . . ,m).

In this paper we look for two phase layered solutions of (1.1). Namely, given
σ−, σ+ ∈ {σ1, . . . , σm}, σ− 6= σ+, we look for solutions of (1.1) asymptotic as
x → ±∞ to the pure states σ±, i.e., solutions of the boundary value problem{

−∆u(x, y) + a(x)W ′(u(x, y)) = 0, (x, y) ∈ R2

lim
x→±∞

u(x, y) = σ±, uniformly w.r.t. y ∈ R. (1.2)

Apart from its physical aspects, problem (1.2) presents interesting mathematical
features. In a recent paper, [11], N. Ghoussoub and C. Gui proved a conjecture
of De Giorgi (see [9]) related to (1.2). They obtained, in particular, the following
result.

Theorem 1.1 If a(x) = a0 > 0 for all x ∈ R and if u ∈ C2(R2) is a solution to
(1.2) then u(x, y) = q(x) for all (x, y) ∈ R2 where q ∈ C2(R) is a solution of the
problem {

−q̈(x) + a0W
′(q(x)) = 0, x ∈ R

lim
x→±∞

q(x) = σ±.

In other words, by Theorem 1.1, if a is constant, then any solution of (1.2) depends
only on the variable x and it is a solution of the corresponding ordinary differential
equation. Briefly, we say that when a is constant, any solution of (1.2) is one
dimensional.

The aim of the present paper is to show that this is in fact a particular feature
of the autonomous Allen-Cahn stationary equation. Indeed, we will prove that for
a set of nonconstant functions a for which the associated set of one dimensional
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solutions is not “too degenerate”, problem (1.2) possesses multiple two dimensional
solutions.

To be more precise, we need to discuss first some features of the one dimensional
problem associated to (1.2), i.e. the problem{

−q̈(x) + a(x)W ′(q(x)) = 0, x ∈ R
lim

x→±∞
q(x) = σ±. (1.3)

Following some arguments developed in a series of papers on the heteroclinic problem
(see e.g. [2], [12] and the references therein) we study the set of minimal solutions
of (1.3). We consider the functional

F (q) =
∫
R

1
2 |q̇(x)|2 + a(x)W (q(x)) dx

on the Hilbert space

E = {q ∈ H1
loc(R) |

∫
R
|q̇(x)|2 dx < +∞}

endowed with the norm ‖q‖2 = |q(0)|2 +
∫
R |q̇(x)|2 dx.

We prove that given any i ∈ {1, . . . ,m}, there exists j(i) ∈ {1, . . . ,m} \ {i} such
that the functional F attains a minimum on the set

Γi = {q ∈ {F < +∞} | lim
t→−∞

q(t) = σi, lim
t→+∞

q(t) = σj(i)}.

Setting c(i) = minΓi F (q), we consider the set of minimizers of F on Γi

Ki = {q ∈ Γi |F (q) = c(i)}.

Our result establishes that if the set Ki is discrete in a suitable sense, then (1.2) ad-
mits several two dimensional solutions distinct up to translations. Precisely, letting
T be the period of a, we assume that for some i ∈ {1, . . . ,m} there results

(∗)i there exists Ki
0 ⊂ Ki such that, setting Ki

ξ = {q(· − Tξ) | q ∈ Ki,0} for ξ ∈ Z,
there results Ki = ∪ξ∈ZKi

ξ and moreover

(i) if (qn) ⊂ Ki
0, there exists q ∈ Ki

0 such that, along a subsequence,
‖qn − q‖H1(R) → 0,

(ii) there exists α > 0 such that if ξ 6= ξ′ then dist(Ki
ξ,Ki

ξ′) ≥ α.

Here the distance function dist is defined by

dist(A,B) = inf{(
∫
R
|q1(x)− q2(x)|2dx)

1
2 | q1 ∈ A, q2 ∈ B}, A, B ⊂ Γi.

We remark that the assumption (∗)i cannot hold if the function a is constant since
in this case the problem is invariant under the continuous group of translations. In
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fact, in the last section of this paper, we prove that (∗)i is satisfied if and only if Ki

is not a continuum in Γi, that is

(∗)i does not hold ⇐⇒ Ki is homeomorphic to R (1.4)

It is known that when a is a small L∞ periodic perturbation of a positive constant,
then the assumption (∗)i can be studied by using Melnikov-Poincaré methods and
we refer to [6] and the references therein for such arguments. Here, in Section 4,
following [3], [4], we prove that (∗)i is satisfied whenever a is a slowly oscillating
function. In particular, given any T -periodic non constant, continuous function
a > 0, (∗)i is satisfied for the equation

−ε2∆u + a(x)W ′(u) = 0

whenever ε > 0 is small enough. In fact, we prove that given any T -periodic con-
tinuous function a ≥ 0 and any T -periodic nonconstant, continuous function b > 0,
setting an(x) = a(x) + b(x

n), condition (∗)i is satisfied for any i ∈ {1, . . . ,m} when-
ever n ∈ N is sufficiently large. This shows in particular that (∗)i holds if a belongs
to an L∞ dense subset of the set of periodic, positive and continuous functions.
Finally, we mention that following [3], this result could be further refined proving
that (∗)i is “stable” under small L∞ perturbations of the function a.

The main result of the paper can be now stated in the following form.

Theorem 1.2 Let (H1)-(H2) be satisfied. Then for any i ∈ {1, . . . ,m} for which
(∗)i holds there exist ξ1, . . . , ξl ∈ Z \ {0} such that {

∑l
ι=1 nιξι |nι ∈ N ∪ {0}} = Z

and for which for any ι ∈ {1, . . . , l} there exists a solution uι ∈ C2(R2) to (1.2) with
σ− = σi, σ+ = σj(i), satisfying

lim
y→−∞

dist(uι(x, y),Ki
0) = lim

y→+∞
dist(uι(x, y),Ki

ξι
) = 0. (1.5)

We remark that by (1.5), since ξι 6= 0, the solution uι is truly two dimensional
and since {

∑l
ι=1 nιξι |nι ∈ N ∪ {0}} = Z, Theorem 1.2 guarantees the existence of

at least two of such solutions.
Moreover, we point out that, by (1.4), the following alternative holds: the set

of one dimensional solutions of (1.2) is homeomorphic to R (as in the autonomous
case) or problem (1.2) has several two dimensional solutions.

To prove Theorem 1.2, we use a global variational procedure looking for solutions
to (1.2) as local minima of a suitable functional. We point out that the natural action
functional Φ considered above is not useful to study solutions of (1.1) different from
the pure states u(x, y) = σi (i = 1, . . . ,m). Here, following a renormalization
procedure in the spirit of the one introduced by P.H. Rabinowitz in [13], [14], we
look for solutions of (1.2) as minima of the functional

ϕ(u) =
∫
R

[
∫
R

1
2 |∇u(x, y)|2 + a(x)W (u(x, y)) dx− c(i)] dy

4



on the set

Mi
ξ = {u ∈ Xi | lim

y→−∞
dist(u(·, y),Ki

0) = lim
y→+∞

dist(u(·, y),Ki
ξ) = 0}, ξ ∈ Z \ {0}

where
Xi = {u ∈ H1

loc(R
2) |u(·, y) ∈ Γi for a.e. y ∈ R}.

Actually we show that a minimum u of ϕ on Mi
ξ is a classical solution of (1.2) which

satisfies u(x, y) → σi as x → −∞ and u(x, y) → σj(i) as x → +∞, uniformly with
respect to y ∈ R. Not surprisingly, because of possible loss of compactness, the
minimization procedure cannot be carried out successfully for every value of ξ ∈ Z.
Nevertheless following an argument, originally due to S.V. Bolotin and V.V. Kozlov
[8], we manage to find a special set of generators ξ1, . . . , ξl ∈ Z \ {0} for which the
infimum of ϕ on Mi

ξι
, 1 ≤ ι ≤ l, is reached.

We end this introduction by mentioning a recent paper by S. Alama, L. Bronsard
and C. Gui [1] which motivated and inspired our work. In [1] the authors proved that
Theorem 1.1 fails in general when instead of a single equation one considers systems
of autonomous Allen-Cahn equations. Indeed, under symmetry conditions on the
potential and a suitable non degeneracy assumption on the set of minimizers to the
associated one dimensional problem, in [1] the existence of a two dimensional solution
is proved. We point out that in contrast to our direct minimization approach, in [1]
an approximation procedure, using bounded domains in R2 was developed.
We also note some very recent papers by H. Berestycki, F. Hamel and R. Monneau,
[7], and by A. Farina, [10], where Theorem 1.1 is extended to higher dimensions and
to more general elliptic operators. See also the references therein for other results
in this direction.

Acknowledgments Part of this work was done while two of the authors were
visiting Department of Mathematics of the University of Wisconsin. They wish to
thank the the members of the Department for their kind hospitality and in particular
Professor P.H. Rabinowitz for useful suggestions and discussions. The second author
thanks Professors D. Hilhorst and E. Logak for useful discussions on the physical
interpretation of our result.

2 The one dimensional problem

In this section we study the one dimensional problem associated to (1.1), namely,
given σ± ∈ {σ1, . . . , σm} we look for solutions q ∈ C2(R) to the problem{

−q̈(x) + a(x)W ′(q(x)) = 0, x ∈ R
lim

x→±∞
q(x) = σ±. (2.1)

Following earlier works on the existence of heteroclinic solutions, see e.g. [2] and
[12], we consider the action functional

F (q) =
∫
R

1
2 |q̇(x)|2 + a(x)W (q(x)) dx
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on the space

E = {q ∈ H1
loc(R) |

∫
R
|q̇(x)|2 dx < +∞}

endowed with the Hilbertian norm ‖q‖ = (|q(0)|2 +
∫
R |q̇(x)|2 dx)

1
2 .

It is standard to show that F is weakly lower semicontinuous on E and, plainly by
(H1), (H2), that F (q) ≥ 1

2

∫
R |q̇(x)|2 dx for any q ∈ E.

By (H2), each σi is a non degenerate minimum of W and around each of these points
W behaves quadratically. Thus there exist w0 > 0 and ρ0 ∈ (0, 1

6 infi6=j |σi − σj |)
such that

if |s− σi| ≤ 2ρ0 then W ′′(s) ≥ 2w0 for any i ∈ {1, . . . ,m}. (2.2)

Moreover, since a is positive, we have that for any r ∈ (0, ρ0)

µr = inf{a(x)W (q) |x ∈ R, q /∈ ∪m
i=1Br(σi)} > 0.

Therefore, if q ∈ E and q(x) /∈ ∪m
i=1Br(σi) for any x ∈ (s, p) then∫ p

s

1
2 |q̇|

2 +a(x)W (q) dx ≥ 1
2(p−s)(

∫ p

s
|q̇| dx)

2

+µr(p−s) ≥
√

2µr |q(p)−q(s)|. (2.3)

By (2.3), we can characterize the asymptotic behavior of the trajectories in E.

Lemma 2.1 If q ∈ {F < +∞}, then limx→±∞ q(x) = q(±∞) ∈ {σ1, . . . , σm}.
Moreover, for any b > 0 there exists C(b) > 0 such that if F (q) ≤ b then ‖q‖L∞(R) ≤
C(b).

Proof. Since F (q) < +∞, by (2.3), there exists q(+∞) ∈ {σ1, . . . , σm} such that
lim infx→+∞ |q(x) − q(+∞)| = 0. Fixing an arbitrary r ∈ (0, ρ0

2 ), we assume by
contradiction that lim supx→+∞ |q(x)−q(+∞)| > 2r. Then there exists a sequence of
disjoint intervals (pi, si), i ∈ N, such that |q(pi)− q(+∞)| = r, |q(si)− q(+∞)| = 2r
and r < |q(x) − q(+∞)| < 2r < ρ0 for any x ∈ ∪i(pi, si). By (2.3) this implies
that F (q) = +∞, a contradiction. In the same way one shows that there exists
q(−∞) ∈ {σ1, . . . , σm} such that q(x) → q(−∞) as x → −∞.
The second part of the lemma is again a simple consequence of (2.3). Indeed, let
r ∈ (0, ρ0) and fix S > 0 such that |σi| ≤ S for any i ∈ {1, . . . ,m}. If F (q) ≤ b and
|q(x)| ≥ S+r for some x ∈ R, then by (2.3) one infers that b ≥

√
2µr |q(x)−(S+r)|.

Therefore if F (q) ≤ b then |q(x)| ≤ b√
2µr

+ S + r for any x ∈ R and the lemma
follows.

Given i, j ∈ {1, . . . ,m}, we define the class

Γi,j = {q ∈ {F < +∞} | lim
x→−∞

q(x) = σi, lim
x→+∞

q(x) = σj}.

Letting ci,j = infΓi,j F (q), we observe that, by (2.3), c(i) = minj 6=i ci,j > 0, for any
i ∈ {1, . . . ,m}. We choose and fix j(i) ∈ {1, . . . ,m} such that c(i) = ci,j(i) and we
set Γi = Γi,j(i).
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We shall prove that F has minima in each class Γi. To this aim we start notic-
ing that the trajectories in Γi with action close to the minimum satisfy suitable
concentration properties.

Lemma 2.2 There exists δ̄0 ∈ (0, ρ0) such that for any δ ∈ (0, δ̄0) there exist λδ > 0,
ρδ > 0 and `δ > 0 for which, for any i ∈ {1, . . . ,m}, if q ∈ Γi and F (q) ≤ c(i) + λδ

then

(i) if min1≤j≤m |q(x)− σj | ≥ δ for every x ∈ (s, p) then p− s ≤ `δ,

(ii) infx∈R |q(x)− σj | > δ for every j ∈ {1, . . . ,m} \ {i, j(i)},

(iii) if |q(x−)− σi| ≤ δ and |q(x+)− σj(i)| ≤ δ for some x−, x+ ∈ R, then |q(x)−
σi| < ρδ for every x ≤ x− and |q(x)− σj(i)| < ρδ for every x ≥ x+.

Moreover λδ + ρδ → 0 as δ → 0.

Proof. Note that (i) plainly follows by (2.3). To prove (ii) and (iii) we first fix some
notations. Given δ > 0, let

λδ = 1
2δ2 + max

x∈R
a(x) · max

|s−σi|≤δ
W (s) and rδ = inf{r > 0 |µr ≥ λδ}.

Since λδ → 0 as δ → 0, there exists δ1 ∈ (0, ρ0) such that {r > 0 |µr ≥ λδ1} 6= ∅
and so rδ is well defined for any δ ∈ (0, δ1). In fact, rδ is non decreasing on (0, δ1)
and rδ → 0 as δ → 0. Set ρδ = max{δ, rδ} + λδ√

µrδ
. Since by definition, µrδ

≥ λδ,

we have that ρδ → 0 as δ → 0. Let δ̄0 ∈ (0, δ1) be such that ρδ < ρ0 and λδ ≤
1
8 min{c(j) | 1 ≤ j ≤ m} for all δ ∈ (0, δ̄0).
Now let δ ∈ (0, δ̄0) and q ∈ Γi, x− ∈ R be such that |q(x−) − σi| ≤ δ and F (q) ≤
c(i) + λδ. We define

q−(x) =


σi if x < x− − 1,
(x− − x)σi + (x− x− + 1)q(x−) if x− − 1 ≤ x ≤ x−
q(x) if x ≥ x−

and note that since q− ∈ Γi, F (q−) ≥ c(i). Moreover we have∫ x−

x−−1

1
2 |q̇−|

2 + a(x)W (q−) dx ≤ λδ

and

F (q−) = F (q)−
∫ x−

−∞
1
2 |q̇|

2 + a(x)W (q) dx +
∫ x−

x−−1

1
2 |q̇−|

2 + a(x)W (q−) dx,

from which we obtain ∫ x−

−∞
1
2 |q̇|

2 + a(x)W (q) dx ≤ 2λδ. (2.4)
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To prove (iii) we assume by contradiction that there exists x < x− such that |q(x)−
σi| ≥ ρδ. Then, by (2.3), we get∫ x−

−∞
1
2 |q̇|

2 + a(x)W (q) dx ≥
√

2µrδ
(ρδ − rδ) ≥ 2

√
2λδ

which contradicts (2.4). This proves that |q(x) − σi| < ρδ for any x ≤ x−. Analo-
gously, if |q(x+)− σj(i)| ≤ δ then |q(x)− σj(i)| < ρδ for any x ≥ x+.
To establish (ii) we prove that infx∈(x−,x+) |q(x)− σj | > δ for any j ∈ {1, . . . ,m} \
{i, j(i)} and x−, x+ such that |q(x−) − σi| ≤ δ and |q(x+) − σj(i)| ≤ δ. By (iii)
this will imply (ii). Assume by contradiction that there exists x̄ ∈ (x−, x+) and
ι ∈ {1, . . . ,m} \ {i, j(i)} such that |q(x̄)− σι| = δ. We define the functions

q−(x) =


q(x) if x < x̄,
(x̄ + 1− x)q(x̄) + (x− x̄)σι if x̄ ≤ x ≤ x̄ + 1
σι if x ≥ x̄ + 1,

q+(x) =


σι if x < x̄− 1,
(x̄− x)σι + (x− x̄ + 1)q(x̄) if x̄− 1 ≤ x ≤ x̄
q(x) if x ≥ x̄.

Clearly q− ∈ Γi,ι, q+ ∈ Γι,j(i) and thus, on one hand, F (q−) + F (q+) ≥ c(i) + c(ι).
On the other hand, arguing as above, one checks that F (q−) + F (q+) ≤ F (q) + 4λδ.
By the definition of λδ, this gives the contradiction c(i) + c(ι) ≤ F (q) + 4λδ ≤
c(i) + 5λδ ≤ c(i) + 5

8 min{c(j) | 1 ≤ j ≤ m}.

According to Lemma 2.2, we fix δ̄ ∈ (0, δ̄0) such that ρ̄ = ρδ̄ ≤
ρ0

4 and we denote
λ̄ = λδ̄ and ¯̀= `δ̄.

To exploit compactness properties of F in Γi, by Lemma 2.2, it will be useful to
introduce the function X : E → R ∪ {+∞} given by

X(q) = sup{x ∈ R | min
1≤j≤m

|q(x)− σj | ≥ ρ0}.

Note that if qn → q0 weakly in E then, by the Sobolev Immersion Theorem, qn → q0

in L∞loc(R). This implies that if X(qn) → X0 ∈ R, then min1≤j≤m |q0(X0)−σj | = ρ0

and X(q0) ≥ X0 follows by definition.
By Lemma 2.2, we can give a further characterization of the sublevels of F on

the classes Γi. To this aim we define, for i ∈ {1, . . . ,m}, the function

Qi(x) =


σi if x < 0,
(1− x)σi + xσj(i) if 0 ≤ x ≤ 1
σj(i) if x > 1

(2.5)

noting that Qi ∈ Γi. Then we can show that the minimizing sequences for F in Γi

are precompact in the following sense.

Lemma 2.3 If (qn) ⊂ Γi is such that F (qn) → c(i) and X(qn) → X0 ∈ R, then
there exists q0 ∈ Γi such that, along a subsequence, ‖qn−q0‖H1(R) → 0, F (q0) = c(i)
and X(q0) = X0.
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Proof. First note that since F (qn) ≤ C, we have
∫
R |q̇n|2 dx ≤ C. Moreover, by

Lemma 2.1, we obtain ‖qn‖L∞ ≤ C ′ for any n ∈ N and therefore that (qn) is bounded
in E. So we can conclude that there exists q0 ∈ E such that along a subsequence
(still denoted qn) qn → q0 weakly in E and, by semicontinuity, F (q0) ≤ c(i).
We have to prove that q0 ∈ Γi and ‖qn − q0‖H1(R) → 0. To this aim note that for
any ε > 0 there exist λ ∈ (0, λ̄), ` > ¯̀ such that if q ∈ Γi ∩ {F ≤ c(i) + λ} then∫
|x−X(q)|≥`

|q̇|2+|q(x)−Qi(x−X(q))|2dx ≤ ε and
∫
|x−X(q)|≥`

W (q(x))dx ≤ ε. (2.6)

Indeed, setting ā = minR a(x), by Lemma 2.2 we can choose δ < δ̄ such that
λδ ≤ ε

3 min{1
2 , āw0}. The same lemma says that if q ∈ Γi ∩ {F ≤ c(i) + λδ} then

|q(x) − σi| ≤ ρδ ≤ ρ̄ for any x ≤ X(q) − `δ and |q(x) − σi| ≤ ρδ ≤ ρ̄ for any
x ≥ X(q) + `δ. In fact, by Lemma 2.2-(i), there exist x− ∈ (X(q) − `δ, X(q)) and
x+ ∈ (X(q), X(q) + `δ) such that |q(x−) − σi|, |q(x+) − σj(i)| ≤ δ. We define the
function

q̄(x) =



σi if x < x− − 1,
(x− − x)σi + (x− x− + 1)q(x−) if x− − 1 ≤ x ≤ x−
q(x) if x− ≤ x ≤ x+

(x+ + 1− x)q(x+) + (x− x+)σj(i) if x+ ≤ x ≤ x+ + 1
σj(i) if x > x+ + 1,

and arguing as in the proof of Lemma 2.2, since F (q̄) ≥ c(i), we obtain∫
|x−X(q)|≥`δ+1

1
2 |q̇|

2 + a(x)W (q) dx ≤ F (q)− F (q̄) + 2λδ ≤ 3λδ ≤ ε min{1
2 , āw0}.

Then, observing that W (q(x)) ≥ w0|q(x)−Qi(x−X(q))|2 for any |x−X(q)| ≥ `δ+1,
(2.6) follows setting ` = `δ + 1 and λ = λδ.
Now, since X(qn) → X0 and F (qn) → c(i), by (2.6), we derive that for any
ε > 0 there exists ` > 0 for which

∫
|x−X0|≥` |qn(x) − Qi(x − X0)|2 dx ≤ ε and∫

|x−X0|≥` W (qn(x)) dx ≤ ε for any n ∈ N and then∫
|x−X0|≥`

|q0(x)−Qi(x−X0)|2 dx ≤ ε and
∫
|x−X0|≥`

W (q0(x)) dx ≤ ε. (2.7)

The first inequality in (2.7) implies by Lemma 2.1 that q0 ∈ Γi and then that F (q0) =
c(i). Moreover, since qn → q0 in L∞loc(R), the arbitrariness of ε in (2.7) implies also
that qn− q0 → 0 in L2(R) and

∫
R W (qn(x)) dx →

∫
R W (q0(x)) dx as n →∞. Then,

since F (qn) → c(i) = F (q0), we obtain
∫
R |q̇n|2 dx →

∫
R |q̇0|2 dx which together with

the fact that q̇n → q̇0 weakly in L2(R), implies ‖qn − q0‖H1(R) → 0.
To complete the proof we have to show that X(q0) = X0. Recalling that X0 ≤ X(q0),
we assume by contradiction that X0 < X(q0). By definition of X(q0), |q0(x)−σj(i)| <
ρ0 for all x > X(q0) and therefore, by (2.2), since q0 is a solution to problem (2.1), one
can prove that |q̈0(x)| > 0 for all x > X(q0). Then, since q̇0(x) → 0 as x → +∞, we
derive that |q̇0(X(q0))| > 0 and hence the existence of a x0 ∈ (X0, X(q0)) such that
|q0(x0)−σj(i)| > ρ0. Therefore, by uniform convergence, we obtain |qn(x0)−σj(i)| >
ρ0 for n large enough, a contradiction since X(qn) → X0.
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As direct consequence of Lemma 2.3 we plainly obtain the following estimate
which will be essential in the next section. For all r > 0 there exists hr > 0 such
that

if q ∈ Γi and inf
z∈Ki

‖q − z‖H1(R) ≥ r then F (q) ≥ c(i) + hr (2.8)

Moreover, we remark that since the function a is periodic, there always exists a
minimizing sequence (qn) ⊂ Γi for F such that X(qn) ∈ [0, T ] for any n ∈ N, where
T is the period of a. Then, by Lemma 2.3, the set Ki = {q ∈ Γi |F (q) = c(i)} is
not empty for any i ∈ {1, . . . ,m}. Clearly any minimum of F on Γi is a solution of
(2.1) and so a one dimensional solution of (1.2).

Finally, we note that, by the definition of Γi and of the function Qi in (2.5),
since W behaves quadratically around each σi, we have∫

R
|q(x)−Qi(x)|2dx < +∞, ∀q ∈ Γi.

Therefore the following metric is well defined on Γi

d(q1, q2) = (
∫
R
|q1(x)− q2(x)|2 dx)

1
2 , ∀q1, q2 ∈ Γi.

Note that the metric space (Γi, d) is not complete and we will denote by Y i its
completion. Moreover, given A,B ⊂ Γi, we set diam(A) = sup{d(q1, q2) | q1, q2 ∈ A}
and dist(A,B) = inf{d(q1, q2) | q1 ∈ A, q2 ∈ B}.

3 Two dimensional solutions

In this section we study the existence of two dimensional solutions of (1.2). This
study is done assuming, a priori, some discreteness on the set Ki, i = 1, . . . ,m,
which will be essential to recover sufficient compactness in the problem. Letting T
be the period of a, we assume that there exists i ∈ {1, . . . ,m} such that

(∗)i there exists Ki
0 ⊂ Ki such that, setting Ki

ξ = {q(· − Tξ) | q ∈ Ki,0} for ξ ∈ Z,
there results Ki = ∪ξ∈ZKi

ξ and moreover

(i) if (qn) ⊂ Ki
0, there exists q ∈ Ki

0 such that, along a subsequence,
‖qn − q‖H1(R) → 0,

(ii) there exists α > 0 such that if ξ 6= ξ′ then dist(Ki
ξ,Ki

ξ′) ≥ α.

Postponing the discussion of assumption (∗)i to the next section, we now make
precise the variational setting.

Let
Xi = {u ∈ H1

loc(R
2) |u(·, y) ∈ Γi for a.e. y ∈ R}
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and note that if u ∈ Xi, then the function y →
∫
R

1
2 |∇u(x, y)|2 + a(x)W (u(x, y)) dx

is measurable and greater than or equal to c(i) for a.e. y ∈ R. Therefore the
functional ϕ : Xi → R ∪ {+∞} given by

ϕ(u) =
∫
R

[
∫
R

1
2 |∇u(x, y)|2 + a(x)W (u(x, y)) dx− c(i)] dy , u ∈ Xi,

is well defined. It can be rewritten in the more enlightening form

ϕ(u) =
∫
R

[
∫
R

1
2 |∂yu(x, y)|2 dx + F (u(·, y))− c(i)] dy, u ∈ Xi.

We will look for non trivial two phase solutions of (1.1) as minima of ϕ on suitable
subsets of Xi. To this end we first discuss some preliminary properties of ϕ.
First of all we note that ϕ(u) ≥ 0 for all u ∈ Xi and if q ∈ Ki, then the function
u(x, y) = q(x) belongs to Xi and ϕ(u) = 0, i.e., the one dimensional solutions of (1.1)
are global minima of ϕ on Xi. Moreover, ϕ satisfies the following semicontinuity
property.

Lemma 3.1 Let (un) ⊂ Xi and u ∈ Xi be such that un → u weakly in H1(Ω) for
every Ω ⊂⊂ R2, then ϕ(u) ≤ lim infn→∞ ϕ(un).

Proof. Let M,L > 0 and QM,L = (−M,M) × (−L,L). Since un → u weakly in
H1(QM,L) we have un → u in L2(QM,L) and ∇un → ∇u weakly in L2(QM,L).
By Lusin and Egoroff Theorems, given any ε > 0, there exists a compact set K ⊂
QM,L such that ∇u is continuous on K, un → u uniformly on K and∫

K

1
2 |∇u|2 + aW (u) dx dy ≥

∫
QM,L

1
2 |∇u|2 + aW (u) dx dy − ε.

Now if lim infn→∞ ϕ(un) = +∞ the lemma is trivially true and thus we can assume
that ϕ(un) ≤ C for any n ∈ N. In this case, as n →∞, we obtain

ϕ(un) ≥
∫

QM,L

1
2 |∇un|2 + aW (un) dx dy − 2c(i)L

≥
∫

K

1
2 |∇un|2 + aW (un) dx dy − 2c(i)L

≥
∫

K

1
2 |∇u|2 dx dy +

∫
K

1
2 |∇u|(|∇un| − |∇u|) dx dy +

∫
K

aW (un) dx dy − 2c(i)L

=
∫

K

1
2 |∇u|2 dx dy + o(1) +

∫
K

aW (u) + a (W (un)−W (u)) dx dy − 2c(i)L

=
∫

K

1
2 |∇u|2 + aW (u) dx dy − 2c(i)L + o(1)

≥
∫

QM,L

1
2 |∇u|2 + aW (u) dx dy − 2c(i)L + o(1)− ε.

Since ε > 0 is arbitrary, we deduce that

lim inf
n→∞

ϕ(qn) ≥
∫ L

−L
[
∫ M

−M

1
2 |∇u|2 + aW (u) dx− c(i)] dy, ∀M,L > 0

and since u ∈ Xi the lemma follows.
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Concerning the coerciveness of ϕ, we have first to consider some estimates which
will be useful to characterize the compactness properties of sublevels of ϕ.
First we note that if u ∈ Xi then F (u(·, y)) ≥ c(i) for a.e. y ∈ R and so

‖∂yu‖2
L2(R2) ≤ 2ϕ(u) ∀u ∈ Xi. (3.1)

Moreover, since W (s) ≥ 0 for any s ∈ R, setting

TL = {(x, y) ∈ R2 | |y| < L}, L > 0,

we have

ϕ(u) ≥
∫ L

−L
F (u(·, y))− c(i) dy + 1

2‖∂yu‖2
L2(R2)

≥ 1
2‖∂xu‖2

L2(TL) + 1
2‖∂yu‖2

L2(R2) − 2c(i)L

from which we derive

‖∇u‖2
L2(TL) ≤ 2ϕ(u) + 4c(i)L ∀u ∈ Xi and ∀L > 0. (3.2)

Now note that, by Fubini Theorem, if u ∈ Xi then u(x, ·) ∈ H1
loc(R) for a.e. x ∈ R.

Therefore, if y1 < y2 ∈ R then u(x, y2) − u(x, y1) =
∫ y2
y1

∂yu(x, y) dy holds for any
u ∈ Xi, for a.e. x ∈ R. So, if u ∈ Xi, by (3.1) we obtain for y1, y2 ∈ R that∫

R
|u(x, y2)− u(x, y1)|2 dx =

∫
R
|
∫ y2

y1

∂yu(x, y) dy |2dx

≤ |y2 − y1|
∫
R

∫
R
|∂yu(x, y)|2 dy dx ≤ 2ϕ(u)|y2 − y1|.

Given u ∈ Xi, by definition, the function u(·, y) ∈ Γi for a.e. y ∈ R. If ϕ(u) < +∞,
by the previous estimates, the function y → u(·, y) is Holder continuous from a dense
subset of R with values in Γi and so it can be extended to a continuous function on
R considering as target space the complete metric space Y i. According to that, any
function u ∈ Xi ∩ {ϕ < +∞} defines a continuous trajectory in Y i verifying

d(u(·, y2), u(·, y1))2 ≤ 2ϕ(u)|y2 − y1|, ∀ y1, y2 ∈ R. (3.3)

In particular, by (3.3), we obtain that if A ⊂ Γi and u ∈ Xi ∩ {ϕ < +∞}, then

|dist(u(·, y1), A)− dist(u(·, y2), A)| ≤
√

2ϕ(u) |y2 − y1|
1
2 ∀y1, y2 ∈ R. (3.4)

Another important estimate is a kind of counterpart for the functional ϕ of the
estimate (2.3) on F given in Section 2.
By (2.8), if (y1, y2) ⊂ R and u ∈ Xi are such that infz∈Ki ‖u(·, y)− z‖H1(R) ≥ r > 0
for a.e. y ∈ (y1, y2), then

ϕ(u) ≥
∫ y2

y1

[
∫
R

1
2 |∂yu(x, y)|2 dx + F (u(·, y))− c(i)] dy
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≥
∫ y2

y1

1
2

∫
R
|∂yu(x, y)|2 dx dy + hr(y2 − y1)

≥ 1
2(y2−y1)

∫
R

(
∫ y2

y1

|∂yu(x, y)| dy)2 dx + hr(y2 − y1) (3.5)

≥ 1
2(y2−y1)d(u(·, y1), u(·, y2))2 + hr(y2 − y1) ≥

√
2hrd(u(·, y1), u(·, y2)).

In the next lemma, using (3.5) and assumption (∗)i, we will prove that for any
u ∈ Xi ∩ {ϕ ≤ C} the functions y → u(·, y) are uniformly bounded with respect to
d.
By (2.8), corresponding to r0 = α

3 , let us fix h0 > 0 such that

if q ∈ Γi and inf
z∈Ki

‖q − z‖H1(R) ≥ r0
2 then F (q) ≥ c(i) + h0. (3.6)

Then, we have

Lemma 3.2 For any C > 0 there exists C ′ > 0 such that if u ∈ Xi∩{ϕ ≤ C}, then
d(u(·, y1), u(·, y2)) ≤ C ′ for any y1, y2 ∈ R.

Proof. Denoting γ(y) = u(·, y), y ∈ R, we can consider γ as a path in Y i. For
any y1 < y2 ∈ R, by compactness, γ([y1, y2]) intersects only a finite number of
sets Br0(Ki

ξ), ξ ∈ Z. Let {Bi | i = 1, . . . , k} be the family in {Br0(Ki
ξ) |Br0(Ki

ξ) ∩
γ([y1, y2]) 6= ∅, ξ ∈ Z} such that if γ(y) /∈ ∪k

i=1Bi, y ∈ [y1, y2], then dist(γ(y),Ki) ≥
r0 and Bi 6= Bi+1 for all i ∈ {1, . . . , k − 1}.
Noting that diam(Bi) = b0 > 0 for any i ∈ {1, . . . , k} and dist(Bi+1, Bi) ≥ r0 for
any i ∈ {1, . . . , k − 1}, from (3.5) and (3.6) one obtains that

ϕ(u) ≥
√

2h0 max{d(γ(y1), γ(y2))− kb0, (k − 1)r0}.

Therefore, if ϕ(u) ≤ C then k ≤ 1√
2h0r0

(C + r0

√
2h0) and hence d(γ(y1), γ(y2)) ≤

1√
2h0

(C + b0
r0

(C + r0

√
2h0)) = C ′.

Another consequence of (3.5) and of the assumption (∗)i is that they provide
information on the asymptotic behavior of the functions in the sublevels of ϕ as
y → ±∞. More precisely we have

Lemma 3.3 If u ∈ Xi ∩ {ϕ < +∞}, there exist ξ± ∈ Z such that

dist(u(·, y),Ki
ξ±) → 0 as y → ±∞.

Proof. First of all note that since ϕ(u) < +∞ then, by (3.5),

lim inf
y→±∞

dist(u(·, y),Ki) = 0.

Since, by Lemma 3.2, the path y → u(·, y) is bounded in Y i, there exist ξ± ∈ Z such
that

lim inf
y→ ±∞

dist(u(·, y),Ki
ξ±) = 0.
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Considering the case y → +∞ we assume that lim supy→±∞ dist(u(·, y),Ki
ξ+

) > 0.
Then, arguing as in Lemma 2.1 the path y → u(·, y) crosses an annulus of positive
thickness around the set Ki

ξ+
and contained in the set Br0(Ki

ξ+
) infinitely many

times. This allows us to use (3.5) to conclude that ϕ(u) = +∞, a contradiction
which proves that limy→+∞ dist(u(·, y),Ki

ξ+
) = 0. Similarly one can prove that

limy→−∞ dist(u(·, y),Ki
ξ−

) = 0.

By Lemma 3.3 we can restrict ourselves to consider the elements in Xi which
have prescribed limits as y → ±∞. By periodicity it is sufficient to consider, for
ξ ∈ Z, the classes

Mi
ξ = {u ∈ Xi | lim

y→−∞
dist(u(·, y),Ki

0) = lim
y→+∞

dist(u(·, y),Ki
ξ) = 0}.

By Lemma 3.2 we deduce that for any C > 0 there exists C ′ > 0 such that

if u ∈Mi
ξ and ϕ(u) ≤ C then dist(u(·, y),Ki

0) ≤ C ′ for any ξ ∈ Z, y ∈ R. (3.7)

The following lemma describes a first compactness property of the functional ϕ.

Lemma 3.4 Let ξ ∈ Z and (un) ⊂ Mi
ξ ∩ {ϕ ≤ C}. Then there exists u ∈ Xi such

that, up to a subsequence, un → u weakly in H1(Ω) for any Ω ⊂⊂ R2.

Proof. Pick any function z0 ∈ Ki
0. Letting diam(Ki

0) = d0, by (3.7), there exists
C ′ > 0 such that d(un(·, y), z0) ≤ C ′ + d0 for any y ∈ R. By (3.2), for any L > 0,
we obtain∫

TL

|un(x, y)− z0(x)|2dx dy + ‖∇un‖2
L2(TL) ≤ (2(C ′ + d0)2 + 4c(i))L + 2C

from which we deduce that (un− z0) is bounded in H1(TL). This implies that there
exists a subsequence (unk

) of (un) and a function u such that u− z0 ∈ ∩L>0H
1(TL)

and unk
− z0 → u − z0 weakly in H1(Ω) for every Ω ⊂⊂ R2. Since u − z0 ∈

∩L>0H
1(TL) we have that u(·, y)− z0 ∈ H1(R) for a. e. y ∈ R and u ∈ Xi follows.

Moreover, we have

Lemma 3.5 Let (un) ⊂ Xi and u ∈ Xi be such that un → u weakly in H1(Ω) for
every Ω ⊂⊂ R2. Then, for all ξ ∈ Z, dist(u(·, y),Ki

ξ) ≤ lim infn→∞ dist(un(·, y),Ki
ξ)

for a.e. y ∈ R.

Proof. Fix any z0 ∈ Ki
ξ. Since un → u in L2

loc(R
2), there exists a function

w ∈ L2
loc(R

2) such that w(x, y) ≥ |un(x, y)− z0(x)| for a.e. (x, y) ∈ R2. By the Fu-
bini Theorem there exists A ⊂ R with meas(A) = 0 such that w(·, y) ∈ L2

loc(R)
for any y ∈ R \ A. Let us fix y ∈ R \ A and a sequence (zn) ⊂ Ki

ξ such
that dist(un(·, y),Ki

ξ) = d(un(·, y), zn) + o(1) as n → ∞. By (∗)i there exists
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z ∈ Ki
ξ and a subsequence (znk

) ⊂ (zn) such that ‖znk
− z‖H1(R) → 0 and more-

over we can assume that lim d(unk
(·, y), znk

) = lim inf dist(un(·, y),Ki
ξ). We have

|unk
(x, y) − znk

(x)| ≤ w(x, y) + |znk
(x) − z0(x)| ≤ w(x, y) + C for some C > 0, for

any y ∈ R\A and for a.e. x ∈ R. Then for any M > 0, since w(·, y) ∈ L2((−M,M)),
we can use the dominated convergence Theorem to get∫ M

−M
|u(x, y)−z(x)|2dx = lim

k→∞

∫ M

−M
|unk

(x, y)−znk
(x)|2dx ≤ lim inf

k→∞
dist(un(·, y),Ki

ξ)

and so to conclude that dist(u(·, y),Ki
ξ) ≤ lim infn→∞ dist(un(·, y),Ki

ξ) for any y ∈
R \A.

By Lemma 3.4 every sequence in Mi
ξ ∩ {ϕ ≤ C} admits a subsequence which

converge in the specified sense to some u ∈ Xi and along which, by Lemma 3.1, the
functional is lower semicontinuous.
The next step in our proof is to show, using again assumption (∗)i, that there exist
particular classesMi

ξ on which suitable sublevels of ϕ satisfy additional compactness
properties.

We define
mi,ξ = inf

u∈Mi
ξ

ϕ(u), ξ ∈ Z,

noting that one can plainly prove, using suitable test functions, that mi,ξ < +∞ for
any ξ ∈ Z. Moreover

Lemma 3.6 For ξ 6= 0, mi,ξ ≥
√

2h0r0 and mi,ξ → +∞ as |ξ| → ∞.

Proof. We observe that dist(Ki
0,Ki

ξ) → +∞ as |ξ| → ∞ and thus, from the definition
of Mi

ξ and Lemma 3.2, it readily follows that mi,ξ → +∞ as |ξ| → ∞. To prove the
first estimate let ξ 6= 0 and u ∈ Mi

ξ. Then dist(u(·, y),Ki
0) → 0 as y → −∞ while

lim infy→+∞ dist(u(·, y),Ki
0) ≥ dist(Ki

0,Ki
ξ) ≥ 3r0. By (3.4) there exists (y1, y2) ⊂ R

such that d(u(·, y1), u(·, y2)) ≥ r0 and, for any y ∈ (y1, y2) r0 ≤ dist(u(·, y),Ki
0) ≤

2r0. So in particular, by (∗)i, r0 ≤ dist(u(·, y),Ki), thus using (3.6) and (3.5) we
derive that ϕ(u) ≥

√
2h0r0 and the lemma follows.

By Lemma 3.6 there exists ξ1 ∈ Z such that

mi,ξ1 = min
ξ 6=0

mi,ξ.

Letting [ξ1] = {jξ1 : j ∈ N ∪ {0}}, still by Lemma 3.6, there exists ξ2 ∈ Z \ [ξ1]
such that

mi,ξ2 = min
ξ∈Z\[ξ1]

mi,ξ.

Assuming that ξ1, ξ2, . . . , ξn−1 have been already defined and that [ξ1, ξ2, . . . , ξn−1] =
{
∑n−1

ι=1 jιξι | jι ∈ N∪{0}} 6= Z, by Lemma 3.6, there exists ξn ∈ Z \ [ξ1, ξ2, . . . , ξn−1]
such that

mi,ξn = min
ξ∈Z\[ξ1,ξ2,...,ξn−1]

mi,ξ.
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Since we must have mi,ξn ≤ max{mi,1,mi,−1} the process must ends after a fi-
nite number of steps generating a finite set of integers {ξ1, ξ2, . . . , ξl} such that
[ξ1, . . . , ξl] = Z. By definition we have that if k1, k2 ∈ Z are such that k1 + k2 = ξι

for some ι ∈ {1, . . . , l} it is impossible that both k1, k2 belong to [ξ1, . . . , ξι−1].
Therefore we conclude that

if k1, k2 ∈ Z, k1 + k2 = ξι, then max{mi,k1 ,mi,k2} ≥ mi,ξι . (3.8)

As we will see in the next lemma, the property (3.8) allows to further characterize
the functions in Mi

ξι
whose action is close to mi,ξι .

Lemma 3.7 There exist δ0 ∈ (0, r0
2 ) and λ0 > 0 such that if ι ∈ {1, . . . , l}, u ∈Mi

ξι

and ϕ(u) ≤ mi,ξι + λ0 then

(i) if infz∈Ki
0
‖u(·, y0)− z‖H1(R) ≤ δ0 then dist(u(·, y),Ki

0) ≤ r0 for all y ≤ y0,

(ii) if infz∈Ki
ξι
‖u(·, y0)− z‖H1(R) ≤ δ0 then dist(u(·, y),Ki

ξι
) ≤ r0 for all y ≥ y0.

(iii) if ξ ∈ Z \ {0, ξι} then infz∈Ki
ξ
‖u(·, y)− z‖H1(R) > δ0 for all y ∈ R.

Proof. Set λ0 = 1
8 min{

√
h0
2 r0,mi,ξ1} and let δ0 ∈ (0,min{ r0

2 ,
√

λ0}) be such that

sup{F (q) | inf
z∈Ki

0

‖q − z‖H1(R) ≤ δ0} ≤ c(i) + λ0.

Let u ∈ Mi
ξι

be such that ϕ(u) ≤ mi,ξι + λ0 and assume that y0 ∈ R is such that
infz∈Ki

0
‖u(·, y0) − z‖H1(R) ≤ δ0. By (∗)i there exists z0 ∈ Ki

0 such that ‖u(·, y0) −
z0‖H1(R) ≤ δ0. We define

ũ(x, y) =


z0(x) if y ≤ y0 − 1,
u(x, y0)(y − y0 + 1) + z0(x)(y0 − y) if y0 − 1 ≤ y ≤ y0,
u(x, y) if y ≥ y0.

We have ũ ∈Mi
ξι

and so ϕ(ũ) ≥ mi,ξι . Then, setting

ϕy0
−∞(u) =

∫ y0

−∞
[
∫
R

1
2 |∂yu|2 dx + F (u(·, y)− c(i)] dy,

we obtain

mi,ξι ≤ ϕ(ũ) = ϕ(u)− ϕy0
−∞(u) +

∫ y0

y0−1

1
2

∫
R
|u(x, y0)− z0(x)|2dx dy +

+
∫ y0

y0−1
F (u(x, y0)(y − y0 + 1) + z0(x)(y0 − y))− c(i) dy

≤ ϕ(u)− ϕy0
−∞(u) + 1

2δ2
0 + λ0

from which, since ϕ(u) ≤ mi,ξι + λ0 we conclude that ϕy0
−∞(u) ≤ 3λ0. Assume by

contradiction that there is y1 ≤ y0 such that dist(u(·, y1),Ki
0) ≥ r0. Then by (3.4)
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there exists (y′1, y
′
0) ⊂ (y1, y0) such that d(u(·, y′1), u(·, y′0)) ≥ r0

2 and, for a.e y ∈
(y′1, y

′
0), dist(u(·, y),Ki

0) ∈ ( r0
2 , r0). In particular infz∈Ki ‖u(·, y) − z‖H1(R) ≥ r0

2 for
a.e. y ∈ (y′1, y

′
0) and using (3.6) and (3.5) we get the contradiction 3λ0 ≥ ϕy0

−∞(u) ≥√
h0
2 r0 ≥ 8λ0. Similarly one can show that if infz∈Ki

ξι
‖u(·, y0)− z‖H1(R) ≤ δ0 then

dist(u(·, y),Ki
ξι

) ≤ r0 for all y ≥ y0.
To prove the last part of the lemma we argue again by contradiction assuming that
there exist y0 ∈ R, ξ′ ∈ Z \ {0, ξι} and z0 ∈ Ki

ξ′ such that ‖u(·, y0)− z0‖H1(R) ≤ δ0.
We define

u1(x, y) =


u(x, y) if y ≤ y0,
u(x, y0)(y0 + 1− y) + z0(x)(y − y0) if y0 ≤ y ≤ y0 + 1,
z0(x) if y ≥ y0 + 1,

and

u2(x, y) =


z0(x) if y ≤ y0 − 1,
u(x, y0)(y − y0 + 1) + z0(x)(y0 − y) if y0 − 1 ≤ y ≤ y0,
u(x, y) if y ≥ y0.

We note that u1 ∈Mi
ξ′ and u2(· − ξ′T, ·) ∈Mi

ξι−ξ′ and thus, by (3.8) that ϕ(u1) +
ϕ(u2) ≥ mi,ξι + mi,ξ1 . Now, arguing as above, we obtain

ϕ(u) ≥ ϕ(u1) + ϕ(u2)− δ2
0 − 2λ0

which leads to the contradiction 4λ0 ≥ mi,ξ1 .

Lemma 3.7 can be combined with (3.5) to derive the following concentration
result which, together with Lemma 3.4, is the key compactness property of our
problem.

Lemma 3.8 There exists `0 > 0 such that if ι ∈ {1, . . . , l}, u ∈ Mi
ξι
, ϕ(u) ≤

mi,ξι + λ0 and dist(u(·, 0),Ki
0) = 3r0

2 then

dist(u(·, y),Ki
0) ≤ r0 ∀ y ≤ −`0 and dist(u(·, y),Ki

ξι
) ≤ r0 ∀ y ≥ `0.

Proof. By (3.5) we can fix `0 > 0 such that if I is any real interval with length
equal to `0 and u ∈ Xi is such that infz∈Ki ‖u(·, y) − z‖H1(R) > δ0 for a.e. y ∈ I

then ϕ(u) ≥ mi,ξl
+ 2λ0. By Lemmas 3.3 and 3.7, since dist(u(·, 0),Ki

0) = 3r0
2 , there

exist y− ∈ (−`0, 0) and y+ ∈ (0, `0) such that infz∈Ki
0
‖u(·, y−) − z‖H1(R) ≤ δ0 and

infz∈Ki
ξι
‖u(·, y−) − z‖H1(R) ≤ δ0. Then the lemma follows applying again Lemma

3.7.

Lemma 3.8 together with Lemmas 3.1 and 3.4 allows us to use the direct method
of the Calculus of Variation to show that the functional ϕ admits a minimum in each
classes Mi

ξι
, ι = 1, . . . , l. Indeed we have

Lemma 3.9 For any ι ∈ {1, . . . , l} there exists uι ∈ Mi
ξι

such that ϕ(uι) = mi,ξι

and ‖uι‖L∞(R2) ≤ R0.
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Proof. Let (un) ⊂ Mi
ξι

be such that ϕ(un) → mi,ξι . By (H2) we can assume
that ‖un‖L∞(R2) ≤ R0, indeed otherwise we can consider the minimizing sequence
ũn = max{min{un, R0},−R0}. Since lim dist(un(·, y),Ki

0) → 0 as y → −∞ and
lim infy→+∞ dist(un(·, y),Ki

0) ≥ 3r0 for any n ∈ N, by (3.4), we obtain that for
any n ∈ N there exists yn ∈ R such that dist(un(·, yn),Ki

0) = 3r0
2 . Then, setting

vn = un(·, ·+yn), we have vn ∈Mi
ξι

, ϕ(vn) = ϕ(un) and dist(vn(·, 0),Ki
0) = 3r0

2 . We
can assume that ϕ(vn) ≤ mi,ξι + λ0 for any n ∈ N and, by Lemma 3.8, we obtain
that for any n ∈ N

dist(vn(·, y),Ki
0) ≤ r0, ∀y ≤ −`0 and dist(vn(·, y),Ki

ξι
) ≤ r0, ∀y ≥ `0. (3.9)

By Lemma 3.4 there exists uι ∈ Xi such that along a subsequence vn → uι weakly
in H1(Ω) for any Ω ⊂⊂ R2 and by Lemma 3.1 we have ϕ(uι) ≤ mi,ξι . Moreover,
clearly ‖uι‖L∞(R2) ≤ R0. Finally, by Lemma 3.5 we have

dist(uι(·, y),Ki
0) ≤ r0 ∀y ≤ −`0 and dist(uι(·, y),Ki

ξι
) ≤ r0 ∀y ≥ `0 (3.10)

and so, by (3.10) and Lemma 3.3 we conclude that dist(uι(·, y),Ki
0) → 0 as y → −∞

and dist(uι(·, y),Ki
ξι

) → 0 as y → +∞, i.e. uι ∈Mi
ξι

, and the lemma is proved.

By Lemma 3.9, we can now conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 Let ι ∈ {1, . . . , l} and let uι be given by Lemma 3.9. By
Lemma 3.9, we have∫
R2
|∇(uι +h)|2 +a(x)W (uι +h)−|∇uι|2 +a(x)W (uι)dxdy = ϕ(uι +h)−ϕ(uι) ≥ 0

for all h ∈ C∞0 (R2). Since ‖uι‖L∞(R2) ≤ R0, we obtain that uι is a weak solution to
−∆u + a(x)W ′(u) = 0 on R2 and then, by standard elliptic arguments, that uι is
a classical solution with ‖uι‖C2(R2) ≤ C. The uniform C2 estimates easily implies
that uι satisfies the right boundary conditions. Indeed, assume by contradiction
that uι(x, y) does not verify uι(x, y) → σi as x → −∞ uniformly with respect to
y ∈ R. Then, there exist δ > 0 and a sequence (xn, yn) ∈ R2 with xn → −∞ such
that |uι(xn, yn)− σi| ≥ 2δ for all n ∈ N. The C2-estimate above implies that there
exists ρ > 0 such that

|uι(x, y)− σi| ≥ δ ∀(x, y) ∈ Bρ(xn, yn), n ∈ N. (3.11)

If along a subsequence, yn → y0 we easily obtain a contradiction. In fact in this case
we have |uι(x, y) − σi| ≥ δ for all (x, y) ∈ B ρ

2
(xn, y0), n ≥ n0 which is not possible

since uι(·, y) ∈ Γi for a.e. y ∈ R. Then, we must have |yn| → ∞. Assume for
example that along a subsequence yn → +∞. Since, by compactness, there exists
L > 0 such that ‖z − σi‖L∞(−∞,−L) ≤ δ

2 for any z ∈ Ki
0, by 3.11, we obtain

lim sup
y→+∞

dist(uι(·, y),Ki
0) > 0

which is a contradiction since uι ∈ Mi
0. One argues analogously in the other cases.
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4 About the assumption (∗)i.

In this last section we discuss the assumption (∗)i. First of all we want to prove
that (∗)i is satisfied if and only if the set Ki is not a continuum, precisely

(∗)i does not hold ⇐⇒ Ki is homeomorphic to R (4.1)

To this aim we prove some properties of the function X : Ki → R introduced in
Section 2.

Remark 4.1 For any fixed x0 ∈ R and s ∈ R such that |s − σj(i)| ≤ ρ0, consider
the functional

Fx0(q) =
∫ ∞

x0

1
2 |q̇(x)|2 + a(x)W (q(x)) dx

on the class

Γi
s,x0

= {q ∈ σj(i) + H1([x0,+∞)) | q(x0) = s, ‖q − σj(i)‖L∞([x0,+∞)) ≤ 2ρ0}

It is easy to prove that Fx0 admits a minimum on Γi
s,x0

and since, by (2.2), Fx0 is
strictly convex on Γi

s,x0
such minimum is unique.

We have

Lemma 4.2 The function X : Ki → R is continuous and invertible on X(Ki) with
continuous inverse.

Proof. We consider the case σi < σj(i) (we can argue in the same way if σj(i) < σi).
First, note that since each q ∈ Ki is a minimum of F , using the uniqueness of the
solution of the Cauchy problem related to −q̈(x) + a(x)W ′(q(x)) = 0, we obtain

σi < q(x) < σj(i), ∀x ∈ R (4.2)

for every q ∈ Ki.
Now, to prove that X is one-to-one, let q, q̄ ∈ Ki be such that X(q) = X(q̄) ≡ x0.
Then, by definition of X and (4.2), we have q(x0) = q̄(x0) ≡ s, σj(i)−s = ρ0 and ‖q−
σj(i)‖L∞([x0,+∞)) ≤ ρ0, ‖q̄ − σj(i)‖L∞([x0,+∞)) ≤ ρ0. Therefore q|[x0,+∞), q̄|[x0,+∞) ∈
Γi

s,x0
and since q and q̄ are minima of F on Γi, by Remark 4.1 it follows that

q(x) = q̄(x) for all x ∈ [x0,+∞). Then, by uniqueness of the Cauchy problem, we
conclude q ≡ q̄.
To prove that X : Ki → R is continuous, let (qn) ⊂ Ki and q0 ∈ Ki be such that
‖qn − q0‖H1(R) → 0. Then, by uniform convergence, (X(qn)) is bounded in R and
by Lemma 2.3, we conclude X(qn) → X0 = X(q0).
Finally, to prove that X−1 : X(Ki) → Ki is continuous, let (qn) ⊂ Ki and q0 ∈ Ki be
such that X(qn) → X(q0). Then, by Lemma 2.3, every subsequence of (qn) admits
a subsequence which converges to some q̃0 ∈ Ki and X(q̃0) = X(q0). Since X is
one-to-one, q̃0 ≡ q0 and we can conclude ‖qn − q0‖H1(R) → 0.
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The next result gives the essential link between the condition (∗)i and the func-
tion X. It will be used to give some examples in which (∗)i is verified.

Lemma 4.3 If X(Ki) 6= R then (∗)i holds.

Proof. Let x0 ∈ R \X(Ki). Then Lemma 2.3 readily implies that there exist h0 > 0
and η0 ∈ (0, T

2 ) such that

if q ∈ Γi and X(q) ∈ [x0 − η0, x0 + η0] then F (q) ≥ c(i) + h0. (4.3)

Therefore, letting J0 = [x0 − η0, x0 + η0], there is no q ∈ Ki with X(q) ∈ J0. By
periodicity of the potential, we also obtain that if q ∈ Γi and X(q) ∈ Jξ = ξT + J0

for some ξ ∈ Z then F (q) ≥ c(i) + h0 and so q /∈ Ki. Denoting Iξ the connected
component of R \ (∪ξ∈ZJξ) which has on the right the interval Jξ and setting

Ki
ξ = {q ∈ Ki |X(q) ∈ Iξ}, ξ ∈ Z

we obtain that Ki
ξ ∩ Ki

ξ′ = ∅ whenever ξ 6= ξ′ and that Ki = ∪ξ∈ZKi
ξ. Hence, (∗)i

follows if for every (qn) ⊂ Ki
0 there exists q ∈ Ki

0 such that, along a subsequence,
‖qn − q‖H1(R) → 0.
To prove this last point, observe that since I0 is bounded and X(qn) ∈ I0, up to a
subsequence X(qn) → X0 ∈ I0. Then, by Lemma 2.3, there exists q ∈ Ki such that
along a subsequence, ‖qn − q‖H1(R) → 0 and X(q) = X0. Now, since F (q) = c(i),
by (4.3) it follows X(q) ∈ I0 and thus q ∈ Ki

0.

Lemmas 4.2 and 4.3 show that if (∗)i does not hold then X is an homeomorphism
from Ki onto R. Finally, since (∗)i implies that Ki is not connected, if (∗)i holds,
there is no homeomorphism between Ki and R. Thus (4.1) is verified.

We shall now give some examples in which (∗)i is satisfied. First we mention that
if a is a small continuous non-constant periodic perturbation of a positive constant,
the assumption (∗)i can be checked by mean of Poincaré Melnikov methods. We
refer to [6] for this kind of arguments. Here, following [3] and [4], we show that
it is always possible, given a non negative periodic function a, to perturb it with
a function, having L∞ norm as small as we want, in order that for the perturbed
equation the condition (∗)i is satisfied for any i ∈ {1, . . . ,m}.

More precisely, let a be any continuous non negative T -periodic function and b be
a continuous positive non constant T -periodic function. Without loss of generality,
we can assume T = 1. Let an(x) = a(x) + b(x

n), n ∈ N, and note that an is
n-periodic. We consider the perturbed equation

−∆u(x, y) + an(x)W ′(u(x, y)) = 0, (x, y) ∈ R2, (4.4)

and we study the structure of the corresponding set of one dimensional minimal
solutions.
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First of all note that the functional corresponding to the one dimensional problem

Fn(q) =
∫
R

1
2 |q̇(x)|2 + an(x)W (q(x)) dx, q ∈ E

satisfies all the properties stated in Section 2 for all n ∈ N. In particular, for any
i ∈ {1, . . . ,m} there exists jn(i) ∈ {1, . . . ,m} \ {i} such that the functional Fn

admits a minimum on the set

Γi
n = {q ∈ {Fn < +∞} | lim

t→−∞
q(t) = σi, lim

t→+∞
q(t) = σjn(i)}

at level cn(i). We will prove that the corresponding minimal set Ki,n satisfies as-
sumption (∗)i for all i ∈ {1, . . . ,m} whenever n is sufficiently large.

To this aim we note that, setting F (q) =
∫
R

1
2 |q̇(x)|2 + aW (q(x)) dx and F (q) =∫

R
1
2 |q̇(x)|2+aW (q(x)) dx, where a = maxR a+maxR b and a = minR a+minR b, we

have F (q) ≤ Fn(q) ≤ F (q), for all q ∈ E, n ∈ N. Then, using a simple comparison
argument, one can see that the result stated in Lemma 2.2 holds true uniformly with
respect to n. In particular, there exist δ̄, λ̄ and ¯̀such that if q ∈ Γi

n∩{Fn ≤ cn(i)+λ̄}
and min1≤j≤m |q(x)− σj | ≥ δ̄ for all x ∈ (s, p) ⊂ R then p− s ≤ ¯̀.

Now note that, since b is not constant, there exists x+ and x− in [0, 1) such that
b = b(x+) = maxx∈[0,1) b(x) > minx∈[0,1) b(x) = b(x−) = b. Then, setting β = b − b
there exists η > 0 such that

min
|x−x+|≤2η

b(x) ≥ b− β
4 and max

|x−x−|≤2η
b(x) ≤ b + β

4 .

When we consider the function b(x
n) we obtain analogously

min
|x−nx+|≤2nη

b(
x

n
) ≥ b− β

4 and max
|x−nx−|≤2nη

b(
x

n
) ≤ b + β

4 . (4.5)

Therefore we obtain

Lemma 4.4 There exist n0 ∈ N, n0 ≥
¯̀

η , and h0 > 0 such that if n ≥ n0, q ∈ Γi
n

and X(q) ∈ Jn
0 = [n(x+ − η), n(x+ + η)] then Fn(q) ≥ cn(i) + h0.

Proof. By Lemma 2.2, if q ∈ Γi
n and Fn(q) ≤ cn(i) + λ̄, there exists (s, p) ⊂

(X(q)− ¯̀, X(q)+ ¯̀) such that the path q((s, p)) is outside the set ∪1≤i≤mBδ̄(σi) and
moreover |q(s)− σi| = |q(p)− σj(i)| = δ̄. Then

ρ0

2 ≤ |q(s)−q(p)| ≤
∫ p

s
|q̇(x)| dx ≤

√
(p− s)(

∫ p

s
|q̇(x)|2 dx)

1
2 ≤

√
2(p− s)(cn(i) + λ̄)

Then, setting µ̄ = inf{W (x) |x 6∈ ∪1≤i≤mBδ̄(σi)}, if n ≥ ¯̀

η we obtain∫
|x−X(q)|≤nη

W (q) dx ≥
∫ p

s
W (q) dx ≥ µ̄(p− s) ≥ µ̄ρ2

0

8(cn(i)+λ̄)
≥ ε0,
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for some ε0 > 0.
Arguing as in the proof of Lemma 2.3, we can prove that there exists λ0 ∈ (0, λ̄)
and `0 > ¯̀ such that if q ∈ Γi

n and Fn(q) ≤ cn(i) + λ0 then∫
|x−X(q)|≥`0

W (q) dx ≤ βε0

4b
.

Now, let q ∈ Γi
n with X(q) ∈ [n(x+ − η), n(x+ + η)] and let j ∈ Z be such that

[n(x+−η)+j, n(x++η)+j] ⊂ [n(x−−η)−1, n(x−+η)+1]. Then, if Fn(q) ≤ cn(i)+λ0,
by the previous estimate, for n0 ≥ `0

η , using (4.5), we obtain

Fn(q)− Fn(q(·+ j)) =
∫
R

(b(
x

n
)− b(

x− j

n
))W (q) dx

≥ β
2

∫
|x−nx+|≤2nη

W (q) dx− b

∫
|x−nx+|≥2nη

W (q) dx

≥ β
2

∫
|x−X(q)|≤nη

W (q) dx− b

∫
|x−X(q)|≥nη

W (q) dx ≥ βε0

4
.

Then the lemma follows choosing n0 ≥ `0
η and h0 = min{λ0,

βε0

4 }.

Lemma 4.4 says, in particular, that if n ≥ n0 there is no q ∈ Ki,n with X(q) ∈ Jn
0 .

Then, by Lemma 4.3, we obtain that (∗)i holds for any i ∈ 1, . . . ,m.

Finally we note that in Lemma 4.4 no restriction is made on the L∞ norm of
b. This shows that (∗)i holds for a dense subset of the set of periodic, positive and
continuous functions. Moreover, we remark that the above argument is based on the
result stated in Lemma 4.4 which, as one can easily see, is still true if we perturb
an with a periodic function having an L∞ norm small enough. This shows that (∗)i

holds for an open and dense subset of the set of periodic, positive and continuous
functions.
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