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Université de Bourgogne Franche-Comté,
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Abstract. In any dimension N ≥ 1 and for given mass m > 0, we revisit the nonlinear scalar field

equation with an L2 constraint: 
−∆u = f(u)− µu in RN ,

‖u‖2L2(RN ) = m,

u ∈ H1(RN ),

(Pm)

where µ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and

satisfies weak mass supercritical conditions, we show the existence of ground states to (Pm) and reveal the

basic behavior of the ground state energy Em as m > 0 varies. In particular, to overcome the compactness

issue when looking for ground states, we develop robust arguments which we believe will allow treating other

L2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain

infinitely many radial solutions for any N ≥ 2 and establish the existence and multiplicity of nonradial sign-

changing solutions when N ≥ 4. Finally we propose two open problems.
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1 Introduction

We are concerned with the nonlinear scalar field equation with an L2 constraint:
−∆u = f(u)− µu in RN ,

‖u‖2L2(RN ) = m,

u ∈ H1(RN ).

(Pm)
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Here N ≥ 1, f ∈ C(R,R), m > 0 is a given constant and µ ∈ R will arise as a Lagrange multiplier. In

particular µ ∈ R does depend on the solution u ∈ H1(RN ) and is not a priori given.

The main feature of (Pm) is that the desired solutions have an a priori prescribed L2-norm. In

the literature, solutions of this type are often referred to as normalized solutions. A strong motivation

to study (Pm) is that it arises naturally in the search of stationary waves of nonlinear Schrödinger

equations of the following form

iψt + ∆ψ + g(|ψ|2)ψ = 0, ψ : R+ × RN → C. (1.1)

Here by stationary waves we mean solutions of (1.1) of the special form ψ(t, x) = eiµtu(x) with a

constant µ ∈ R and a time-independent real valued function u ∈ H1(RN ). The research of such type

of equations started roughly forty years ago [14, 15, 31, 32, 42] and it now lies at the root of several

models directly linked with current applications, such as nonlinear optics, the theory of water waves.

For these equations, finding solutions with a prescribed L2-norm is particularly relevant since this

quantity is preserved along the time evolution.

Under mild conditions on f , one can introduce the C1 functional

I(u) :=
1

2

∫
RN

|∇u|2dx−
∫
RN

F (u)dx

on H1(RN ), where F (t) :=
∫ t

0
f(τ)dτ for t ∈ R. For any m > 0, let

Sm :=
{
u ∈ H1(RN ) | ‖u‖2L2(RN ) = m

}
.

It is clear that solutions to (Pm) correspond to critical points of the functional I constrained to the

sphere Sm. Also, as may be well known, the study of (Pm) and the type of results one can expect

depend on the behavior of the nonlinearity f at infinity. In particular, this behavior determines

whether I is bounded from below on Sm and so impacts on the choice of the approaches to search for

constrained critical points.

In the present paper we shall focus on the mass supercritical case, that is, when I is unbounded

from below on Sm for any m > 0. Compared with the mass subcritical case, where the constrained

functional I|Sm
is bounded from below and coercive, more efforts are always needed in the study of the

mass supercritical case. Indeed, even just aiming for an existence result, one has to identify a suspected

critical level since it is no more possible to search for a global minimum of I on Sm. Moreover, an

arbitrary Palais-Smale sequence seems not necessarily bounded in H1(RN ) let alone being strongly

convergent up to a subsequence (and up to translations in RN if necessary).

The first contribution to the mass supercritical case was made in [24]. To make it more precise, we

recall below the conditions introduced there.

(H0) f : R→ R is continuous and odd.

(H1) There exist α, β ∈ R satisfying 2 + 4/N < α ≤ β < 2∗ such that

0 < αF (t) ≤ f(t)t ≤ βF (t) for any t ∈ R \ {0},

where 2∗ := 2N
N−2 for N ≥ 3 and 2∗ := +∞ when N = 1, 2.

(H2) The function F̃ (t) := f(t)t− 2F (t) is of class C1 and satisfies

F̃ ′(t)t >
(

2 +
4

N

)
F̃ (t) for any t 6= 0.
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In [24], under the conditions (H0) and (H1), the first author obtained a radial solution at a mountain

pass value when N ≥ 2. Moreover, when (H2) is also assumed, the existence of ground states was

proved in any dimension N ≥ 1. Here by a ground state it is intended a solution u to (Pm) that

minimizes the functional I among all the solutions to (Pm):

dI|Sm
(u) = 0 and I(u) = inf{I(v) | dI|Sm

(v) = 0}.

Afterwards, a multiplicity result was established by Bartsch and de Valeriola in [3]. When N ≥ 2

and f satisfies (H0) and (H1), they derived infinitely many radial solutions from a fountain theorem

type argument. In the very recent paper [23], Ikoma and Tanaka provided an alternative proof for

this multiplicity result by exploiting an idea related to symmetric mountain pass theorems. One may

also refer to [5, 6] for another proof which is based on a natural constraint approach but requires

the additional assumption (H2). More globally, the search of normalized solutions for problems that

present a mass supercritical character is now a subject in full development. We refer, for example, to

[1, 4, 7, 9, 10, 12, 17, 20, 37, 40, 41].

Our aim in this work is to make a more in-depth study of (Pm) in the mass supercritical case.

First, we relax some of the classical growth assumptions on f . For example, as one may observe, the

condition (H1) was required in all the previous papers [3, 5, 6, 23, 24]. In particular, the first part of

this condition, i.e.,

there exists α > 2 +
4

N
such that 0 < αF (t) ≤ f(t)t for any t 6= 0, (1.2)

was used in a technical but essential way not only in showing that the under study problem is mass

supercritical but also in obtaining bounded constrained Palais-Smale sequences. We shall show that,

under a weak version of the monotonicity condition (H2), one can actually replace (1.2) by a weaker

and more natural mass supercritical condition. As a consequence, we manage to extend the previous

results on the existence of ground states and the multiplicity of radial solutions. Moreover, we address

new issues, such as the monotonicity of the ground state energy as a function of m > 0 or the existence

of infinitely many nonradial sign-changing solutions. Finally, we stress that all our results are obtained

only assuming that the nonlinearity f , as any function built on f , is continuous. In contrast to the

cases where more regularity is assumed on the data, several classical tools are not available anymore

and this forces us to develop, on several occasions, more robust proofs. See in particular, Remarks 3.2,

4.2 and 4.3, in that direction.

Before stating the main results of this paper, let us present our conditions on f .

(f0) f : R→ R is continuous.

(f1) limt→0 f(t)/|t|1+4/N = 0.

(f2) When N ≥ 3, limt→∞ f(t)/|t|
N+2
N−2 = 0.

When N = 2, limt→∞ f(t)/eγt
2

= 0 for any γ > 0.

(f3) limt→∞ F (t)/|t|2+4/N = +∞.

(f4) t 7→ F̃ (t)/|t|2+4/N is strictly decreasing on (−∞, 0) and strictly increasing on (0,∞).

(f5) When N ≥ 3, f(t)t < 2N
N−2F (t) for all t ∈ R \ {0}.

The conditions (f0)− (f3) are somehow standard. They show that (Pm) is Sobolev subcritical but

mass supercritical. (f4) is a weaker version of (H2) and plays a crucial role in this paper. In particular,
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it is under this condition that we can use (f3) instead of (1.2). The condition (f5) is weaker than

the second part of (H1) and only needed, in some dimension, to ensure that the Lagrange multipliers

are positive. This proves crucial in our approaches to guarantee that certain bounded Palais-Smale

sequences are strongly convergent up to a subsequence (and up to translations if necessary). At some

points, we shall also make use of the following condition

(f6) when N ≥ 3, limt→0 f(t)t/|t|
2N

N−2 = +∞.

As an example of the nonlinearity that fulfills (f0)− (f6), setting

αN :=


1, for N = 1, 2,

4

N(N − 2)
, for N ≥ 3,

we have the odd continuous function

f(t) :=
[(

2 +
4

N

)
ln
(
1 + |t|αN

)
+
αN |t|αN

1 + |t|αN

]
|t|4/N t

with the primitive function F (t) := |t|2+4/N ln
(
1 + |t|αN

)
. In particular, this function does not satisfy

(1.2). Since (H1) implies that

min{|t|α, |t|β}F (1) ≤ F (t) ≤ f(t)t ≤ βmax{|t|α, |t|β}F (1) for any t ∈ R,

one can also see that the conditions (f0)− (f6) are weaker than the previous ones (H0)− (H2).

We are now in the position to present our main results. The first one concerns the existence of

ground states and it reads as follows.

Theorem 1.1 Let N ≥ 1 and f satisfy (f0)− (f4).

(i) If the condition (f5) is satisfied, then (Pm) admits a ground state for any m > 0.

(ii) Assume that f is odd and that (f5) holds for N ≥ 5. Then (Pm) admits a positive ground state

for any m > 0.

In both cases, for any ground state the associated Lagrange multiplier µ is positive.

Remark 1.1 (i) As we shall see, the condition (f4) permits to reduce the search of a ground state to

a minimization problem set on a submanifold of Sm. This is a specific feature of mass supercritical

problems that conditions of the type of (H2) or (f4) appear necessary to consider the existence of

a ground state. At least, there are no results so far without imposing such conditions or related

ones as, for example, in [20, 40, 41].

(ii) Under the condition (f4), it is likely that considering our ground states as stationary solutions of

the associated evolution problem, in the sense of (1.1), one could prove that these ground states

are unstable by blow-up in finite time. We refer to the classical paper [13] in that direction, see

also [28] for further developments.

Remark 1.2 In view of the role that condition (1.2) plays in the constrained mass supercritical prob-

lems, it is reminiscent of the classical Ambrosetti-Rabinowitz condition introduced in [2] for uncon-

strained superlinear problems. Indeed, our idea of weakening (1.2) under the monotonicity condition

(f4) is somehow inspired by the papers [25, 29, 33] where the authors demonstrated that under a Nehari

type condition it is possible to find solutions without using the Ambrosetti-Rabinowitz condition.
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Remark 1.3 As one will see in Remark 1.7, under the assumptions of Theorem 1.1 (ii), we can

actually obtain a positive radially symmetric ground state after having proved the existence of ground

states. But this does not mean that, to prove Theorem 1.1 (ii), one can work directly in the subspace

of radially symmetric functions where additional compactness is available when N ≥ 2. In fact, in

related problems, quite often it is shown at some point that it is not restrictive to work with sequences

of functions which are Schwartz symmetric, see for example [11, Lemma 4.2], for an illustration of

this strategy. However, this possibility relies particularly on, for the present problem, a monotonicity

property of the function [f(t)t − (2 + 4/N)F (t)]/t2 that seems not to be guaranteed under the setting

of Theorem 1.1 (ii). For more details in this direction, we refer to Remark 4.3.

Let us now explain the strategy for the proof of Theorem 1.1 and highlight some of the difficulties

encountered. First, for given m > 0, we identify the suspected ground state energy

Em := inf
u∈Pm

I(u), (1.3)

where Pm is the Pohozaev manifold defined by

Pm :=
{
u ∈ Sm

∣∣∣ P (u) :=

∫
RN

|∇u|2dx− N

2

∫
RN

F̃ (u)dx = 0
}
.

As will be shown in Lemma 2.5, Pm is nonempty and Em > 0. Since Pm contains all the possible

critical points of I restricted to Sm, our task is to show that Em is a critical level of I|Sm
.

A difficulty appears when we try to construct a bounded Palais-Smale sequence of I|Sm
at the level

Em. Indeed, under our assumptions on f , the information that a Palais-Smale sequence {un} ⊂ Sm
satisfies P (un) = on(1), seems no more sufficient to prove its boundedness. To overcome this problem,

in Lemma 4.1, we show that there exists one Palais-Smale sequence at the level Em which satisfies

exactly

P (un) = 0 for any n ≥ 1.

Since I is coercive on Pm by Lemma 2.5, the boundedness follows. As one will see, our proof of

Lemma 4.1 borrows some arguments from Bartsch and Soave [6, 7]. However, since F̃ is not required

to be of class C1, we need to adapt their argument by making use of techniques due to Szulkin and

Weth [43, 44]. To be more precise, for any u 6= 0 and s ∈ R, let (s ? u)(x) := eNs/2u(esx) for almost

everywhere x ∈ RN . In Lemma 2.4, we show that a number s(u) ∈ R exists uniquely such that

P (s(u) ? u) = 0 and it is continuous as a mapping of u 6= 0. Then, inspired by [43, Proposition 2.9],

we prove the C1 regularity for the free functional

Ψ(u) := I(s(u) ? u) =
1

2
e2s(u)

∫
RN

|∇u|2dx− e−Ns(u)

∫
RN

F (eNs(u)/2u)dx

on H1(RN )\{0}, see Lemma 4.2. After that, we manage to produce the desired Palais-Smale sequence

by adapting the arguments of [7, Proposition 3.9] to the C1 constrained functional J := Ψ|Sm
, see

Lemma 4.5 and the proof of Lemma 4.1.

Since we search for solutions having a given L2-norm, we must deal with a possible lack of compact-

ness for the above bounded Palais-Smale sequence {un} ⊂ Pm. It is not difficult to see that, up to a

subsequence and up to translations in RN , the sequence {un} has a nontrivial weak limit u ∈ H1(RN ).

Moreover, s := ‖u‖2L2(RN ) ∈ (0,m],

−∆u = f(u)− µu for some µ ∈ R, (1.4)

and u ∈ Ps. By a technical argument, we also prove that limn→∞ I(un − u) ≥ 0 and hence

Em = lim
n→∞

I(un) = I(u) + lim
n→∞

I(un − u) ≥ I(u) ≥ Es.
5
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Clearly, the compactness would be proved if one can show that Em < Es for any s ∈ (0,m) or more

globally that Em is strictly decreasing as a function of m > 0. Therefore, from this observation, the

study of the monotonicity of the function m 7→ Em arises naturally as a fundamental problem. In this

direction, we have the following theorem which also reveals some other basic properties of Em.

Theorem 1.2 Let N ≥ 1 and f satisfy (f0)−(f4). Then the function m 7→ Em is positive, continuous,

nonincreasing and limm→0+ Em = +∞. Moreover, when N = 1, 2, we have

(i) Em is strictly decreasing in m > 0,

(ii) limm→∞Em = 0.

When N ≥ 3, Items (i) and (ii) hold if f also satisfies (f5) and (f6) respectively. In particular, when

f is odd and N = 3, 4, we have Item (i) without assuming (f5).

One should however note that the strict decrease of Em can be established only after having proved

Theorem 1.1 and so it actually does not play a role in recovering the compactness. As we shall see,

what really works in practice are the basic property that Em is nonincreasing and a companion result

Lemma 3.3. They permit to reduce the problem of strong convergence to the one of showing that the

Lagrange multiplier µ ∈ R in (1.4) is positive. For more details, we refer to the last part of the proof

of Lemma 4.6.

Remark 1.4 (i) To prove Theorem 1.2 (and Lemma 3.3), we develop robust arguments which we

believe will allow treating other L2 constrained problems in general mass supercritical settings.

In this direction, we refer to Remark 3.2 for more details.

(ii) When (f6) does not hold, the limit limm→∞Em can be positive, see Remark 7.2.

(iii) From a later result, Lemma 4.3, and the below characterization

Em := inf
u∈Pm

I(u) = inf
u∈Sm

J(u),

one can see that any minimizer u ∈ Pm of (1.3) is a solution and thus a ground state to (Pm).

However, despite this fact, it seems not a good choice to prove Theorem 1.1 by solving directly

the minimization problem. Indeed, when our Palais-Smale sequence {un} ⊂ Pm is replaced by

an arbitrary minimizing sequence of (1.3), up to a subsequence and up to translations in RN , it

still has a nontrivial weak limit u ∈ H1(RN ) with s := ‖u‖2L2(RN ) ∈ (0,m] but the information

u ∈ Ps and limn→∞ I(un − u) ≥ 0 seems now out of reach. This also explains why we introduce

Palais-Smale sequences to solve the minimization problem (1.3).

Our next result concerns the existence of infinitely many radial solutions when N ≥ 2.

Theorem 1.3 Assume that N ≥ 2 and f is odd satisfying (f0)−(f5). Then (Pm) has infinitely many

radial solutions {uk}∞k=1 for any m > 0. In particular,

I(uk+1) ≥ I(uk) > 0 for each k ∈ N+

and I(uk)→ +∞ as k →∞.

Remark 1.5 It is clear that Theorem 1.3 extends [5, Theorem 1.4] where the stronger conditions

(H0) − (H2) were assumed. Despite the fact that the multiplicity result in [3, 23] did not require a

monotonicity condition like (f4), our Theorem 1.3 is not a special case of theirs. Indeed, the conditions

and thus the results are mutually non-inclusive and the methods are also different.
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We now give some ideas of the proof of Theorem 1.3. We work in H1
r (RN ), the space of radially

symmetric functions in H1(RN ). Since the constrained functional J := Ψ|Sm
is even, using the genus

theory, it is not difficult to define an infinite sequence of minimax values Em,k. In particular, Em,k is

positive and nondecreasing in k ≥ 1, see Lemma 5.4. By a similar argument as in the proof of Theorem

1.1, we establish Lemma 5.2 which will be used to ensure the existence of a Palais-Smale sequence

{ukn}∞n=1 ⊂ Pm ∩ H1
r (RN ) for the constrained functional I|Sm∩H1

r (RN ) at each level Em,k. Regarding

the problem of strong convergence, it can be solved by the compactness result Lemma 5.5 whose proof

uses essentially the fact that the inclusion H1
r (RN ) ↪→ Lp(RN ) is compact for any 2 < p < 2∗. To

conclude the proof, we also need to show that Em,k is unbounded. Since the Pohozaev manifold Pm is

only a topological manifold, it seems no more possible to prove this by a standard genus type argument

for I|Pm
. Fortunately, inspired by [15, Theorem 9], we manage to justify this key point by developing

a new argument, see Lemma 5.7 and the proof of Lemma 5.6.

In the last part of our study, we are interested in the construction of nonradial sign-changing

solutions to (Pm). To state our results in this direction, we introduce some notations at first. Assume

that N ≥ 4 and 2 ≤ M ≤ N/2. Let us fix a transformation ω ∈ O(N) such that ω(x1, x2, x3) =

(x2, x1, x3) for any x1, x2 ∈ RM and x3 ∈ RN−2M , where x = (x1, x2, x3) ∈ RN = RM ×RM ×RN−2M .

We define the Sobolev space of odd functions

Xω :=
{
u ∈ H1(RN ) | u(ωx) = −u(x) for a.e. x ∈ RN

}
,

which clearly does not contain nontrivial radial functions. Let H1
O1

(RN ) denote the subspace of

invariant functions with respect to O1, where O1 := O(M) × O(M) × id ⊂ O(N) acts isometrically

on H1(RN ). We also consider O2 := O(M) × O(M) × O(N − 2M) ⊂ O(N) acting isometrically

on H1(RN ) with the subspace of invariant functions denoted by H1
O2

(RN ). Here we agree that the

components corresponding to N − 2M do not exist when N = 2M . It is clear that H1
O2

(RN ) is in

general a subspace of H1
O1

(RN ) but coincides with the latter when N = 2M .

Now, for notational convenience, we set

X1 := H1
O1

(RN ) ∩Xω and X2 := H1
O2

(RN ) ∩Xω.

In any dimension N ≥ 4, we have the following existence result of nonradial solutions.

Theorem 1.4 Assume that N ≥ 4 and f is odd satisfying (f0) − (f5). Then (Pm) has a nonradial

solution v ∈ X1 for any m > 0. In particular, v changes signs, minimizes I among all the solutions of

(Pm) belonging to X1 and I(v) > 2Em.

Remark 1.6 The nonradial solution obtained here can be regarded as a ground state within the sub-

space X1. When N ≥ 4 and N − 2M 6= 0, X1 does not embed compactly into any Lp(RN ) and so, in

this case, finding that nonradial solution is similar to the search of a ground state in H1(RN ).

When N = 4 or N ≥ 6, we can choose M ≥ 2 such that N − 2M 6= 1. In this case, we can obtain

infinitely many nonradial solutions in X2.

Theorem 1.5 Assume that N = 4 or N ≥ 6, N − 2M 6= 1, and f is odd satisfying (f0)− (f5). Then

(Pm) possesses infinitely many nonradial solutions {vk}∞k=1 ⊂ X2 for any m > 0. In particular, all

these nonradial solutions change signs,

I(vk+1) ≥ I(vk) > 0 for each k ∈ N+

and I(vk)→ +∞ as k →∞.
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For the free nonlinear scalar field equation

−∆u = f(u)− µu, u ∈ H1(RN ),

the question of the existence of nonradial solutions was raised by Berestycki and Lions [15, Section

10.8] and it has been much studied over the past few decades. A positive answer was first given by

Bartsch and Willem [8] in dimension N = 4 and N ≥ 6. The idea of working within the subspaces

as X2 := H1
O2

(RN ) ∩ Xω originates from [8]. Later on, Lorca and Ubilla [34] coped with the case

N = 5 by introducing the O1 action on H1(RN ). In a more recent work [36], using Lyapunov-Schmidt

reduction methods, Musso, Pacard and Wei constructed nonradial solutions for any dimension N ≥ 2.

We also would like to mention the most recent advance made in [35]. Under the general Berestycki-

Lions conditions, Mederski proved the existence and multiplicity of nonradial solutions when N ≥ 4;

see also [26] for an alternative proof with more elementary arguments.

However, in sharp contrast to the above free case, the study of nonradial solutions is almost

unexplored in the literature for the constrained problem (Pm). The first and currently the only paper

to deal with normalized nonradial solutions is [27] where the authors considered the mass subcritical

case in a very general setting. In the present paper, regarding the issue of normalized nonradial

sign-changing solutions, we somehow extend the existence and multiplicity results of [27] to the mass

supercritical case. To prove Theorems 1.4 and 1.5, we shall adapt the arguments of Theorems 1.1 and

1.3.

The remaining part of this paper is organized as follows. We present in Section 2 some preliminary

results and then study in Section 3 some basic properties of the function m 7→ Em. In Section 4 we

complete the proofs of Theorems 1.1 and 1.2. Sections 5 and 6 deal with the existence of infinitely many

radial solutions and the existence and multiplicity of nonradial sign-changing solutions respectively.

Finally, in Section 7, we justify Remark 1.4 (ii) and propose two open problems.

Remark 1.7 After the completion of this work, we were informed by J. Mederski of the manuscript

[16] which has some overlap with ours, at the level of Theorems 1.1 and 1.2. In [16], for N ≥ 3, a new

view to the problem of the existence of a ground state is introduced. The basic idea is to transform the

problem of the existence of a ground state on Sm to the search of a global minima for I on

P :=
{
u ∈ H1(RN ) \ {0}

∣∣ ‖u‖2L2(RN ) ≤ m and P (u) = 0
}
.

This interesting approach relies, at least so far, on stronger regularity assumptions and in particular

the function F̃ needs to be of class C1, see [16, Theorem 1.1]. The approach of [16] does not thus

permit to recover the results of Theorems 1.1 and 1.2 in full generality. Nevertheless the paper [16]

proved useful to show that, for odd functions satisfying (f0)− (f4), if Em is reached then (Pm) admits

a Schwarz symmetric ground state. Indeed, let v ∈ Pm be a minimizer of Em and define ṽ := |v|∗ as

the Schwarz symmetrization of |v|. It follows that ṽ ∈ Sm, I(ṽ) ≤ I(v) = Em and P (ṽ) ≤ P (v) = 0.

Clearly, if P (ṽ) = 0, then I(ṽ) = Em and we complete the proof in view of Remark 1.4 (iii). To this

end, we assume by contradiction that P (ṽ) < 0. Inspired by [16, Lemma 2.7] we observe that there

exists t := t(ṽ) > 1 such that P (ṽ(t·)) = 0 and m′ := ‖ṽ(t·)‖2L2(RN ) < m. Since Theorem 1.2 implies

that Em > 0 and that the function m 7→ Em is nonincreasing, we have

Em ≤ Em′ ≤ I(ṽ(t·)) = t−N
[
N

4

∫
RN

(
F̃ (ṽ)− 4

N
F (ṽ)

)
dx

]
<
N

4

∫
RN

(
F̃ (ṽ)− 4

N
F (ṽ)

)
dx

=
N

4

∫
RN

(
F̃ (v)− 4

N
F (v)

)
dx = I(v) = Em.

8
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This contradiction proves that P (ṽ) = 0 and thus ṽ ∈ Sm is a Schwarz symmetric ground state.

2 Preliminary results

In this section we prepare several technical results for the proofs of our main Theorems 1.1–1.5. For

notational convenience, we set

Bm :=
{
u ∈ H1(RN ) | ‖u‖2L2(RN ) ≤ m

}
for any m > 0. The first technical result reads as follows and will be often used in the sequel.

Lemma 2.1 Assume that N ≥ 1 and f satisfies (f0)− (f2). Then the following statements hold.

(i) For any m > 0, there exists δ = δ(N,m) > 0 small enough such that

1

4

∫
RN

|∇u|2dx ≤ I(u) ≤
∫
RN

|∇u|2dx

for all u ∈ Bm satisfying ‖∇u‖L2(RN ) ≤ δ.

(ii) Let {un} be a bounded sequence in H1(RN ). If limn→∞ ‖un‖L2+4/N (RN ) = 0, then

lim
n→∞

∫
RN

F (un)dx = 0 = lim
n→∞

∫
RN

F̃ (un)dx.

(iii) Let {un}, {vn} be bounded sequences in H1(RN ) and limn→∞ ‖vn‖L2+4/N (RN ) = 0. Then

lim
n→∞

∫
RN

f(un)vndx = 0. (2.1)

Proof. We provide a full proof for Item (i) but, for saving space, we only consider the case N = 2 for

the remaining two items.

(i) We only need to show that there exists δ = δ(N,m) > 0 small enough such that∫
RN

|F (u)|dx ≤ 1

4

∫
RN

|∇u|2dx for any u ∈ Bm with ‖∇u‖L2(RN ) ≤ δ. (2.2)

We first prove (2.2) when N ≥ 3. Let ε > 0 be arbitrary. By (f0) − (f2), there exists Cε > 0

such that |F (t)| ≤ ε|t|2+ 4
N + Cε|t|

2N
N−2 for all t ∈ R. For any u ∈ Bm, using also Gagliardo-Nirenberg

inequality, one then has∫
RN

|F (u)|dx ≤ ε
∫
RN

|u|2+ 4
N dx+ Cε

∫
RN

|u|
2N

N−2 dx

≤ εCNm
2
N

∫
RN

|∇u|2dx+ CεC
′
N

(∫
RN

|∇u|2dx
) N

N−2

=
[
εCNm

2
N + CεC

′
N

(∫
RN

|∇u|2dx
) 2

N−2
] ∫

RN

|∇u|2dx,

where CN , C
′
N > 0 depend only on N . Clearly, we obtain (2.2) by setting

ε :=
1

8CNm2/N
and δ :=

( 1

8CεC ′N

)N−2
4

.

9
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When N = 2, for γ := 1/(m + 1) and any ε > 0, by (f0) − (f2), one can find C ′ε > 0 such that

|f(t)| ≤ ε|t|3 + C ′ε|t|5eγt
2/2 for all t ∈ R. Since∫ t

0

τ5eγτ
2/2dτ =

1

γ
t4
(
eγt

2/2 − 1
)
− 4

γ

∫ t

0

τ3
(
eγτ

2/2 − 1
)
dτ

≤ 1

γ
t4
(
eγt

2/2 − 1
)

for any t ≥ 0,

it follows that

|F (t)| ≤ εt4 +
1

γ
C ′εt

4
(
eγt

2/2 − 1
)

for all t ∈ R.

Also, by the Moser-Trudinger inequality, there exists C > 0 such that∫
R2

(
eγu

2

− 1
)
dx ≤ C2 for any u ∈ Bm with ‖∇u‖L2(R2) ≤ 1.

Let δ ∈ (0, 1) be arbitrary. For any u ∈ Bm with ‖∇u‖L2(R2) ≤ δ, using also Hölder inequality and

Gagliardo-Nirenberg inequality, we have∫
R2

|F (u)|dx ≤ ε
∫
R2

u4dx+
1

γ
C ′ε

∫
R2

u4
(
eγu

2/2 − 1
)
dx

≤ ε
∫
R2

u4dx+
1

γ
C ′ε

(∫
R2

u8dx
) 1

2
[ ∫

R2

(
eγu

2/2 − 1
)2

dx
] 1

2

≤ ε
∫
R2

u4dx+
1

γ
C ′ε

(∫
R2

u8dx
) 1

2
[ ∫

R2

(
eγu

2

− 1
)
dx
] 1

2

≤ εC1m

∫
R2

|∇u|2dx+ CC2C
′
εm

1
2 (m+ 1)

(∫
R2

|∇u|2dx
) 3

2

≤
[
εC1m+ CC2C

′
εm

1
2 (m+ 1)δ

] ∫
R2

|∇u|2dx,

where C1, C2 > 0 are independent of m, ε, δ and u. Choosing ε > 0 and δ ∈ (0, 1) small enough, we

deduce that (2.2) holds when N = 2.

Finally we consider the case when N = 1. Since H1(R) ↪→ L∞(R), there exists K > 0 such that

‖u‖L∞(R) ≤ K for any u ∈ Bm with ‖∇u‖L2(R) ≤ 1.

Let ε > 0 and δ ∈ (0, 1) be arbitrary. By (f0) and (f1), one can find C ′′ε > 0 such that |F (t)| ≤
εt6 + C ′′ε t

10 for all |t| ≤ K. Thus, for any u ∈ Bm with ‖∇u‖L2(R) ≤ δ, it follows that∫
R
|F (u)|dx ≤ ε

∫
R
u6dx+ C ′′ε

∫
R
u10dx

≤ εC3m
2

∫
R
|∇u|2dx+ C4C

′′
εm

3
(∫

R
|∇u|2dx

)2

≤
(
εC3m

2 + C4C
′′
εm

3δ2
) ∫

R
|∇u|2dx,

where C3, C4 > 0 are independent of m, ε, δ and u. Taking ε > 0 and δ ∈ (0, 1) sufficiently small, we

derive (2.2) when N = 1.

(ii) The proofs of the two claims being similar, we only prove that

lim
n→∞

∫
RN

F̃ (un)dx = 0 if lim
n→∞

‖un‖L2+4/N (RN ) = 0. (2.3)

10
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When N = 2, we choose L > 0 large enough such that supn≥1 ‖un‖H1(R2) ≤ L. For γ := 1/L2, by the

Moser-Trudinger inequality, one can find D > 0 such that

sup
n≥1

∫
R2

(
eγu

2
n − 1

)
dx ≤ D. (2.4)

Let ε > 0 be arbitrary. By (f0)− (f2), there exists Dε > 0 such that |F̃ (t)| ≤ ε
(
eγt

2 − 1
)

+Dεt
4 for

all t ∈ R. Thus∫
R2

|F̃ (un)|dx ≤ ε
∫
R2

(
eγu

2
n − 1

)
dx+Dε

∫
R2

u4
ndx ≤ εD +Dε

∫
R2

u4
ndx.

Since ε is arbitrary, it follows that (2.3) holds when N = 2. The treatment of the cases N ≥ 3 and

N = 1 is similar.

(iii) We only prove (2.1) when N = 2 and the other cases follow analogously. Clearly, by (2.4), we

have

sup
n≥1

∫
R2

(
eγu

2
n/2 − 1

)2

dx ≤ sup
n≥1

∫
R2

(
eγu

2
n − 1

)
dx ≤ D.

For given ε > 0, the conditions (f0)− (f2) assure the existence of D′ε > 0 such that |f(t)| ≤ ε
(
eγt

2/2−
1
)

+D′ε|t|3 for all t ∈ R. Thus∫
R2

|f(un)vn|dx ≤ ε
∫
R2

(
eγu

2
n/2 − 1

)
|vn|dx+D′ε

∫
R2

|un|3|vn|dx

≤ ε
[ ∫

R2

(
eγu

2
n/2 − 1

)2

dx
] 1

2 ‖vn‖L2(R2) +D′ε‖un‖3L4(R2)‖vn‖L4(R2)

≤ ε
√
D‖vn‖L2(R2) +D′ε‖un‖3L4(R2)‖vn‖L4(R2)

and we deduce that (2.1) holds when N = 2. �

Remark 2.1 Still under the assumptions of Lemma 2.1, for any m > 0, modifying slightly the proof

of (2.2), one can find δ = δ(N,m) > 0 small enough such that∫
RN

|F̃ (u)|dx ≤ 1

N

∫
RN

|∇u|2dx

for all u ∈ Bm with ‖∇u‖L2(RN ) ≤ δ. As a direct consequence,

P (u) :=

∫
RN

|∇u|2dx− N

2

∫
RN

F̃ (u)dx ≥ 1

2

∫
RN

|∇u|2dx

for any u ∈ Bm with ‖∇u‖L2(RN ) ≤ δ.

For any u ∈ H1(RN ) and s ∈ R, we define the function

(s ? u)(x) := eNs/2u(esx) for a.e. x ∈ RN .

Clearly, s ? u ∈ H1(RN ) and ‖s ? u‖L2(RN ) = ‖u‖L2(RN ) for all s ∈ R. We fix u 6= 0 and consider the

real valued function s 7→ I(s ? u) under the conditions (f0)− (f3).

Lemma 2.2 Assume that N ≥ 1 and f satisfies (f0)− (f3). For any u ∈ H1(RN ) \ {0}, one has

(i) I(s ? u)→ 0+ as s→ −∞,

11
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(ii) I(s ? u)→ −∞ as s→ +∞.

Proof. (i) Let m := ‖u‖2L2(RN ) > 0. Since s ? u ∈ Sm ⊂ Bm and

‖∇(s ? u)‖L2(RN ) = es‖∇u‖L2(RN ),

by Lemma 2.1 (i), it follows that

1

4
e2s

∫
RN

|∇u|2dx ≤ I(s ? u) ≤ e2s

∫
RN

|∇u|2dx when s→ −∞.

Thus, lims→−∞ I(s ? u) = 0+.

(ii) For any λ ≥ 0, we define a function hλ : R→ R as follows:

hλ(t) :=


F (t)

|t|2+4/N
+ λ, for t 6= 0,

λ, for t = 0.

(2.5)

Clearly, F (t) = hλ(t)|t|2+4/N − λ|t|2+4/N for all t ∈ R. Also, from (f0), (f1) and (f3), it follows that

hλ is continuous and

hλ(t)→ +∞ as t→∞.

Choose λ > 0 large enough such that hλ(t) ≥ 0 for any t ∈ R. By Fatou’s lemma, we then have

lim
s→+∞

∫
RN

hλ(eNs/2u)|u|2+ 4
N dx = +∞.

Since

I(s ? u) =
1

2

∫
RN

|∇(s ? u)|2dx+ λ

∫
RN

|s ? u|2+ 4
N dx−

∫
RN

hλ(s ? u)|s ? u|2+ 4
N dx

= e2s

[
1

2

∫
RN

|∇u|2dx+ λ

∫
RN

|u|2+ 4
N dx−

∫
RN

hλ(eNs/2u)|u|2+ 4
N dx

]
,

(2.6)

we deduce that I(s ? u)→ −∞ as s→ +∞. �

We now assume in addition the monotonicity condition (f4) and work out more properties. First

we observe

Remark 2.2 Assume that N ≥ 1. If f satisfies (f0), (f1) and (f4), then one can define a continuous

function g : R→ R as follows:

g(t) :=


f(t)t− 2F (t)

|t|2+4/N
, for t 6= 0,

0, for t = 0.

(2.7)

Moreover, g is strictly decreasing on (−∞, 0] and strictly increasing on [0,∞).

Lemma 2.3 Assume that N ≥ 1. If f satisfies (f0), (f1), (f3) and (f4), then

f(t)t >
(

2 +
4

N

)
F (t) > 0 for all t 6= 0.

12
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Proof. We split the proof into several claims.

Claim 1. F (t) > 0 for any t 6= 0.

Indeed, if F (t0) ≤ 0 for some t0 6= 0, by (f1) and (f3), the function F (t)/|t|2+4/N reaches the

global minimum at some τ 6= 0 satisfying F (τ) ≤ 0 and[
F (t)/|t|2+4/N

]′
t=τ

=
f(τ)τ −

(
2 + 4/N

)
F (τ)

|τ |3+4/N sign(τ)
= 0.

Noting that f(t)t > 2F (t) for any t 6= 0 by Remark 2.2, we derive a contradiction:

0 < f(τ)τ − 2F (τ) =
4

N
F (τ) ≤ 0.

The proof of Claim 1 is complete.

Claim 2. There exists a positive sequence {τ+
n } and a negative sequence {τ−n } such that |τ±n | → 0

and f(τ±n )τ±n > (2 + 4/N)F (τ±n ) for each n ≥ 1.

We first consider the positive case. By contradiction, we assume that there exists Ts > 0 small

enough such that f(t)t ≤ (2 + 4/N)F (t) for any t ∈ (0, Ts]. Using Claim 1, we have

F (t)/t2+4/N ≥ F (Ts)/T
2+4/N
s > 0 for all t ∈ (0, Ts].

Noting that limt→0 F (t)/|t|2+4/N = 0 by (f1), we obtain a contradiction. The negative case is similar

and so we obtain Claim 2.

Claim 3. There exists a positive sequence {σ+
n } and a negative sequence {σ−n } such that |σ±n | → +∞

and f(σ±n )σ±n > (2 + 4/N)F (σ±n ) for each n ≥ 1.

The two cases being similar, we only show the existence of {σ−n }. Assume by contradiction that

there exists Tl > 0 such that f(t)t ≤ (2 + 4/N)F (t) for any t ≤ −Tl. We then have

F (t)/|t|2+4/N ≤ F (−Tl)/T 2+4/N
l < +∞ for all t < −Tl,

which contradicts (f3). Therefore, the sequence {σ−n } exists and this proves Claim 3.

Claim 4. f(t)t ≥ (2 + 4/N)F (t) for any t 6= 0.

Let us assume by contradiction that f(t0)t0 < (2 + 4/N)F (t0) for some t0 6= 0. Since the cases

t0 < 0 and t0 > 0 can be treated in a similar way, we can assume further that t0 < 0. By Claims 2

and 3, there exist τmin, τmax ∈ R such that τmin < t0 < τmax < 0,

f(t)t < (2 + 4/N)F (t) for any t ∈ (τmin, τmax), (2.8)

and

f(t)t = (2 + 4/N)F (t) when t = τmin, τmax. (2.9)

In view of (2.8), we have
F (τmin)

|τmin|2+4/N
<

F (τmax)

|τmax|2+4/N
. (2.10)

On the other hand, by (2.9) and (f4), it is clear that

F (τmin)

|τmin|2+4/N
=
N

4

F̃ (τmin)

|τmin|2+4/N
>
N

4

F̃ (τmax)

|τmax|2+4/N
=

F (τmax)

|τmax|2+4/N
. (2.11)

Since (2.10) and (2.11) contradict each other, we obtain Claim 4.

13
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Claim 5. f(t)t > (2 + 4/N)F (t) for any t 6= 0.

By Claim 4, the function F (t)/|t|2+4/N is nonincreasing on (−∞, 0) and nondecreasing on (0,∞).

Then, in view of (f4), the function f(t)/|t|1+4/N is strictly increasing on (−∞, 0) and (0,∞). For any

t 6= 0, it is clear that

(2 + 4/N)F (t) = (2 + 4/N)

∫ t

0

f(s)ds

< (2 + 4/N)
f(t)

|t|1+4/N

∫ t

0

|s|1+4/Nds = f(t)t

and this proves Claim 5. Now, by Claims 1 and 5, we complete the proof of Lemma 2.3. �

Now recall the Pohozaev functional

P (u) :=

∫
RN

|∇u|2dx− N

2

∫
RN

F̃ (u)dx,

where F̃ (t) := f(t)t − 2F (t) for any t ∈ R. As an essential technical result where the monotonicity

condition (f4) plays its due role, we have

Lemma 2.4 Assume that N ≥ 1 and f satisfies (f0)− (f4). For any u ∈ H1(RN )\{0}, the following

statements hold.

(i) There exists a unique number s(u) ∈ R such that P (s(u) ? u) = 0.

(ii) I(s(u) ? u) > I(s ? u) for any s 6= s(u). In particular, I(s(u) ? u) > 0.

(iii) The mapping u 7→ s(u) is continuous in u ∈ H1(RN ) \ {0}.

(iv) s(u(·+ y)) = s(u) for any y ∈ RN . If f is odd, then one also has s(−u) = s(u).

Proof. (i) Since

I(s ? u) =
1

2
e2s

∫
RN

|∇u|2dx− e−Ns
∫
RN

F (eNs/2u)dx,

we see that I(s ? u) is of class C1 and

d

ds
I(s ? u) = e2s

∫
RN

|∇u|2dx− N

2
e−Ns

∫
RN

F̃ (eNs/2u)dx = P (s ? u).

By Lemma 2.2, we also have

lim
s→−∞

I(s ? u) = 0+ and lim
s→+∞

I(s ? u) = −∞.

Therefore, I(s ? u) reaches the global maximum at some s(u) ∈ R and then

P (s(u) ? u) =
d

ds
I(s(u) ? u) = 0.

To show the uniqueness, we recall the function g defined by (2.7). Since

F̃ (t) = g(t)|t|2+ 4
N for all t ∈ R,

it follows that

P (s ? u) = e2s

[∫
RN

|∇u|2dx− N

2

∫
RN

g(eNs/2u)|u|2+ 4
N dx

]
.

14
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Noting that, for fixed t ∈ R\{0}, the function s 7→ g(eNs/2t) is strictly increasing by (f4) and Remark

2.2, we conclude that s(u) is unique.

(ii) This item is a direct consequence of the proof above.

(iii) By Item (i), the mapping u 7→ s(u) is well-defined. Let u ∈ H1(RN ) \ {0} and {un} ⊂
H1(RN ) \ {0} be any sequence such that un → u in H1(RN ). Setting sn := s(un) for any n ≥ 1, we

only need to prove that up to a subsequence sn → s(u) as n→∞.

We first show that {sn} is bounded. Recall the continuous coercive function hλ defined by (2.5).

Clearly, h0(t) ≥ 0 for any t ∈ R by Lemma 2.3. If up to a subsequence sn → +∞, by Fatou’s lemma

and the fact that un → u 6= 0 almost everywhere in RN , we have

lim
n→∞

∫
RN

h0(eNsn/2un)|un|2+ 4
N dx = +∞.

In view of Item (ii) and (2.6) with λ = 0, we then obtain

0 ≤ e−2snI(sn ? un) =
1

2

∫
RN

|∇un|2dx−
∫
RN

h0(eNsn/2un)|un|2+ 4
N dx→ −∞, (2.12)

which is a contradiction. Therefore, the sequence {sn} is bounded from above. On the other hand, by

Item (ii), one has

I(sn ? un) ≥ I(s(u) ? un) for any n ≥ 1.

Since s(u) ? un → s(u) ? u in H1(RN ), it follows that

I(s(u) ? un) = I(s(u) ? u) + on(1)

and thus

lim inf
n→∞

I(sn ? un) ≥ I(s(u) ? u) > 0. (2.13)

As {sn ? un} ⊂ Bm for m > 0 large enough, in view of Lemma 2.1 (i) and the fact that

‖∇(sn ? un)‖L2(RN ) = esn‖∇un‖L2(RN ),

we deduce from (2.13) that {sn} is bounded also from below.

Without loss of generality, we can now assume that

sn → s∗ for some s∗ ∈ R.

Recalling that un → u in H1(RN ), one then has sn ? un → s∗ ? u in H1(RN ). Since P (sn ? un) = 0 for

any n ≥ 1, it follows that

P (s∗ ? u) = 0.

By Item (i), we see that s∗ = s(u) and thus Item (iii) is proved.

(iv) For any y ∈ RN , by changing variables in the integrals, we have

P
(
s(u) ? u(·+ y)

)
= P

(
s(u) ? u

)
= 0

and thus s(u(·+ y)) = s(u) via Item (i). When f is odd, it is clear that

P
(
s(u) ? (−u)

)
= P

(
−(s(u) ? u)

)
= P

(
s(u) ? u

)
= 0

and hence s(−u) = s(u). �

Under the assumptions of Lemma 2.4, we also have the following result which concerns the Pohozaev

manifold

Pm :=
{
u ∈ Sm

∣∣∣ P (u) = 0
}

and the functional I constrained to it.
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Lemma 2.5 Assume that N ≥ 1 and f satisfies (f0)− (f4). Then

(i) Pm 6= ∅,

(ii) infu∈Pm
‖∇u‖L2(RN ) > 0,

(iii) infu∈Pm
I(u) > 0,

(iv) I is coercive on Pm, that is I(un)→ +∞ for any {un} ⊂ Pm with ‖un‖H1(RN ) →∞.

Proof. (i) This item is a direct consequence of Lemma 2.4 (i).

(ii) If there exists {un} ⊂ Pm such that ‖∇un‖L2(RN ) → 0, then Remark 2.1 implies

0 = P (un) ≥ 1

2

∫
RN

|∇un|2dx > 0 for n large enough,

which is a contradiction. Therefore, infu∈Pm
‖∇u‖L2(RN ) > 0.

(iii) For any u ∈ Pm, by Lemma 2.4 (i) and (ii), we have

I(u) = I(0 ? u) ≥ I(s ? u) for all s ∈ R.

Let δ > 0 be the number given by Lemma 2.1 (i) and s := ln
(
δ/‖∇u‖L2(RN )

)
. Since ‖∇(s?u)‖L2(RN ) =

δ, by Lemma 2.1 (i), we deduce that

I(u) ≥ I(s ? u) ≥ 1

4

∫
RN

|∇(s ? u)|2dx =
1

4
δ2

and thus Item (iii) holds.

(iv) By contradiction, we assume that there exists {un} ⊂ Pm such that ‖un‖H1(RN ) → ∞ but

supn≥1 I(un) ≤ c for some c ∈ (0,+∞). For any n ≥ 1, set

sn := ln
(
‖∇un‖L2(RN )

)
and vn := (−sn) ? un.

Clearly, sn → +∞, {vn} ⊂ Sm and ‖∇vn‖L2(RN ) = 1 for any n ≥ 1. Let

ρ := lim sup
n→∞

(
sup
y∈RN

∫
B(y,1)

|vn|2dx
)
.

To derive a contradiction, we distinguish the two cases: non-vanishing and vanishing.

• Non-vanishing: that is ρ > 0. Up to a subsequence, there exists {yn} ⊂ RN and w ∈ H1(RN )\{0}
such that

wn := vn(·+ yn) ⇀ w in H1(RN ) and wn → w a.e. in RN .

Recall the continuous coercive function hλ defined by (2.5) and let λ = 0. Since sn → +∞, by Lemma

2.3 and Fatou’s lemma, it follows that

lim
n→∞

∫
RN

h0(eNsn/2wn)|wn|2+ 4
N dx = +∞.

In view of Item (iii) and (2.6) with λ = 0, we have

0 ≤ e−2snI(un) = e−2snI(sn ? vn)

=
1

2
−
∫
RN

h0(eNsn/2vn)|vn|2+ 4
N dx

=
1

2
−
∫
RN

h0(eNsn/2wn)|wn|2+ 4
N dx→ −∞,
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which is a contradiction.

• Vanishing: that is ρ = 0. In this case, by Lions Lemma [32, Lemma I.1], vn → 0 in L2+4/N (RN ).

Using Lemma 2.1 (ii), we thus have

lim
n→∞

e−Ns
∫
RN

F (eNs/2vn)dx = 0 for any s ∈ R.

Since P (sn ? vn) = P (un) = 0, by Lemma 2.4 (i) and (ii) it follows that, for any s ∈ R,

c ≥ I(un) = I(sn ? vn) ≥ I(s ? vn)

=
1

2
e2s − e−Ns

∫
RN

F (eNs/2vn)dx =
1

2
e2s + on(1).

Clearly, this leads a contradiction for s > ln(2c)/2. Therefore, I is coercive on Pm. �

Remark 2.3 Assume that N ≥ 1 and f satisfies (f0)− (f4). For any sequence {un} ⊂ H1(RN ) \ {0}
such that

P (un) = 0, sup
n≥1
‖un‖L2(RN ) < +∞ and sup

n≥1
I(un) < +∞.

repeating the proof of Lemma 2.5 (iv), one has that {un} is bounded in H1(RN ).

To end this section, we give a Brezis-Lieb type splitting result which is needed when we study the

convergence of the Palais-Smale sequences.

Lemma 2.6 Assume that N ≥ 1 and f is a continuous function satisfying the conditions below:

(C1) when N = 1, for any T > 0, there exists CT > 0 such that |f(t)| ≤ CT |t| for all |t| ≤ T ;

(C2) when N = 2, for any γ > 0, there exists Cγ > 0 such that

|f(t)| ≤ Cγ
[
|t|+

(
eγt

2

− 1
)]

for all t ∈ R;

(C3) when N ≥ 3, there exists C > 0 such that |f(t)| ≤ C
(
|t|+ |t|2∗−1

)
for all t ∈ R.

If {un} ⊂ H1(RN ) is bounded and un → u almost everywhere in RN for some u ∈ H1(RN ), then

lim
n→∞

∫
RN

∣∣F (un)− F (un − u)− F (u)
∣∣dx = 0. (2.14)

Proof. For the case N ≥ 2, one can find a detailed proof in [27, Lemma 3.2]. Here we only prove

(2.14) when N = 1. Since H1(R) ↪→ L∞(R), there exists T > 0 large enough such that

sup
n≥1
‖un‖L∞(R), sup

n≥1
‖un − u‖L∞(R), ‖u‖L∞(R) ≤ T.

Let ε > 0 be arbitrary. For any a, b ∈ R such that |a|, |b|, |a+ b| ≤ T , by (C1) and Young’s inequality,

we have

|F (a+ b)− F (a)| =
∣∣∣ ∫ 1

0

f(a+ τb)bdτ
∣∣∣

≤ CT
∫ 1

0

|a+ τb||b|dτ ≤ CT (|a||b|+ b2)

≤ εCTa2 + CT (1 + ε−1)b2 =: εϕ(a) + ψε(b).

In particular, |F (b)| ≤ ψε(b) for any |b| ≤ T . Note that
∫
R ϕ(un − u)dx is bounded uniformly in ε

and n,
∫
R ψε(u)dx < ∞ for any ε > 0, and F (u) ∈ L1(R). Repeating the argument in [18, Proof of

Theorem 2], we deduce that (2.14) holds when N = 1. �
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3 The behavior of the function m 7→ Em

When N ≥ 1 and f satisfies (f0) − (f4), for given m > 0, one can see from Lemma 2.5 that the

infimum

Em := inf
u∈Pm

I(u)

is well defined and strictly positive. Our goal in this section is to characterize further the behavior of

Em when m > 0 varies. In particular we shall prove that Em is nonincreasing in m > 0. We start by

showing the continuity of Em.

Lemma 3.1 Assume that N ≥ 1 and f satisfies (f0)−(f4). Then the function m 7→ Em is continuous

at each m > 0.

Proof. It is equivalent to prove that for a given m > 0 and any positive sequence {mk} such that

mk → m as k →∞, one has limk→∞Emk
= Em. We first show that

lim sup
k→∞

Emk
≤ Em. (3.1)

For any u ∈ Pm, we define

uk :=

√
mk

m
u ∈ Smk

, k ∈ N+.

Since uk → u in H1(RN ), by Lemma 2.4 (iii), we have limk→∞ s(uk) = s(u) = 0 and thus

s(uk) ? uk → s(u) ? u = u in H1(RN ) as k →∞.

As a consequence,

lim sup
k→∞

Emk
≤ lim sup

k→∞
I
(
s(uk) ? uk

)
= I(u).

Noting that u ∈ Pm is arbitrary, we deduce that (3.1) holds.

To complete the proof, it remains to show that

lim inf
k→∞

Emk
≥ Em. (3.2)

For each k ∈ N+, there exists vk ∈ Pmk
such that

I(vk) ≤ Emk
+

1

k
. (3.3)

Setting

tk :=
( m
mk

)1/N

and ṽk := vk(·/tk) ∈ Sm,

by Lemma 2.4 (ii) and (3.3), we have

Em ≤ I
(
s(ṽk) ? ṽk

)
≤ I
(
s(ṽk) ? vk

)
+
∣∣∣I(s(ṽk) ? ṽk

)
− I
(
s(ṽk) ? vk

)∣∣∣
≤ I(vk) +

∣∣∣I(s(ṽk) ? ṽk
)
− I
(
s(ṽk) ? vk

)∣∣∣
≤ Emk

+
1

k
+
∣∣∣I(s(ṽk) ? ṽk

)
− I
(
s(ṽk) ? vk

)∣∣∣
=: Emk

+
1

k
+ C(k).

18
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It is clear that one will obtain (3.2) if

lim
k→∞

C(k) = 0. (3.4)

Noting that s ? (v(·/t)) = (s ? v)(·/t), we have

C(k) =

∣∣∣∣12(tN−2
k − 1

) ∫
RN

∣∣∇(s(ṽk) ? vk
)∣∣2dx− (tNk − 1

) ∫
RN

F
(
s(ṽk) ? vk

)
dx

∣∣∣∣
≤ 1

2

∣∣tN−2
k − 1

∣∣ · ∫
RN

∣∣∇(s(ṽk) ? vk
)∣∣2dx+

∣∣tNk − 1
∣∣ · ∫

RN

∣∣F (s(ṽk) ? vk
)∣∣dx

=:
1

2

∣∣tN−2
k − 1

∣∣ ·A(k) +
∣∣tNk − 1

∣∣ ·B(k).

Since tk → 1, the proof of (3.4) and thus of (3.2) is reduced to showing that

lim sup
k→∞

A(k) < +∞ and lim sup
k→∞

B(k) < +∞. (3.5)

To justify (3.5), we prove below three claims in turn.

Claim 1. The sequence {vk} is bounded in H1(RN ).

Indeed, by (3.3) and (3.1),

lim sup
k→∞

I(vk) ≤ Em.

Since vk ∈ Pmk
and mk → m, we deduce from Remark 2.3 that Claim 1 holds.

Claim 2. The sequence {ṽk} is bounded in H1(RN ), and there exists {yk} ⊂ RN and v ∈ H1(RN )

such that up to a subsequence ṽk(·+ yk)→ v 6= 0 almost everywhere in RN .

Indeed, since tk → 1, it follows from Claim 1 that {ṽk} is bounded in H1(RN ). Set

ρ := lim sup
k→∞

(
sup
y∈RN

∫
B(y,1)

|ṽk|2dx
)
.

We now only need to rule out the case ρ = 0. If ρ = 0, then ṽk → 0 in L2+4/N (RN ) by Lions Lemma

[32, Lemma I.1]. As a consequence,∫
RN

|vk|2+ 4
N dx =

∫
RN

|ṽk(tk·)|2+ 4
N dx = t−Nk

∫
RN

|ṽk|2+ 4
N dx→ 0.

Combining Lemma 2.1 (ii) and that P (vk) = 0, we have∫
RN

|∇vk|2dx =
N

2

∫
RN

F̃ (vk)dx→ 0.

In view of Remark 2.1, we thus obtain

0 = P (vk) ≥ 1

2

∫
RN

|∇vk|2dx > 0 for k large enough,

which is a contradiction. The proof of Claim 2 is complete.

Claim 3. lim supk→∞ s(ṽk) < +∞.

Indeed, if Claim 3 does not hold, then up to a subsequence

s(ṽk)→ +∞ as k →∞. (3.6)
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To derive a contradiction, we make some observations at first. By Claim 2, we see that up to a

subsequence

ṽk(·+ yk)→ v 6= 0 a.e. in RN . (3.7)

On the other hand, Lemma 2.4 (iv) and (3.6) imply

s(ṽk(·+ yk)) = s(ṽk)→ +∞, (3.8)

and Lemma 2.4 (ii) gives us that

I
(
s(ṽk(·+ yk)) ? ṽk(·+ yk)

)
≥ 0. (3.9)

Now, using (3.7), (3.8) and (3.9), we clearly obtain a contradiction in the same way to the derivation

of (2.12). The proof of Claim 3 is complete.

Now, by Claims 1 and 3, we have

lim sup
k→∞

∥∥s(ṽk) ? vk
∥∥
H1(RN )

< +∞.

Since f satisfies (f0)− (f2), it is clear that (3.5) holds and the lemma is proved. �

Lemma 3.2 Assume that N ≥ 1 and f satisfies (f0) − (f4). Then the function m 7→ Em is nonin-

creasing on (0,∞).

Proof. We only need to show that for any m > m′ > 0 and any arbitrary ε > 0 one has

Em ≤ Em′ + ε. (3.10)

By the definition of Em′ , there exists u ∈ Pm′ such that

I(u) ≤ Em′ +
ε

2
. (3.11)

Let χ ∈ C∞0 (RN ) be radial and such that

χ(x) =


1, |x| ≤ 1,

∈ [0, 1], |x| ∈ (1, 2),

0, |x| ≥ 2.

For any small δ > 0, we define uδ(x) = u(x) · χ(δx) ∈ H1(RN ) \ {0}. Since uδ → u in H1(RN ) as

δ → 0+, by Lemma 2.4 (iii), one has limδ→0+ s(uδ) = s(u) = 0 and thus

s(uδ) ? uδ → s(u) ? u = u in H1(RN ) as δ → 0+.

As a consequence, we can fix a δ > 0 small enough such that

I(s(uδ) ? uδ) ≤ I(u) +
ε

4
. (3.12)

Now take v ∈ C∞0 (RN ) such that supp(v) ⊂ B(0, 1 + 4/δ) \B(0, 4/δ) and set

ṽ =
m− ‖uδ‖2L2(RN )

‖v‖2
L2(RN )

v.

For any λ ≤ 0, we define wλ = uδ + λ ? ṽ. Noting that

supp(uδ) ∩ supp(λ ? ṽ) = ∅,
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one has wλ ∈ Sm. We claim that s(wλ) is bounded from above when λ→ −∞. Indeed, observing that

I(s(wλ) ?wλ) ≥ 0 by Lemma 2.4 (ii) and that wλ → uδ 6= 0 almost everywhere in RN as λ→ −∞, we

obtain a contradiction in the same way to the derivation of (2.12) if the claim above does not hold.

Now since

s(wλ) + λ→ −∞ as λ→ −∞,

we have ∥∥∇[(s(wλ) + λ) ? ṽ]
∥∥
L2(RN )

→ 0 and (s(wλ) + λ) ? ṽ → 0 in L2+4/N (RN ).

By Lemma 2.1 (ii), it then follows that

I
(
(s(wλ) + λ) ? ṽ

)
≤ ε

4
for λ < 0 small enough. (3.13)

Now, using Lemma 2.4 (ii), (3.13), (3.12) and (3.11), we obtain

Em ≤ I
(
s(wλ) ? wλ

)
= I
(
s(wλ) ? uδ

)
+ I
(
s(wλ) ? (λ ? ṽ)

)
≤ I(s(uδ) ? uδ) + I

(
(s(wλ) + λ) ? ṽ

)
≤ I(u) +

ε

2
≤ Em′ + ε,

that is (3.10). �

Lemma 3.3 Assume that N ≥ 1 and f satisfies (f0) − (f4). Suppose that there exists u ∈ Sm and

µ ∈ R such that

−∆u+ µu = f(u)

and I(u) = Em. Then Em > Em′ for any m′ > m close enough to m if µ > 0 and for each m′ < m

near enough to m if µ < 0.

Proof. For any t > 0 and s ∈ R, we set ut,s := s ? (tu) ∈ Smt2 . Since

α(t, s) := I(ut,s) =
1

2
t2e2s

∫
RN

|∇u|2dx− e−Ns
∫
RN

F (teNs/2u)dx,

it is clear that

∂

∂t
α(t, s) = te2s

∫
RN

|∇u|2dx− e−Ns
∫
RN

f(teNs/2u)eNs/2udx = t−1I ′(ut,s)ut,s.

When µ > 0, combining the facts that ut,s → u in H1(RN ) as (t, s)→ (1, 0) and that

I ′(u)u = −µ‖u‖2L2(RN ) = −µm < 0,

one can fix a δ > 0 small enough such that

∂

∂t
α(t, s) < 0 for any (t, s) ∈ (1, 1 + δ]× [−δ, δ].

From the mean value theorem, we then obtain

α(t, s) = α(1, s) + (t− 1) · ∂
∂t
α(θ, s) < α(1, s), (3.14)

where 1 < θ < t ≤ 1 + δ and |s| ≤ δ. Note that s(tu) → s(u) = 0 as t → 1+ by Lemma 2.4 (iii). For

any m′ > m close enough to m, we have

t :=

√
m′

m
∈ (1, 1 + δ] and s := s(tu) ∈ [−δ, δ]
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and thus, using (3.14) and Lemma 2.4 (ii),

Em′ ≤ α(t, s(tu)) < α(1, s(tu)) = I(s(tu) ? u) ≤ I(u) = Em.

The case µ < 0 can be proved similarly. �

At this point, from Lemmas 3.2 and 3.3 we directly obtain

Lemma 3.4 Assume that N ≥ 1 and f satisfies (f0) − (f4). If there exists u ∈ Sm and µ ∈ R such

that

−∆u+ µu = f(u)

and I(u) = Em, then µ ≥ 0. If in addition µ > 0, then Em > Em′ for any m′ > m.

As the end of this section, we study the limit behavior of Em when m > 0 tends respectively to

zero and infinity.

Lemma 3.5 Assume that N ≥ 1 and f satisfies (f0)− (f4). Then Em → +∞ as m→ 0+.

Proof. It is sufficient to show that for any sequence {un} ⊂ H1(RN ) \ {0} such that

P (un) = 0 and lim
n→∞

‖un‖L2(RN ) = 0,

one has I(un)→ +∞ as n→∞. Set

sn := ln
(
‖∇un‖L2(RN )

)
and vn := (−sn) ? un.

Clearly, ‖∇vn‖L2(RN ) = 1 and ‖vn‖L2(RN ) = ‖un‖L2(RN ) → 0. Noting that vn → 0 in L2+4/N (RN ), by

Lemma 2.1 (ii), we have

lim
n→∞

e−Ns
∫
RN

F (eNs/2vn)dx = 0 for any s ∈ R.

Since P (sn ? vn) = P (un) = 0, using Lemma 2.4 (i) and (ii), we derive

I(un) = I(sn ? vn) ≥ I(s ? vn)

=
1

2
e2s − e−Ns

∫
RN

F (eNs/2vn)dx =
1

2
e2s + on(1).

As s ∈ R is arbitrary, it is clear that I(un)→ +∞. �

Lemma 3.6 Assume that N ≥ 1 and f satisfies (f6) in addition to (f0) − (f4). Then Em → 0 as

m→∞.

Proof. Fix u ∈ S1 ∩ L∞(RN ) and set um :=
√
mu ∈ Sm for any m > 1. By Lemma 2.4 (i), there

exists a unique s(m) ∈ R such that s(m) ? um ∈ Pm. Since F is nonnegative by Lemma 2.3, we then

have

0 < Em ≤ I
(
s(m) ? um

)
≤ 1

2
me2s(m)

∫
RN

|∇u|2dx.

To complete the proof, it is sufficient to show that

lim
m→∞

√
mes(m) = 0. (3.15)
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Recalling the function g defined by (2.7), from P (s(m) ? um) = 0, it follows that∫
RN

|∇u|2dx = m
2
N

∫
RN

g
(√
meNs(m)/2u

)
|u|2+ 4

N dx

and thus

lim
m→∞

√
meNs(m)/2 = 0. (3.16)

In particular, we get (3.15) when N = 1, 2. Let ε > 0 be arbitrarily small. When N ≥ 3, Lemma

2.3 and (f6) imply that there exists δ > 0 small enough such that F̃ (t) ≥ 4
N F (t) ≥ ε−1|t|

2N
N−2 for any

|t| ≤ δ. In view of that P (s(m) ? um) = 0 and (3.16), we obtain∫
RN

|∇u|2dx = m−1e−(N+2)s(m)

∫
RN

F̃
(√
meNs(m)/2u

)
dx

≥ ε−1
[√
mes(m)

] 4
N−2

∫
RN

|u|
2N

N−2 dx for large enough m

and thus (3.15) holds when N ≥ 3. �

Remark 3.1 When N ≥ 3, one still has limm→∞Em = 0 assuming only that f(t)t/|t|
2N

N−2 → +∞
as t → 0+ (or as t → 0−). Indeed, we just need to choose a nonnegative (or nonpositive) function

u ∈ S1 ∩ L∞(RN ) in the proof of Lemma 3.6.

Remark 3.2 When studying L2 constrained mass supercritical problems (set on RN ), the existence

of ground states is particularly relevant in view of their physical interpretation. Assume that we have

identified a possible ground state level, say Em, and managed to find an associated non-vanishing

bounded Palais-Smale sequence {un}. Since the working space in general does not embed compactly

into any space Lp(RN ), recovering the compactness of the sequence {un} may be troublesome. To

overcome this difficulty, a by now standard strategy is the one initially proposed in [12]. Roughly

speaking, it is to show that Em is nonincreasing in m > 0 and satisfies a property similar to Lemma

3.3 and then determine that the Lagrange multiplier is positive. One should however note that, to prove

the analogue results to Lemmas 3.2 and 3.3 (as well as to Lemma 3.1), the previous arguments in the

literature rely essentially on the homogeneity and the C1 regularity of the nonlinearity f and so the

effectiveness of the above strategy had only been confirmed for power type nonlinearities. In the present

paper, we develop new arguments for the proofs of Lemmas 3.2 and 3.3 (as well as of Lemma 3.1)

which are robust in the sense that they work for the nonlinearity f which is highly non-homogeneous

and only continuous. They should likely be useful to consider other L2 constrained equations in general

mass supercritical settings.

4 Ground states

In this section we establish the existence of ground states to (Pm) and complete the study of the

properties of the function m 7→ Em. We deal with the proof of Theorem 1.1 at first. Recall that

N ≥ 1, f satisfies (f0)− (f4), and that

Em := inf
u∈Pm

I(u) > 0

by Lemma 2.5 (iii). As already pointed out in the introduction, one of the key ingredients for the

proof of Theorem 1.1 is the following result.
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Lemma 4.1 There exists a Palais-Smale sequence {un} ⊂ Pm for the constrained functional I|Sm
at

the level Em. When f is odd, we have in addition ‖u−n ‖L2(RN ) → 0, where v− stands for the negative

part of v.

To prove Lemma 4.1, we borrow some arguments from [6, 7]. Let us first introduce the free

functional Ψ : H1(RN ) \ {0} → R defined by

Ψ(u) := I(s(u) ? u) =
1

2
e2s(u)

∫
RN

|∇u|2dx− e−Ns(u)

∫
RN

F (eNs(u)/2u)dx,

where s(u) ∈ R is the unique number guaranteed by Lemma 2.4. Inspired by [43, Proposition 2.9] (see

also [44, Proposition 9]), we observe

Lemma 4.2 The functional Ψ : H1(RN ) \ {0} → R is of class C1 and

dΨ(u)[ϕ] = e2s(u)

∫
RN

∇u · ∇ϕdx− e−Ns(u)

∫
RN

f(eNs(u)/2u)eNs(u)/2ϕdx

= dI(s(u) ? u)[s(u) ? ϕ]

for any u ∈ H1(RN ) \ {0} and ϕ ∈ H1(RN ).

Proof. Let u ∈ H1(RN ) \ {0} and ϕ ∈ H1(RN ). We estimate the term

Ψ(u+ tϕ)−Ψ(u) = I(st ? (u+ tϕ))− I(s0 ? u),

where |t| is small enough and st := s(u + tϕ). By the fact that s0 = s(u) is the unique maxmimum

point of the function I(s ? u) and the mean value theorem, we have

I(st?(u+ tϕ))− I(s0 ? u) ≤ I(st ? (u+ tϕ))− I(st ? u)

=
1

2
e2st

∫
RN

[
|∇(u+ tϕ)|2 − |∇u|2

]
dx− e−Nst

∫
RN

[
F (eNst/2(u+ tϕ))− F (eNst/2u)

]
dx

=
1

2
e2st

∫
RN

(
2t∇u · ∇ϕ+ t2|∇ϕ|2

)
dx− e−Nst

∫
RN

f(eNst/2(u+ ηttϕ))eNst/2tϕdx,

where ηt ∈ (0, 1). Similarly,

I(st ? (u+tϕ))− I(s0 ? u) ≥ I(s0 ? (u+ tϕ))− I(s0 ? u)

=
1

2
e2s0

∫
RN

(
2t∇u · ∇ϕ+ t2|∇ϕ|2

)
dx− e−Ns0

∫
RN

f(eNs0/2(u+ τttϕ))eNs0/2tϕdx,

where τt ∈ (0, 1). Since limt→0 st = s0 = s(u) by Lemma 2.4 (iii), from the two inequalities above, it

follows that

lim
t→0

Ψ(u+ tϕ)−Ψ(u)

t
= e2s(u)

∫
RN

∇u · ∇ϕdx− e−Ns(u)

∫
RN

f(eNs(u)/2u)eNs(u)/2ϕdx.

By Lemma 2.4 (iii) again, we see that the Gâteaux derivative of Ψ is bounded linear in ϕ and continuous

in u. Therefore Ψ is of class C1, see e.g. [19, 45]. In particular, by changing variables in the integrals,

we have

dΨ(u)[ϕ] =

∫
RN

∇(s(u) ? u) · ∇(s(u) ? ϕ)dx−
∫
RN

f(s(u) ? u))(s(u) ? ϕ)dx

= dI(s(u) ? u)[s(u) ? ϕ].
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The proof is complete. �

For given m > 0, we now consider the constrained functional

J := Ψ|Sm
: Sm → R

which clearly satisfies

Lemma 4.3 The functional J : Sm → R is of class C1 and

dJ(u)[ϕ] = dΨ(u)[ϕ] = dI(s(u) ? u)[s(u) ? ϕ]

for any u ∈ Sm and ϕ ∈ TuSm.

We recall below a definition from [21] and then establish a technical result showing that a “nice”

minimax value of J will yield a Palais-Smale sequence for the constrained functional I|Sm
at the same

level made of elements of Pm. After that the proof of Lemma 4.1 will follow.

Definition 4.4 ([21, Definition 3.1]) Let B be a closed subset of a metric space X. We say that a

class G of compact subsets of X is a homotopy stable family with closed boundary B provided

(i) every set in G contains B,

(ii) for any set A ∈ G and any homotopy η ∈ C([0, 1] × X,X) that satisfies η(t, u) = u for all

(t, u) ∈
(
{0} ×X

)
∪
(
[0, 1]×B

)
, one has η({1} ×A) ∈ G.

We remark that the case B = ∅ is admissible.

Lemma 4.5 Let G be a homotopy stable family of compact subsets of Sm (with B = ∅) and set

Em,G := inf
A∈G

max
u∈A

J(u).

If Em,G > 0, then there exists a Palais-Smale sequence {un} ⊂ Pm for the constrained functional I|Sm

at the level Em,G. In the particular case when f is odd and G is the class of all singletons included in

Sm, we have in addition that ‖u−n ‖L2(RN ) → 0.

Proof. Let {An} ⊂ G be an arbitrary minimizing sequence of Em,G . We define the mapping

η : [0, 1]× Sm → Sm, η(t, u) = (ts(u)) ? u,

which is continuous by Lemma 2.4 (iii) and satisfies η(t, u) = u for all (t, u) ∈ {0}×Sm. Thus, by the

definition of G, one has

Dn := η(1, An) = {s(u) ? u | u ∈ An} ∈ G. (4.1)

In particular, Dn ⊂ Pm for every n ∈ N+. Since J(s ? u) = J(u) for any s ∈ R and any u ∈ Sm, it is

clear that maxDn
J = maxAn

J → Em,G and thus {Dn} ⊂ G is another minimizing sequence of Em,G .

Now, using the minimax principle [21, Theorem 3.2], we obtain a Palais-Smale sequence {vn} ⊂ Sm
for J at the level Em,G such that distH1(RN )(vn, Dn)→ 0 as n→∞. Let

sn := s(vn) and un := sn ? vn = s(vn) ? vn.

We prove below a claim concerning {e−2sn} and then show that {un} ⊂ Pm is the desired sequence.

Claim. There exists C > 0 such that e−2sn ≤ C for every n.
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We observe that

e−2sn =

∫
RN |∇vn|2dx∫
RN |∇un|2dx

.

Since {un} ⊂ Pm, by Lemma 2.5 (ii), it is clear that {‖∇un‖L2(RN )} is bounded from below by a

positive constant. Regarding the term of {vn}, since Dn ⊂ Pm for every n, we have

max
Dn

I = max
Dn

J → Em,G

and thus {Dn} is uniformly bounded in H1(RN ) by Lemma 2.5 (iv); from distH1(RN )(vn, Dn)→ 0, it

then follows that supn ‖∇vn‖L2(RN ) <∞. Clearly, this proves the Claim.

Now, from {un} ⊂ Pm, it follows that

I(un) = J(un) = J(vn)→ Em,G .

We then only need to show that {un} is a Palais-Smale sequence for I on Sm. For any ψ ∈ TunSm, we

have ∫
RN

vn[(−sn) ? ψ]dx =

∫
RN

(sn ? vn)ψdx =

∫
RN

unψdx = 0,

which means (−sn) ? ψ ∈ TvnSm. Also, ‖(−sn) ? ψ‖H1 ≤ max{
√
C, 1}‖ψ‖H1 by the Claim. Denoting

by ‖ · ‖u,∗ the dual norm of (TuSm)∗ and using Lemma 4.3, we deduce that

‖dI(un)‖un,∗ = sup
ψ∈TunSm,‖ψ‖H1≤1

∣∣dI(un)[ψ]
∣∣

= sup
ψ∈TunSm,‖ψ‖H1≤1

∣∣dI(sn ? vn)[sn ? ((−sn) ? ψ)]
∣∣

= sup
ψ∈TunSm,‖ψ‖H1≤1

∣∣dJ(vn)[(−sn) ? ψ]
∣∣

≤ ‖dJ(vn)‖vn,∗ · sup
ψ∈TunSm,‖ψ‖H1≤1

‖(−sn) ? ψ‖H1

≤ max{
√
C, 1}‖dJ(vn)‖vn,∗.

Since {vn} ⊂ Sm is a Palais-Smale sequence of J , it follows that ‖dI(un)‖un,∗ → 0.

Finally, note that the class of all singletons included in Sm is a homotopy stable family of compact

subsets of Sm (with B = ∅). When f is odd, making this particular choice for G and noting that

J(u) is even in u ∈ Sm by Lemma 2.4 (iv), in the above proof we can choose a minimizing sequence

{An} ⊂ G which consists of nonnegative functions (rather than an arbitrary one) and thus the sequence

{Dn} defined in (4.1) inherits this property. Since distH1(RN )(vn, Dn) → 0, we obtain a Palais-Smale

sequence {un} ⊂ Pm for I|Sm
at the level Em,G satisfying the additional property

‖u−n ‖2L2(RN ) = ‖s(vn) ? v−n ‖2L2(RN ) = ‖v−n ‖2L2(RN ) → 0.

The proof of this lemma is complete. �

Proof of Lemma 4.1. We make use of Lemma 4.5 in the particular case where G is the class of all

singletons included in Sm. Since Em > 0, it only remains to show that Em,G = Em. First note that

Em,G = inf
A∈G

max
u∈A

J(u) = inf
u∈Sm

I(s(u) ? u).

For any u ∈ Sm, we deduce from s(u) ?u ∈ Pm that I(s(u) ?u) ≥ Em. Therefore, Em,G ≥ Em. On the

other hand, for any u ∈ Pm, we have s(u) = 0 and thus I(u) = I(0 ? u) ≥ Em,G ; clearly, this implies

Em ≥ Em,G . �
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Lemma 4.6 Let {un} ⊂ Sm be any bounded Palais-Smale sequence for the constrained functional I|Sm

at the level Em > 0, satisfying P (un)→ 0. Assume in addition that one of following conditions holds:

(i) the condition (f5),

(ii) ‖u−n ‖L2(RN ) → 0 and N = 3, 4.

Then there exists u ∈ Sm and µ > 0 such that, up to the extraction of a subsequence and up to

translations in RN , un → u strongly in H1(RN ) and −∆u+ µu = f(u).

Proof. Since {un} ⊂ Sm is bounded in H1(RN ), without loss of generality, one may assume that

limn→∞ ‖∇un‖L2(RN ), limn→∞
∫
RN F (un)dx and limn→∞

∫
RN f(un)undx exist. Also, from the condi-

tion that ‖dI(un)‖un,∗ → 0 and [15, Lemma 3], it follows that

−∆un + µnun − f(un)→ 0 in (H1(RN ))∗,

where

µn :=
1

m

(∫
RN

f(un)undx−
∫
RN

|∇un|2dx
)
.

Noting that µn → µ for some µ ∈ R, we have

−∆un(·+ yn) + µun(·+ yn)− f(un(·+ yn))→ 0 in (H1(RN ))∗ (4.2)

for any {yn} ⊂ RN . As a stepping stone, we claim that {un} is non-vanishing. Indeed, if {un} is

vanishing then un → 0 in L2+4/N (RN ) by Lions Lemma [32, Lemma I.1]. In view of Lemma 2.1 (ii)

and that P (un)→ 0, we have
∫
RN F (un)dx→ 0 and∫

RN

|∇un|2dx = P (un) +
N

2

∫
RN

F̃ (un)dx→ 0.

As a consequence,

Em = lim
n→∞

I(un) =
1

2
lim
n→∞

∫
RN

|∇un|2dx− lim
n→∞

∫
RN

F (un)dx = 0

contradicting the fact that Em > 0, and so the claim follows. The sequence {un} being non-vanishing,

up to a subsequence, there exists {y1
n} ⊂ RN and w1 ∈ Bm \{0} such that un(·+y1

n) ⇀ w1 in H1(RN ),

un(·+ y1
n)→ w1 in Lploc(RN ) for any p ∈ [1, 2∗), and un(·+ y1

n)→ w1 almost everywhere in RN . Since

f satisfies the conditions (C1)− (C3) in Lemma 2.6 by (f0)− (f2), with the aid of [42, Compactness

Lemma 2] (or [14, Lemma A.I]), one has

lim
n→∞

∫
RN

∣∣[f(un(·+ y1
n))− f(w1)

]
ϕ
∣∣dx

≤ ‖ϕ‖L∞(RN ) lim
n→∞

∫
supp(ϕ)

∣∣f(un(·+ y1
n))− f(w1)

∣∣dx = 0

for any ϕ ∈ C∞0 (RN ). In view of (4.2), we obtain

−∆w1 + µw1 = f(w1). (4.3)

In particular, P (w1) = 0 by the Nehari and Pohozaev identities corresponding to (4.3). Let v1
n :=

un − w1(· − y1
n) for every n ∈ N+. Clearly, v1

n(·+ y1
n) ⇀ 0 in H1(RN ) and thus

m = lim
n→∞

‖v1
n(·+ y1

n) + w1‖2L2(RN ) = ‖w1‖2L2(RN ) + lim
n→∞

‖v1
n‖2L2(RN ). (4.4)
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By Lemma 2.6, we also have

lim
n→∞

∫
RN

F (un(·+ y1
n))dx =

∫
RN

F (w1)dx+ lim
n→∞

∫
RN

F (v1
n(·+ y1

n))dx.

It then follows that

Em = lim
n→∞

I(un) = lim
n→∞

I(un(·+ y1
n))

= I(w1) + lim
n→∞

I(v1
n(·+ y1

n)) = I(w1) + lim
n→∞

I(v1
n).

(4.5)

We claim that limn→∞ I(v1
n) ≥ 0. To see this, we assume by contradiction that limn→∞ I(v1

n) < 0.

Then {v1
n} is non-vanishing and, up to a subsequence, there exists a sequence {y2

n} ⊂ RN such that

lim
n→∞

∫
B(y2n,1)

|v1
n|2dx > 0.

Consequently |y2
n−y1

n| → ∞ (since v1
n(·+y1

n)→ 0 in L2
loc(RN )) and, up to a subsequence, v1

n(·+y2
n) ⇀

w2 in H1(RN ) for some w2 ∈ Bm \ {0}. Since

un(·+ y2
n) = v1

n(·+ y2
n) + w1(· − y1

n + y2
n) ⇀ w2 in H1(RN ),

by (4.2) and arguing as above, we deduce that P (w2) = 0 and thus I(w2) > 0. Set v2
n := v1

n − w2(· −
y2
n) = un −

∑2
l=1 w

l(· − yln). It is clear that

lim
n→∞

‖∇v2
n‖2L2(RN ) = lim

n→∞
‖∇un‖2L2(RN ) −

2∑
l=1

‖∇wl‖2L2(RN )

and

0 > lim
n→∞

I(v1
n) = I(w2) + lim

n→∞
I(v2

n) > lim
n→∞

I(v2
n).

Proceeding this way successively, we obtain an infinite sequence {wk} ⊂ Bm \{0} such that P (wk) = 0

and
k∑
l=1

‖∇wl‖2L2(RN ) ≤ lim
n→∞

‖∇un‖2L2(RN ) < +∞

for any k ∈ N+. However this is impossible since Remark 2.1 implies that there exists a δ > 0 such that

‖∇w‖L2(RN ) ≥ δ for any w ∈ Bm\{0} satisfying P (w) = 0. Therefore, the claim that limn→∞ I(v1
n) ≥ 0

is proved.

Now we set s := ‖w1‖2L2(RN ) ∈ (0,m]. Since limn→∞ I(v1
n) ≥ 0 and w1 ∈ Ps, it follows from (4.5)

that

Em = I(w1) + lim
n→∞

I(v1
n) ≥ I(w1) ≥ Es.

Noting that Em is nonincreasing in m > 0 by Lemma 3.2, one then has

I(w1) = Es = Em (4.6)

and

lim
n→∞

I(v1
n) = 0. (4.7)

Clearly, by (4.3), (4.6) and Lemma 3.4, we derive that µ ≥ 0. To show that s = m, let us prove that

µ is positive. For clarity, the following two cases are treated separately.

(i) Suppose that (f5) holds. In this case, when N ≥ 3 the condition (f5) implies that NF (t) −
N−2

2 f(t)t > 0 for any t 6= 0 and when N = 1, 2 this inequality holds thanks to Lemma 2.3 which
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guarantees that f(t)t > 0 and F (t) > 0 for any t 6= 0. Thus, from the Pohozaev identity corresponding

to (4.3), we obtain

µ =
1

m

∫
RN

(
NF (w1)− N − 2

2
f(w1)w1

)
dx > 0. (4.8)

(ii) Suppose that ‖u−n ‖L2(RN ) → 0 and N = 3, 4. In this case, we assume by contradiction that

µ = 0. Since ‖u−n ‖L2(RN ) → 0 implies w1 ≥ 0, it follows from (4.3) and Lemma 2.3 that

−∆w1 = f(w1) ≥ 0 in RN .

Applying [22, Lemma A.2] with p := 2 ≤ N/(N − 2), we obtain that w1 ≡ 0. This contradicts the fact

that w1 ∈ Ss, and thus µ > 0.

In both cases, we have proved that µ > 0. If s < m, taking into account (4.3), (4.6) and Lemma

3.4, we would have

I(w1) = Es > Em

which contradicts (4.6). Therefore, s := ‖w1‖2L2(RN ) = m and then ‖v1
n‖L2(RN ) → 0 via (4.4). Since

limn→∞
∫
RN F (v1

n)dx = 0 by Lemma 2.1 (ii), we conclude from (4.7) that ‖∇v1
n‖L2(RN ) → 0 and thus

un(·+ y1
n)→ w1 strongly in H1(RN ). At this point, the proof of the lemma is complete. �

Remark 4.1 Showing that µ > 0 is crucial to locate the weak limit w1 onto Sm and thus it is one of

the key elements to get the strong convergence. When N = 1, 2, the conditions (f0)−(f4) are sufficient

for that purpose; while, when N ≥ 3, to deal with an arbitrary bounded Palais-Smale sequence satisfying

P (un)→ 0, we need to require in addition (f5).

Remark 4.2 When f satisfies some stronger conditions, it is possible to prove in a simpler way that

limn→∞ I(v1
n) ≥ 0. For example, let us assume that, in addition to (f0)− (f4), F̃ is of class C1 and

that F̃ ′ satisfies the conditions (C1)− (C3) in Lemma 2.6. Then, as in the proof of (4.5) and noting

that P (w1) = 0, we have

0 = lim
n→∞

P (un) = P (w1) + lim
n→∞

P (v1
n) = lim

n→∞
P (v1

n)

and thus, using also Lemma 2.3,

lim
n→∞

I(v1
n) = lim

n→∞

(
I(v1

n)− 1

2
P (v1

n)
)

=
N

4
lim
n→∞

∫
RN

[
f(v1

n)v1
n −

(
2 +

4

N

)
F (v1

n)
]
dx ≥ 0.

Using Lemmas 4.1 and 4.6, we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 4.1 and 2.5 (iv), we have a bounded Palais-Smale sequence

{un} ⊂ Pm for the constrained functional I|Sm
at the level Em > 0.

(i) Suppose that (f5) holds. Then Lemma 4.6 applies and provides the existence of a ground state

u ∈ Sm at the level Em.

(ii) Assume that f is odd and that (f5) holds for N ≥ 5. Then, by Lemma 4.1, we have in addition

‖u−n ‖L2(RN ) → 0. Applying Lemma 4.6, we obtain a nonnegative ground state u ∈ Sm at the level Em.

Moreover, by the strong maximum principle, u > 0 as required. �

With Theorem 1.1 at hand, we now have all the elements to prove Theorem 1.2.

Proof of Theorem 1.2. We first prove the strict decrease of Em. In each of the three cases, from

Theorem 1.1 we know that Em is reached by a ground state of (Pm) with the associated Lagrange

multiplier being positive, and thus the function m 7→ Em is strictly decreasing on (0,∞) by Lemma

3.4. The rest of the proof directly follows from Lemmas 2.5, 3.1, 3.2, 3.5 and 3.6. �
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Remark 4.3 Let us show that, when N ≥ 2 and f satisfies the assumptions of Theorem 1.1 (ii) and

(f7) h(t) := [f(t)t− (2 + 4/N)F (t)]/t2 is nonincreasing on (−∞, 0) and nondecreasing on (0,∞),

we can work directly in the subspace of radially symmetric functions to derive a positive radial ground

state of (Pm). Indeed, for given u ∈ Sm and any s ∈ R, one has

I(s ? u)− 1

2
P (s ? u) =

N

4

∫
RN

[
f(s ? u)s ? u− (2 + 4/N)F (s ? u)

]
dx

=
N

4

∫
RN

e−Ns
[
f(eNs/2u)eNs/2u− (2 + 4/N)F (eNs/2u)

]
dx

=
N

4

∫
RN

f(eNs/2u)eNs/2u− (2 + 4/N)F (eNs/2u)

(eNs/2u)2
u2dx

and then, by (f7), the function I(s ? u)− 1
2P (s ? u) is nondecreasing in s ∈ R. Let

Em,r := inf
u∈Pm∩H1

r (RN )
I(u).

For any given u ∈ Pm, define ũ := |u|∗ as the Schwarz symmetrization of |u|. Clearly, ũ ∈ Sm∩H1
r (RN )

and P (ũ) ≤ P (u) = 0. By Lemma 2.4, there exists s := s(ũ) ≤ 0 such that P (s ? ũ) = 0 and thus

Em ≤ Em,r ≤ I(s ? ũ) = I(s ? ũ)− 1

2
P (s ? ũ)

≤ I(ũ)− 1

2
P (ũ)

=
N

4

∫
RN

(
F̃ (ũ)− 4

N
F (ũ)

)
dx

=
N

4

∫
RN

(
F̃ (u)− 4

N
F (u)

)
dx = I(u).

Since u ∈ Pm is arbitrary, it is clear that

Em,r = Em > 0.

Now, similarly to the proof of Lemma 4.1, we can find a Palais-Smale sequence {un} ⊂ Pm ∩H1
r (RN )

for the constrained functional I|Sm∩H1
r (RN ), at the level Em,r = Em > 0, satisfying ‖u−n ‖L2(RN ) → 0.

In view of Lemma 2.5 (iv), the sequence {un} is bounded in H1
r (RN ). When N = 2 or N ≥ 5, by

a later compactness result Lemma 5.5, we obtain a positive radial ground state u ∈ Sm at the level

Em. It is notable that the proof of this case does not use Lemmas 3.2 and 3.4. When N = 3, 4, we

can conclude the proof by adapting the argument of Lemma 4.6 (ii). In particular, since the inclusion

H1
r (RN ) ↪→ L2+4/N (RN ) is compact, {y1

n} is now chosen as the zero sequence and the claim that

limn→∞ I(v1
n) ≥ 0 can be proved more easily.

One should also note that, when F̃ (t) := f(t)t − 2F (t) is of class C1, the condition (f4) implies

(f7). Indeed, recalling that g(t) := F̃ (t)/|t|2+4/N , we have

g′(t) =
F̃ ′(t)t− (2 + 4/N)F̃ (t)

|t|3+4/N sign(t)
,

and thus, by (f4),

F̃ ′(t)t− (2 + 4/N)F̃ (t) ≥ 0 for any t 6= 0.

Since

h′(t) =

[
F̃ (t)− 4

N F (t)

t2

]′
=
F̃ ′(t)t− (2 + 4/N)F̃ (t)

t3
,

the condition (f7) follows.
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5 Radial solutions

This section concerns the existence of infinitely many radial solutions to (Pm) when N ≥ 2 and f

is an odd function satisfying (f0) − (f5). To prove Theorem 1.3, we prepare below several technical

lemmas. Denote by σ : H1(RN ) → H1(RN ) the transformation σ(u) = −u and let X ⊂ H1(RN ).

A set A ⊂ X is called σ-invariant if σ(A) = A. A homotopy η : [0, 1] × X → X is σ-equivariant if

η(t, σ(u)) = σ(η(t, u)) for all (t, u) ∈ [0, 1]×X. The following definition is [21, Definition 7.1].

Definition 5.1 Let B be a closed σ-invariant subset of X ⊂ H1(RN ). A class G of compact subsets

of X is said to be a σ-homotopy stable family with closed boundary B provided

(i) every set in G is σ-invariant,

(ii) every set in G contains B,

(iii) for any set A ∈ G and any σ-equivariant homotopy η ∈ C([0, 1]×X,X) that satisfies η(t, u) = u

for all (t, u) ∈
(
{0} ×X

)
∪
(
[0, 1]×B

)
, one has η({1} ×A) ∈ G.

Since f is odd, we see from Lemma 2.4 (iv) that s(−u) = s(u), and thus the constrained functional

J(u) = I(s(u) ? u) =
1

2
e2s(u)

∫
RN

|∇u|2dx− e−Ns(u)

∫
RN

F (eNs(u)/2u)dx

is even in u ∈ Sm. That is, J is a σ-invariant functional on Sm. Recall that H1
r (RN ) stands for the

space of radially symmetric functions in H1(RN ). To get the particular Palais-Smale sequences of

I|Sm∩H1
r (RN ) that consist of elements in Pm, we need

Lemma 5.2 Let G be a σ-homotopy stable family of compact subsets of Sm ∩H1
r (RN ) (with B = ∅)

and set

Em,G := inf
A∈G

max
u∈A

J(u).

If Em,G > 0, then there exists a Palais-Smale sequence {un} ⊂ Pm ∩ H1
r (RN ) for the constrained

functional I|Sm∩H1
r (RN ) at the level Em,G.

Proof. This result is an equivariant version of Lemma 4.5. The proof is almost identical to that of

Lemma 4.5 but makes use of [21, Theorem 7.2] instead of [21, Theorem 3.2]. �

We now construct a sequence of σ-homotopy stable families of compact subsets of Sm ∩H1
r (RN )

(with B = ∅). Fix a sequence of finite dimensional linear subspaces {Vk} ⊂ H1
r (RN ) such that

Vk ⊂ Vk+1, dimVk = k and ∪k≥1Vk is dense in H1
r (RN ), and denote by πk the orthogonal projection

from H1
r (RN ) onto Vk. We also recall the definition of the genus of σ-invariant sets due to M. A.

Krasnoselskii and refer to [39, Section 7] for its basic properties.

Definition 5.3 For any nonempty closed σ-invariant set A ⊂ H1(RN ), the genus of A is defined by

Ind(A) := min
{
k ∈ N+ | ∃ φ : A→ Rk \ {0}, φ is odd and continuous

}
.

We set Ind(A) =∞ if such φ does not exist, and set Ind(A) = 0 if A = ∅.

Let Σ be the family of compact σ-invariant subsets of Sm ∩H1
r (RN ). For each k ∈ N+, set

Gk :=
{
A ∈ Σ | Ind(A) ≥ k

}
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and

Em,k := inf
A∈Gk

max
u∈A

J(u).

Concerning Gk and Em,k, we have

Lemma 5.4 (i) For any k ∈ N+,

Gk 6= ∅

and Gk is a σ-homotopy stable family of compact subsets of Sm ∩H1
r (RN ) (with B = ∅).

(ii) Em,k+1 ≥ Em,k > 0 for any k ∈ N+.

Proof. (i) For each k ∈ N+, Sm ∩ Vk ∈ Σ. By the basic properties of the genus, one has

Ind(Sm ∩ Vk) = k

and thus Gk 6= ∅. The rest is clear by Definition 5.1 and by again the basic properties of the genus.

(ii) By Item (i), Em,k is well-defined. For any A ∈ Gk, using the fact that s(u) ? u ∈ Pm for all

u ∈ A and Lemma 2.5 (iii), we have

max
u∈A

J(u) = max
u∈A

I(s(u) ? u) ≥ inf
v∈Pm

I(v) > 0

and thus Em,k > 0. Since Gk+1 ⊂ Gk, it is clear that Em,k+1 ≥ Em,k. �

Helped by the property that the embedding H1
r (RN ) ↪→ Lp(RN ) is compact for any 2 < p < 2∗,

we establish below a compactness result.

Lemma 5.5 Let {un} ⊂ Sm ∩ H1
r (RN ) be any bounded Palais-Smale sequence for the constrained

functional I|Sm∩H1
r (RN ), at an arbitrary level c > 0, satisfying P (un) → 0. Then there exists u ∈

Sm ∩H1
r (RN ) and µ > 0 such that, up to the extraction of a subsequence, un → u strongly in H1(RN )

and −∆u+ µu = f(u).

Proof. Since the sequence is bounded in H1
r (RN ), up to a subsequence, there exists u ∈ H1

r (RN )

such that un ⇀ u in H1
r (RN ), un → u in Lp(RN ) for any p ∈ (2, 2∗), and un → u almost everywhere

in RN . Also, from ‖dI(un)‖un,∗ → 0 and [15, Lemma 3], it follows that

−∆un + µnun − f(un)→ 0 in (H1
r (RN ))∗, (5.1)

where

µn :=
1

m

(∫
RN

f(un)undx−
∫
RN

|∇un|2dx
)
.

Without loss of generality, one may assume that µn → µ for some µ ∈ R. Similarly to the proof of

(4.3) and using the Palais principle of symmetric criticality [38], we obtain

−∆u+ µu = f(u). (5.2)

To proceed further, we claim that u 6= 0. Indeed, if u = 0 then un → 0 in L2+4/N (RN ). In view of

Lemma 2.1 (ii) and that P (un)→ 0, we have
∫
RN F (un)dx→ 0 and∫

RN

|∇un|2dx = P (un) +
N

2

∫
RN

F̃ (un)dx→ 0.

As a consequence,

c = lim
n→∞

I(un) =
1

2
lim
n→∞

∫
RN

|∇un|2dx− lim
n→∞

∫
RN

F (un)dx = 0
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which contradicts the condition that c > 0. Now, by the fact that u 6= 0 and similarly to the proof of

(4.8), it is clear that

µ =
1

m

∫
RN

(
NF (u)− N − 2

2
f(u)u

)
dx > 0.

Since un ⇀ u in H1
r (RN ), one can show in a standard way that

∫
RN

[
f(un) − f(u)

]
udx → 0. Noting

that un → u in L2+4/N (RN ), we have
∫
RN f(un)(un − u)dx→ 0 by Lemma 2.1 (iii) and thus

lim
n→∞

∫
RN

f(un)undx =

∫
RN

f(u)udx.

In view of (5.2) and (5.1), it follows that∫
RN

|∇u|2dx+ µ

∫
RN

u2dx =

∫
RN

f(u)udx

= lim
n→∞

∫
RN

f(un)undx = lim
n→∞

∫
RN

|∇un|2dx+ µm.

Since µ > 0, we obtain

lim
n→∞

∫
RN

|∇un|2dx =

∫
RN

|∇u|2dx, lim
n→∞

∫
RN

u2
ndx = m =

∫
RN

u2dx,

and thus un → u in H1
r (RN ). �

The next result concerns the limit behaviour of Em,k when k → ∞ and it serves as an essential

and final preparation for the proof of Theorem 1.3.

Lemma 5.6 Em,k → +∞ as k →∞.

Since we do not require that F̃ is of class C1, the Pohozaev manifold Pm is in general only a

topological manifold. Despite the fact that we have Lemma 5.5 and that the constrained functional

I|Pm
is bounded from below and coercive by Lemma 2.5, it is problematic to prove Lemma 5.6 by a

standard genus type argument for I|Pm
. Our proof of Lemma 5.6 is inspired by that of [15, Theorem

9] and relies on the following Lemma 5.7.

Lemma 5.7 For any c > 0, there exists ρ = ρ(c) > 0 small enough and k(c) ∈ N+ sufficiently large

such that for any k ≥ k(c) and any u ∈ Pm ∩H1
r (RN ) one has

I(u) ≥ c if ‖πku‖H1(RN ) ≤ ρ.

Proof. By contradiction, we assume that there exists c0 > 0 such that for any ρ > 0 and any k ∈ N+

one can always find l = l(ρ, k) ≥ k and u = u(ρ, k) ∈ Pm ∩H1
r (RN ) such that

‖πlu‖H1(RN ) ≤ ρ but I(u) < c0.

As a consequence, one can obtain a strictly increasing sequence {kj} ⊂ N+ (and so limj→∞ kj = ∞)

and a sequence {uj} ⊂ Pm ∩H1
r (RN ) such that

‖πkjuj‖H1(RN ) ≤
1

j
and I(uj) < c0

for any j ∈ N+. Since {uj} is bounded in H1
r (RN ) by Lemma 2.5 (iv), up to a subsequence, there

exists u ∈ H1
r (RN ) such that

uj ⇀ u in H1
r (RN ) and uj ⇀ u in L2(RN ).
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To derive a contradiction, we claim that u = 0. Indeed, from kj → ∞, it follows that πkju → u in

L2(RN ) and thus (
πkjuj , u

)
L2(RN )

=
(
uj , πkju

)
L2(RN )

→
(
u, u

)
L2(RN )

as j →∞.

Combining the fact that πkjuj → 0 in L2(RN ), we then have

‖u‖2L2(RN ) = lim
j→∞

(
πkjuj , u

)
L2(RN )

= 0,

which proves the claim. Now, up to a subsequence, ‖uj‖L2+4/N (RN ) → 0 by the compact inclusion

H1
r (RN ) ↪→ L2+4/N (RN ). Using that {uj} ⊂ Pm ∩H1

r (RN ) and Lemma 2.1 (ii), we obtain∫
RN

|∇uj |2dx =
N

2

∫
RN

F̃ (uj)dx→ 0 as j →∞,

which contradicts Lemma 2.5 (ii). The proof of Lemma 5.7 is complete. �

Proof of Lemma 5.6. By contradiction, we assume that

lim inf
k→∞

Em,k < c for some c > 0. (5.3)

Let ρ(c) > 0 and k(c) ∈ N+ be the numbers given by Lemma 5.7. Clearly, in view of (5.3), there exists

k > k(c) such that Em,k < c. By the definition of Em,k, one can then find A ∈ Gk (that is A ∈ Σ and

Ind(A) ≥ k) such that

max
u∈A

I(s(u) ? u) = max
u∈A

J(u) < c.

Since Lemma 2.4 (iii) and (iv) imply that the mapping ϕ : A→ Pm∩H1
r (RN ) defined by ϕ(u) = s(u)?u

is odd and continuous, we have A := ϕ(A) ⊂ Pm ∩H1
r (RN ), maxv∈A I(v) < c and

Ind(A) ≥ Ind(A) ≥ k > k(c). (5.4)

Also, from Lemma 5.7, it follows that infv∈A ‖πk(c)v‖H1 ≥ ρ(c) > 0. Setting

ψ(v) =
1

‖πk(c)v‖H1

πk(c)v for any v ∈ A,

we obtain an odd continuous mapping ψ : A→ ψ(A) ⊂ Vk(c) \ {0} and thus

Ind(A) ≤ Ind(ψ(A)) ≤ k(c)

which contradicts (5.4). Therefore, we have Em,k → +∞ as k →∞. �

With all the technical lemmas in place, we can now prove Theorem 1.3.

Proof of Theorem 1.3. For each k ∈ N+, by Lemmas 5.2 and 5.4, one can find a Palais-Smale

sequence {ukn}∞n=1 ⊂ Pm ∩H1
r (RN ) of the constrained functional I|Sm∩H1

r (RN ) at the level Em,k > 0.

By Lemma 2.5 (iv), the sequence is bounded in H1
r (RN ) and thus in view of Lemma 5.5, we deduce

that (Pm) has a radial solution uk with I(uk) = Em,k. Also, from Lemma 5.4 (ii) and Lemma 5.6, it

follows that

I(uk+1) ≥ I(uk) > 0 for any k ≥ 1

and I(uk)→ +∞. �
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6 Nonradial sign-changing solutions

In this section we focus on nonradial sign-changing solutions of (Pm) when N ≥ 4 and prove Theorems

1.4 and 1.5. Since the arguments are similar to those for Theorems 1.1 and 1.3, we just outline the

proofs.

6.1 Proof of Theorem 1.5

Recall that N = 4 or N ≥ 6, N − 2M 6= 1, X2 := H1
O2
∩ Xω and f is odd satisfying (f0) − (f5).

Similarly to the proofs of Lemmas 4.5 and 5.2, we have

Lemma 6.1 Let G be a σ-homotopy stable family of compact subsets of Sm∩X2 (with B = ∅) and set

Em,G := inf
A∈G

max
v∈A

J(v).

If Em,G > 0, then there exists a Palais-Smale sequence {vn} ⊂ Pm ∩X2 for the constrained functional

I|Sm∩X2
at the level Em,G.

Let Σ be the family of compact σ-invariant subsets of Sm ∩X2. For each k ∈ N+, we set

Gk :=
{
A ∈ Σ | Ind(A) ≥ k

}
and

Em,k := inf
A∈Gk

max
v∈A

J(v). (6.1)

It is clear that Gk and Em,k satisfy

Lemma 6.2 (i) For any k ∈ N+,

Gk 6= ∅

and Gk is a σ-homotopy stable family of compact subsets of Sm ∩X2 (with B = ∅).

(ii) Em,k+1 ≥ Em,k > 0 for any k ∈ N+.

Since the inclusion X2 ↪→ Lp(RN ) is compact for any 2 < p < 2N/(N−2), see [30] or [45, Corollary

1.25], we have the following compactness result by adapting the proof of Lemma 5.5.

Lemma 6.3 Let {vn} ⊂ Sm ∩X2 be any bounded Palais-Smale sequence of the constrained functional

I|Sm∩X2
, at an arbitrary level c > 0, satisfying P (un)→ 0. Then there exists v ∈ Sm ∩X2 and µ > 0

such that, up to the extraction of a subsequence, vn → v strongly in H1(RN ) and −∆v + µv = f(v).

Arguing as the proof of Lemma 5.7, one can also establish a “nonradial” variant in X2. Using that

version and repeating the argument of Lemma 5.6, we obtain

Lemma 6.4 Em,k → +∞ as k →∞.

End of the proof of Theorem 1.5. For each k ∈ N+, by Lemmas 6.1 and 6.2, one can find a Palais-

Smale sequence {vkn}∞n=1 ⊂ Pm ∩X2 of the constrained functional I|Sm∩X2
at the level Em,k > 0. By

Lemma 2.5 (iv), this sequence is bounded in X2 and thus in view of Lemma 6.3, we deduce that (Pm)

has a nonradial solution vk ∈ X2 with I(vk) = Em,k. Also, from Lemma 6.2 (ii) and Lemma 6.4, it

follows that

I(vk+1) ≥ I(vk) > 0 for any k ≥ 1

and I(vk)→ +∞. �
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6.2 Proof of Theorem 1.4

Recall that N ≥ 4, X1 := H1
O1
∩Xω and f is odd satisfying (f0)− (f5). For any m > 0, we define the

infimum

Em := inf
v∈Pm∩X1

I(v),

which is positive by Lemma 2.5 (iii) and satisfies

Lemma 6.5 Em > 2Em.

Proof. Let v ∈ Pm ∩X1 be arbitrary. We define

Ω1 := {x ∈ RN | |x1| > |x2|} and Ω2 := {x ∈ RN | |x1| < |x2|}.

It is clear that χΩj
v ∈ Sm/2 ∩H1

0 (Ωj) ⊂ Sm/2, j = 1, 2. Since

0 = P (v) = P (χΩ1
v) + P (χΩ2

v) = 2P (χΩ1
v),

we have χΩ1
v ∈ Pm/2 and thus

I(v) = I(χΩ1
v) + I(χΩ2

v) = 2I(χΩ1
v) ≥ 2Em/2.

Since v is arbitrary and the function m 7→ Em is strictly decreasing by Theorem 1.2, we obtain

Em := inf
v∈Pm∩X1

I(v) ≥ 2Em/2 > 2Em.

The proof of the lemma is complete. �

Note that, for any solution w ∈ X1 of (Pm), one has w ∈ Pm ∩ X1 and thus I(w) ≥ Em. To

complete the proof of Theorem 1.4, it only remains to show that Em is reached by some solution

v ∈ X1 of (Pm). When N − 2M = 0, we have X1 = X2 (with N − 2M 6= 1). Since in that case Em
coincides with the minimax value Em,1 defined by (6.1), the result follows from the fact, shown in

Subsection 6.1, that Em,1 is reached by a solution v1 ∈ X2 of (Pm). The rest of the proof is devoted

to deal with the case N − 2M 6= 0.

First note that adapting the proof of Lemma 4.5 we can derive the following “nonradial” version.

Lemma 6.6 Let G be a homotopy stable family of compact subsets of Sm ∩X1 (with B = ∅) and set

Em,G := inf
A∈G

max
v∈A

J(v).

If Em,G > 0, then there exists a Palais-Smale sequence {vn} ⊂ Pm ∩X1 for the constrained functional

I|Sm∩X1
at the level Em,G.

Let G be the class of all singletons included in Sm ∩X1. Clearly, it is a homotopy stable family of

compact subsets of Sm ∩X1 (with B = ∅) and

Em,G = inf
v∈Sm∩X1

I(s(v) ? v) = Em > 0.

Applying Lemma 6.6 to G, we obtain

Lemma 6.7 There exists a Palais-Smale sequence {vn} ⊂ Pm ∩ X1 for the constrained functional

I|Sm∩X1
at the level Em.
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To study the convergence of the Palais-Smale sequence guaranteed by Lemma 6.7, we need the

following Lions type result whose proof can be found, for example, in [35, Corollary 3.2].

Lemma 6.8 Assume that N ≥ 4 and N − 2M 6= 0. Let {vn} be a bounded sequence in H1
O1

(RN )

which satisfies, for all r > 0,

lim
n→∞

sup
y∈{0}×{0}×RN−2M

∫
B(y,r)

|vn|2dx = 0.

Then vn → 0 in Lp(RN ) for any 2 < p < 2N/(N − 2).

We shall also use Lemma 6.9 which follows from an adaptation of the arguments of Lemmas 3.2

and 3.3.

Lemma 6.9 Assume that N ≥ 4, N −2M 6= 0, and f is an odd function satisfying (f0)− (f4). Then

the following statements hold.

(i) The function m 7→ Em is nonincreasing on (0,∞).

(ii) If there exists v ∈ Sm ∩X1 and µ ∈ R such that

−∆v + µv = f(v)

and I(v) = Em, then µ ≥ 0. If in addition µ > 0, then Em > Em′ for any m′ > m.

With Lemmas 6.8 and 6.9 in hand and with the understanding that a bounded sequence {vn} ⊂ X1

is vanishing if, for all r > 0,

lim sup
n→∞

sup
y∈{0}×{0}×RN−2M

∫
B(y,r)

|vn|2dx = 0,

modifying accordingly the proof of Lemma 4.6, we have the following compactness result.

Lemma 6.10 Let {vn} ⊂ Sm∩X1 be any bounded Palais-Smale sequence of the constrained functional

I|Sm∩X1
, at the level Em, satisfying P (un)→ 0. Then there exists v ∈ Sm ∩X1 and µ > 0 such that,

up to the extraction of a subsequence and up to translations in {0} × {0} × RN−2M , vn → v strongly

in H1(RN ) and −∆v + µv = f(v).

End of the proof of Theorem 1.4. When N − 2M 6= 0, by Lemma 6.7, we have a Palais-Smale

sequence {vn} ⊂ Pm ∩ X1 for the constrained functional I|Sm∩X1
at the level Em. By Lemma 2.5

(iv), this sequence is bounded in X1 and thus applying Lemma 6.10, we see that Em is reached by a

solution v ∈ X1 of (Pm). At this point, the proof of Theorem 1.4 is complete. �

7 Final remarks

In this last section we justify Remark 1.4 (ii) and present two open problems.

Remark 7.1 It has been proved in Theorem 1.1 (ii) that, when f is odd and N = 3, 4, we can obtain a

positive ground state without assuming the condition (f5). Our argument there, see Lemma 4.6, relies

on the use of a Liouville type result which allows to show that for a suspected nonnegative ground state

the Lagrange multiplier is strictly positive. We shall present here an example which shows that, when

37



L. Jeanjean, S.-S. Lu

N ≥ 5 and f is odd only satisfying (f0) − (f4), there exist positive ground states associated to the

null Lagrange multiplier. Indirectly, this example demonstrates that, to prove the existence of ground

states, the strategy developed in our paper fails for general nonlinearities when N ≥ 5 and (f5) does

not hold. It is thus an open problem to figure out if an alternative approach, not relying on the sign of

the Lagrange multiplier, would give more general existence results.

We now construct the example. For N ≥ 3, let

U(x) :=

[
N(N − 2)

]N−2
4(

1 + |x|2
)N−2

2

, pN := 2 +
4

N
+

8

N2

and p ∈ (pN , 2
∗). We define the odd continuous function

f(t) :=

{
|t|2
∗−2t, for |t| ≤ 1,

|t|p−2t, for |t| > 1,

which satisfies (f0)− (f4) but not (f5). When N ≥ 5, we have U ∈ L2(RN ) and for any m ≥ mN :=

N(N − 2)‖U‖2L2(RN ) there exists a unique ε = ε(m) > 0 such that

Uε(x) := ε(2−N)/4U
( x√

ε

)
=

[
N(N − 2)ε

]N−2
4(

ε+ |x|2
)N−2

2

satisfies ‖Uε‖2L2(RN ) = ε‖U‖2L2(RN ) = m and

0 < Uε(x) ≤ 1 for all x ∈ RN .

In addition, it can be checked, see for example [21, Lemma A.8], that

−∆Uε = |Uε|2
∗−2Uε for all x ∈ RN .

Thus, in this case, (Pm) has a positive radial solution Uε with µ = 0. We next show that Uε is a

ground state. Denoted by S the best Sobolev constant such that

S‖u‖2L2∗ (RN ) ≤ ‖∇u‖
2
L2(RN ) for any u ∈ D1,2(RN ). (7.1)

One may note that

I(Uε) =
1

N
‖∇Uε‖2L2(RN ) =

1

N
S N

2 ,

see [21, Lemma A.8] for the second equality. Clearly, we now only need to prove that

Em := inf
u∈Pm

I(u) ≥ 1

N
S N

2 .

In view of the fact that

F (t) ≤ 1

2∗
|t|2
∗

for any t ∈ R

and (7.1), it is not difficult to deduce that

inf
u∈Sm

max
s∈R

I(s ? u) ≥ inf
u∈Sm

max
s∈R

[
1

2

∫
RN

|∇(s ? u)|2dx− 1

2∗

∫
RN

|s ? u|2
∗
dx

]
= inf
u∈Sm

max
s∈R

[
1

2
e2s

∫
RN

|∇u|2dx− 1

2∗
e2∗s

∫
RN

|u|2
∗
dx

]

= inf
u∈Sm

1

2

(
‖∇u‖2L2

‖u‖2∗
L2∗

) 2
2∗−2

‖∇u‖2L2 −
1

2∗

(
‖∇u‖2L2

‖u‖2∗
L2∗

) 2∗
2∗−2

‖u‖2
∗

L2∗


= inf
u∈Sm

1

N

(
‖∇u‖2L2

‖u‖2
L2∗

)N
2

≥ 1

N
S N

2 .
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Combining Lemma 2.4, we obtain

Em := inf
u∈Pm

I(u) = inf
u∈Sm

max
s∈R

I(s ? u) ≥ 1

N
S N

2

and thus Uε is a ground state. This example shows that, when N ≥ 5 and for an arbitrary nonlinearity

satisfying (f0) − (f4), the proof of Lemma 4.6 breaks down since there is not hope to show that the

Lagrange multiplier, whose value is given in (4.8), is strictly positive.

Remark 7.2 When N ≥ 3 and f satisfies (f0)− (f4), Lemmas 2.5 and 3.2 imply that

E∞ := lim
m→∞

Em

exists and E∞ ≥ 0. In particular, if (f6) also holds, then E∞ = 0 by Lemma 3.6. Let us show that,

when (f6) is replaced by the somehow opposite condition

(f6)′ lim supt→0 f(t)t/|t|
2N

N−2 < +∞,

then E∞ > 0. Indeed, under the conditions (f0) − (f4) and (f6)′, it is possible to define I as a free

functional on D1,2(RN ). In addition I is of class C1 and setting

cmp := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ := {γ ∈ C([0, 1],D1,2(RN )) | γ(0) = 0, I(γ(t)) < 0} one has that cmp > 0. Clearly, if we

show that

Em ≥ cmp for any m > 0, (7.2)

then the proof is complete. In order to get (7.2), we adapt the argument of [12, Lemma 7.1]. For any

given u ∈ Pm, in view of Lemma 2.1 (i), there exists s− < 0 such that

I(θ(s− ? u)) ≤ e2s−

∫
RN

|∇u|2dx < I(u) for any θ ∈ [0, 1]. (7.3)

By Lemma 2.2 (ii), we can also choose s+ > 0 large enough such that I(s+ ? u) < 0. Since the path

γ(t) :=


2t(s− ? u), 0 ≤ t ≤ 1

2
,

[2(1− t)s− + (2t− 1)s+] ? u,
1

2
≤ t ≤ 1,

belongs to Γ, from (7.3) and Lemma 2.4 (ii), it follows that

I(u) = max
t∈[0,1]

I(γ(t)) ≥ cmp > 0.

Noting that u ∈ Pm is arbitrary, we obtain (7.2) and thus E∞ ≥ cmp > 0.

As an example of function that satisfies (f0)− (f5) and (f6)′, we have

f(t) := β

[
1− βN (N − 2)|t|βN

2N(1 + |t|βN )

]
|t|

4
N−2 t

1 + |t|βN

with its primitive integral

F (t) := β
(N − 2)|t|

2N
N−2

2N(1 + |t|βN )
,

where β > 0 and βN ∈ (0, 4
N(N−2) ].
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Remark 7.3 To remind the dependence of Em and E∞ on f , we now denote them as Ef,m and

Ef,∞ := lim
m→∞

Ef,m.

Let N ≥ 3 and consider the functions that satisfy (f0)− (f5) and

(f6)′′ limt→0 f(t)t/|t|
2N

N−2 =: Lf ∈ (0,+∞].

In view of Remark 7.2, for any f, g, we conjecture that

Ef,∞ > Eg,∞ if Lf < Lg, Ef,∞ = Eg,∞ when Lf = Lg;

or, at least, Ef,∞ ≥ Eg,∞ if Lf < Lg. Clearly, by Remark 7.2, this conjecture is true when Lg = +∞.
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