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Abstract

We consider the existence of normalized solutions in H1(RN ) × H1(RN ) for systems
of nonlinear Schrödinger equations which appear in models for binary mixtures of ultracold
quantum gases. Making a solitary wave ansatz one is led to coupled systems of elliptic equa-
tions of the form 

−∆u1 = λ1u1 + f1(u1) + ∂1F (u1, u2),

−∆u2 = λ2u2 + f2(u2) + ∂2F (u1, u2),

u1, u2 ∈ H1(RN ), N ≥ 2,

and we are looking for solutions satisfying∫
RN

|u1|2 = a1,

∫
RN

|u2|2 = a2

where a1 > 0 and a2 > 0 are prescribed. In the system λ1 and λ2 are unknown and will
appear as Lagrange multipliers. We treat the case of homogeneous nonlinearities, i.e. fi(ui) =
µi|ui|pi−1ui, F (u1, u2) = β|u1|r1 |u2|r2 , with positive constants β, µi, pi, ri. The exponents
are Sobolev subcritical but may be L2-supercritical: p1, p2, r1 + r2 ∈]2, 2∗[ \

{
2 + 4

N

}
.
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1 Introduction

Elliptic systems of the form

(1.1)


−∆u1 = λ1u1 + f1(u1) + ∂1F (u1, u2)

−∆u2 = λ2u2 + f2(u2) + ∂2F (u1, u2)

u1, u2 ∈ H1(RN )

have been investigated in the last decades by many authors. Surprisingly little is known about the
existence of normalized solutions, i.e. solutions that satisfy the constraint

(1.2)
∫
RN
|u1|2 = a1 and

∫
RN
|u2|2 = a2
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with a1, a2 > 0 prescribed. One motivation to look for normalized solutions of (1.1) are coupled
systems of nonlinear Schrödinger equations

(1.3)

{
−i∂tΨ1 = ∆Ψ1 + g1(|Ψ1|)Ψ1 + ∂1G(|Ψ1|2, |Ψ2|2)Ψ1

−i∂tΨ2 = ∆Ψ2 + g2(|Ψ2|)Ψ2 + ∂2G(|Ψ1|2, |Ψ2|2)Ψ2

in R× RN .

Since the masses ∫
RN
|Ψ1|2 and

∫
RN
|Ψ2|2

are preserved along trajectories of (1.3), it is natural to consider them as prescribed. A solitary
wave of (1.3) is a solution having the form

Ψ1(t, x) = e−iλ1tu1(x) and Ψ2(t, x) = e−iλ2tu2(x)

for some λ1, λ2 ∈ R. This ansatz leads to (1.1) for (u1, u2) with f1(u1) = g1(|u1|)u1, f2(u2) =
g2(|u2|)u2, and F (u1, u2) = 1

2G(|u1|2, |u2|2).
The question of finding normalized solutions is already interesting for scalar equations and

provides features and difficulties which are not present when the normalization condition is being
dropped. Since the scalar setting will of course be relevant when treating systems, let us recall a
few facts. Solutions u ∈ H1(RN ) of

(1.4) −∆u = λu+ f(u),

∫
RN
|u|2 = a,

with a > 0 fixed can be obtained as critical points of the functional

J(u) =
1

2

∫
RN
|∇u|2 −

∫
RN

F (u), with F (s) =

∫ s

0
f(t) dt,

constrained to the L2-sphere Sa :=
{
u ∈ H1(RN ) :

∫
RN |u|

2 = a2
}

, provided f is subcritical.
The model nonlinearity is f(s) = |s|p−2s with 2 < p < 2∗ = 2N

N−2 . The parameter λ in the
equation appears then as Lagrange multiplier.

The best studied cases of (1.4) correspond to the situation when a solution can be found as a
global minimizer of J on S(a) which is the case if 2 < p < 2+ 4

N for the model nonlinearity. This
research mainly started with the work of Stuart [29,30]. A bit later the Concentration Compactness
Principle of P.L. Lions [22, 23] was used in this type of problems. The case when J is unbounded
from below (and from above) on Sa, i.e. 2 + 4

N < p < 2∗ for the model nonlinearity, has already
been much less studied. In this case a mountain pass structure has been exploited in [19] leading to
the existence of one normalized solution. The existence of infinitely many normalized solution has
later been proved in [7] where a "fountain" type structure on the L2-sphere has been discovered
which is somewhat reminiscent to the one for the free functional from [6]; see also [32]. More
results on normalized solutions for scalar equations can be found in [10, 11, 20]. Technical diffi-
culties in dealing with the constrained functional are that the existence of bounded Palais-Smale
sequences requires new arguments, that Lagrange multipliers have to be controlled, and that weak
limits of Palais-Smale sequences a-priori do not necessarily lie on the same L2-sphere.
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The goal of this paper is to find positive radial solutions of systems like (1.1) under various
growth conditions of f1, f2, F . In order to keep the ideas and the results simple, and in order to
avoid technicalities we only deal with homogeneous nonlinearities f1(s) = µ1|s|p1−2s, f2(s) =
µ2|s|p2−2s, and F (s, t) = β|s|r1 |t|r2 . Thus we look for positive radial solutions u1, u2 ∈ E :=
H1
rad(RN )×H1

rad(RN ) of the system

(1.5)

{
−∆u1 = λ1u1 + µ1|u1|p1−2u1 + r1β|u1|r1−2|u2|r2u1

−∆u2 = λ2u2 + µ2|u2|p2−2u2 + r2β|u1|r1 |u2|r2−2u2

which are L2-normalized in the sense of (1.2). Throughout the paper we require N ≥ 2, p1, p2 ∈
]2, 2∗, [ \

{
2 + 4

N

}
, and β, µ1, µ2, r1, r2, a1, a2 > 0 with 2 ≤ r1 + r2 < 2∗. Thus we treat various

self-focussing and attractive cases. These constants are prescribed whereas the parameters λ1 and
λ2 are unknown and will appear as Lagrange multipliers. The system comes from mean field
models for binary mixtures of Bose-Einstein condensates or for binary gases of fermion atoms
in degenerate quantum states (Bose-Fermi mixtures, Fermi-Fermi mixtures); see [1, 5, 14, 25] and
the references therein. The most famous case is the one of coupled Gross-Pitaevskii equations
in dimension N ≤ 3 where p1 = p2 = 4, r1 = r2 = 2 modeling Bose-Einstein condensation.
However models for other ultracold quantum gases use different exponents.

The particular case p1 = p2 = 4, r1 = r2 = 2 of coupled Gross-Pitaevskii equations in R3 is
being treated in the companion paper [8]. In the present paper we deal with general exponents and
distinguish between the cases p1, p2 < 2+ 4

N , p1 < 2+ 4
N < p2 and p1, p2 > 2+ 4

N . The exponent
2 + 4

N is critical for the normalized solution problem and will not be treated here. Other results
on the existence of prescribed L2-norm solutions for systems can be found in [2, 3, 18, 26, 27, 31].
In these papers the solutions obtained are global minimizers of the associated functional (e.g. in
the defocusing repelling case µ1, µ2, β < 0), or only the case of small masses a1, a2 ∼ 0 has been
treated (as in [27]). In the latter paper the system included a trapping potential or was defined on
a bounded domain. Requiring the masses to be small is a bifurcation type result.

Up to our knowledge the results of this paper and of its companion paper [8] are the first
results where one obtains normalized solutions for systems when the associated functional, here
J , is unbounded from below on the constraint, and when the masses need not be small.

The paper is organized as follows: In Section 2 we state and discuss our results. Section 3
contains some preliminary results, whereas Sections 4 and 5 are devoted to the proofs of the
theorems from Section 2.

2 Statement of Results

We fix N ≥ 2, p1, p2 ∈ (2, 2∗), and β, µ1, µ2, r1, r2, a1, a2 > 0 with 2 ≤ r1 + r2 < 2∗. We seek
for solutions in the space E := H1

rad(RN ) ×H1
rad(RN ) of pairs of radial functions in H1(RN ).

Our first result on (1.5), (1.2) deals with a case where it is possible to minimize the functional on
the constraint.

Theorem 2.1. The problem (1.5), (1.2) has, for some λ1, λ2 < 0, a solution (u1, u2) ∈ E satisfy-
ing u1 > 0, u2 > 0 in each of the following cases:

a) 2 ≤ N ≤ 4 and p1, p2, r1 + r2 < 2 + 4
N .
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b) N ≥ 5 and p1, p2 < 2 + 2
N−2 and r1 + r2 < 2 + 4

N .

We do not know whether Theorem 2.1 a) holds true for all N ≥ 2, i.e. whether the hypothesis
p1, p2 < 2 + 2

N−2 in 2.1 b) can be replaced by p1, p2 < 2 + 4
N . Setting S(a) = Sa∩H1

rad(RN ) =

{u ∈ H1
rad(RN ) : |u|22 = a}, the solution in Theorem 2.1 will be a minimizer of the functional

J(u1, u2) =
1

2

∫
RN
|∇u1|2 + |∇u2|2 dx−

∫
RN

µ1

p1
|u1|p1 +

µ2

p2
|u2|p2 + β|u1|r1 |u2|r2 dx

constrained to S(a1)× S(a2) ⊂ E.
It is easy to prove that any minimizing sequence {(un1 , un2 )} ⊂ S(a1)×S(a2) associated to J is

bounded. Thus we can assume without restriction that (un1 , u
n
2 ) ⇀ (u1, u2) weakly in E for some

(u1, u2) ∈ E. From the weak convergence in E we deduce that (u1, u2) satisfies (1.5) for some
associated (λ1, λ2). To prove Theorem 2.1 one still has to show that (u1, u2) ∈ S(a1) × S(a2).
Even if we work in the space of radially symmetric functions this question is, with respect to the
scalar case, challenging as was already observed in [18]. Our proof of Theorem 2.1 ultimately
relies on the use of a Liouville’s type result for an associated scalar equation. This is responsible
for the restriction that N ≤ 4 in part a), or that p1, p2 < 2 + 2

N−2 in part b).
Our second result deals with the case where p2 and r1 + r2 are bigger than 2 + 4

N so that J is
unbounded from below and minimization does not work. We require the following hypotheses on
the coefficients.

(H1) 2 < p1 < 2 + 4
N < p2 < 2∗.

(H2) 2 + 4
N < r1 + r2 < 2∗, r2 > 2.

Consider the functional I : H1
rad(RN )→ R defined by

I(u) =
1

2

∫
RN
|∇u|2 dx− µ

p

∫
RN
|u|p dx

constrained to the L2-sphere S(a). For p ∈]2, 2∗[ \{2 + 4
N } we denote by mµ

p (a) the ground state
level, i. e.

mµ
p (a) = inf{I(u) : u ∈ S(a) such that (I|S(a))

′(u) = 0}.

We discuss the properties of this ground state level in Lemma 3.1 below.

Theorem 2.2. Assume (H1), (H2) and 2 ≤ N ≤ 4. If

(2.1) mµ1
p1 (a1) +mµ2

p2 (a2) < 0,

then, for some λ1 < 0 and λ2 < 0, there exists a solution (u1, u2) ∈ E of (1.5), (1.2), satisfying
u1 > 0, u2 > 0.

As a corollary of Theorem 2.2 we obtain :

Corollary 2.3. Assume (H1), (H2) and 2 ≤ N ≤ 4. Then for any a2 > 0 there exists ā1 > 0 such
that for any a1 ≥ ā1 there exists a positive solution (u1, u2) ∈ E of (1.5), (1.2), for some λ1 < 0
and λ2 < 0. In addition ā1 → 0 as a2 →∞.
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With respect to Theorem 2.1 the proof of Theorem 2.2 presents new difficulties. First one
needs to identify a possible critical level γ(a1, a2) where one can find Palais-Smale sequences.
The construction of this minimax level, which is of mountain pass type, is the heart of the proof
and is carried out in Lemmas 5.1, 5.2 and 5.3. By Ekeland’s variational principle there exists
a Palais-Smale sequence associated to γ(a1, a2). One then needs to find a bounded Palais-Smale
sequence. We manage to find a special Palais-Smale sequence {(un1 , un2 )} ⊂ S(a1)×S(a2) having
the additional property that Q(un1 , u

n
2 )→ 0 where Q : E → R is given by

(2.2)
Q(u1, u2) = |∇u1|22 + |∇u2|22 −

µ1

p1
N
(p1

2
− 1
)
|u1|p1p1

− µ2

p2
N
(p2

2
− 1
)
|u2|p2p2 −Nβ

(
r1 + r2

2
− 1

)∫
RN
|u1|r1 |u2|r2 dx.

The condition Q(u1, u2) = 0 corresponds to a natural constraint of Pohozaev type on the solu-
tions of (1.5), (1.2); see Remark 5.6. To construct a Palais-Smale sequence having the additional
property Q(un1 , u

n
2 )→ 0 we employ similar arguments as in [7, 11, 19, 24]; see also [4, 17].

From the property that Q(un1 , u
n
2 ) → 0 we deduce that {(un1 , un2 )} ⊂ E is bounded. Finally

in order to insure the strong convergence of our Palais-Smale sequence we combine the estimate
(2.1) with the Liouville argument already used in the proof of Theorem 1.1.

In our last result we assume the inequalities p1, p2, r1 + r2 > 2 + 4
N .

Theorem 2.4. Assume that p1, p2, r1 + r2 > 2 + 4
N and that 2 ≤ N ≤ 4.

a) There exists β1 = β1(a1, a2, µ1, µ2) > 0 such that if β ≤ β1 then (1.5), (1.2) has a positive
solution (u1, u2) ∈ E for some λ1 < 0 and λ2 < 0.

b) There exists β2 = β2(a1, a2, µ1, µ2) > 0 such that if β ≥ β2 then (1.5), (1.2) has a positive
solution (u1, u2) ∈ E for some λ1 < 0 and λ2 < 0.

We would like to emphasize that the proof yields explicit estimates for β1 from below and β2

from above in terms of p1, p2, r1, r2 and a1, a2, µ1, µ2, in particular β1 and β2 are not obtained by
limiting processes.

Theorem 2.4 is a generalization of the result from [8] where the case N = 3, p1 = p2 = 4,
r1 = r2 = 2 has been considered. The proof of Theorem 2.4 a) is based on a two-dimensional
linking on the constraint S = S(a1)×S(a2) whereas the proof of Theorem 2.4 b) uses a mountain
pass argument on S. As in Theorem 2.2 one obtains a special Palais-Smale sequence {(un1 , un2 )} ⊂
S(a1) × S(a2) at the suspected critical level θ(a1, a2) such that Q(un1 , u

n
2 ) → 0. This leads in

particular to its boundedness. In order to obtain the strong convergence an upper bound for β is
needed in part a), and a lower bound in part b). Concerning estimates for β1 or β2 we just mention
that in the setting of [8] one has β1 → ∞ if µ1 = µ2 → ∞ and a1, a2 being fixed. Similarly,
β2 → 0 if µ1 = µ2 → 0 and a1, a2 are fixed. Since the proof in [8] for the special case N = 3,
p1 = p2 = 4, r1 = r2 = 2, generalizes easily we simply refer to [8] and do not give any details
here.

Remark 2.5. The results presented in this paper for N ≥ 2 can be extended to N = 1. The
difference between the cases N = 1 and N ≥ 2 is that the compact embedding H1

rad(RN ) ⊂
Lq(RN ) for q ∈]2, 2∗[ only holds when N ≥ 2. When N = 1 the corresponding compactness
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can however be regained by working with Palais-Smale sequences of almost Schwartz-symmetric
functions. In order to avoid additional technicalities we do not deal with the case N = 1 in this
paper but instead refer the reader to [20] where a similar issue is treated. The results are identical
in the cases N = 1 and N ≥ 2 except that in the case N = 1 one should require in addition that
r2 > 4 in (H2) (this restriction originates only from the adapted version of Lemma 5.1).

3 Preliminary results

Throughout the paper we denote by H the space H1
rad(RN ) equipped with the standard norm

| · |, so E = H × H . We also denote by S the constraint S(a1) × S(a2). We recall, see for
example [12], that if un ⇀ u weakly in H then un → u strongly in Lq(RN ) for q ∈]2, 2∗[.

Let us first observe that the functional J is well defined. For 2 ≤ r1 + r2 ≤ 2∗ there exists
q > 1 with

(3.1) max

{
2

r1
,

2∗

2∗ − r2

}
≤ q ≤ min

{
2∗

r1
,

2

(2− r2)+

}
,

which implies 2 ≤ r1q, r2q
′ ≤ 2∗, hence∫
RN
|u1|r1 |u2|r2 dx ≤ |u1|r1r1q · |u2|r2r2q′ <∞.

The Gagliardo-Nirenberg inequality

|u|p ≤ C(N, p)|∇u|α2 · |u|1−α2 where α =
N(p− 2)

2p

which holds for u ∈ H1(RN ) and 2 ≤ p ≤ 2∗, implies for u1 ∈ S(a1), u2 ∈ S(a2):

(3.2)
∫
RN
|u1|p1 ≤ C(N, p1, a1)|∇u1|

N(p1−2)
2

2 ,

∫
RN
|u2|p2 ≤ C(N, p2, a2)|∇u2|

N(p2−2)
2

2 ,

and

(3.3)
∫
RN
|u1|r1 |u2|r2 dx ≤ |u1|r1r1q · |u2|r2r2q′ ≤ C|∇u1|

N(r1q−2)
2q

2 |∇u2|
N(r2q

′−2)

2q′
2

with C = C(N, r1, r2, a1, a2, q).

Lemma 3.1. Assume that p ∈]2, 2∗[\
{

2 + 4
N

}
, and let µ > 0 be given. For any a > 0 there

exists a unique couple (λa, ua) ∈ R+ ×H solving

(3.4) −∆u+ λu = µ|u|p−2u, u ∈ H1(RN ),

and such that ua > 0 and |ua|22 = a. Moreover ua corresponds to the least energy level mµ
p (a) of

the functional I : H → R defined by

I(u) =
1

2

∫
RN
|∇u|2 dx− µ

p

∫
RN
|u|p dx
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constrained to the L2-sphere S(a). If p ∈]2, 2 + 4
N [ then mµ

p (a) < 0 for all a > 0, the map
a 7→ mµ

p (a) is strictly decreasing, and mµ
p (a) → −∞ as a → ∞. If p ∈]2 + 4

N , 2
∗[ then

mµ
p (a) > 0 for all a > 0, the map a 7→ mµ

p (a) is strictly decreasing and mµ
p (a)→ 0 as a→∞.

Proof. It is standard (see [21]) that the equation

(3.5) −∆u+ λu = µ|u|p−2u, u ∈ H1(RN ),

has, for any λ > 0, a unique positive radial solution uλ. By direct calculations one can show that
uλ is given by

uλ(x) = λ
1
p−2w(

√
λx)

where w is the unique positive radial solution of

−∆u+ u = µ|u|p−2u, u ∈ H1(RN ).

Since
|uλ|22 = λ

(
2
p−2
−N

2

)
|w|22

for any a > 0 there exists a unique λa > 0, explicitely given by

λa =
( a

|w|22

) 2(p−2)
4−N(p−2)

,

such that uλa ∈ H1(RN ) satisfies |uλa |22 = a and is the unique positive solution of

−∆u+ λau = µ|u|p−2u, u ∈ H1(RN ).

The solution uλa corresponds to a least energy solution of the functional I : H → R defined by

I(u) =
1

2

∫
RN
|∇u|2 dx− µ

p

∫
RN
|u|p dx

constrained to the L2-sphere S(a). Here λa > 0 appears as the associated Lagrange parameter.
To prove this statement two cases have to be distinguished:

Case 1 : p ∈]2, 2 + 4
N [.

The least energy solution corresponds to the energy level

mµ
p (a) = inf

u∈S(a)
I(u).

It is standard [29,30], see also [9], thatmµ
p (a) < 0, that the map a 7→ mµ

p (a) is strictly decreasing,
and that mµ

p (a)→ −∞ as a→∞.

Case 2 : p ∈]2 + 4
N , 2

∗[.
The least energy solution corresponds to the energy level

mµ
p (a) = inf

u∈V (a)
I(u).
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Here

(3.6) V (a) =
{
u ∈ S(a) : |∇u|22 =

N(p− 2)

2
|u|pp
}

is a natural constraint which contains all the critical points of I constrained to S(a). This has
been proved in [11, Lemma 9.3], see also [19]. Also in [11, Lemma 9.3] it is shown that the map
a 7→ mµ

p (a) is strictly decreasing and that mµ
p (a)→ 0 as a→∞.

Lemma 3.2. Let {(un1 , un2 )} ⊂ S be a bounded Palais-Smale sequence of J restricted to S. Then
there exist (u1, u2) ∈ E, (λ1, λ2) ∈ R× R and a sequence {(λn1 , λn2 )} ∈ R× R such that, up to
a subsequence:

a) For i = 1, 2, uni ⇀ ui weakly in H and in L2(RN ), uni → ui in Lq(RN ) for any q ∈]2, 2∗[;

b) (λn1 , λ
n
2 )→ (λ1, λ2) in R× R;

c) J ′(un1 , u
n
2 )− λn1 (un1 , 0)− λn2 (0, un2 )→ 0 in E∗;

d) (u1, u2) is solution of the system (1.5) where (λ1, λ2) are given in b).

In addition if λ1 < 0 then un1 → u1 strongly in H . Similarly if λ2 < 0 then un2 → u2 strongly in
H .

Proof. Point a) is trivial. Since {(un1 , un2 )} ⊂ H × H is bounded, following Berestycki and
Lions [12, Lemma 3], we know that (J |S)′(un1 , u

n
2 )→ 0 in E∗ is equivalent to

J ′(un1 , u
n
2 )− 1

|un1 |22
〈J ′(un1 , un2 ), (un1 , 0)〉(un1 , 0)− 1

|un2 |22
〈J ′(un1 , un2 ), (0, un2 )〉(0, un2 )→ 0

in E∗. Therefore we obtain

J ′(un1 , u
n
2 )− λn1 (un1 , 0)− λn2 (0, un2 ) −→ 0 in E∗

with

(3.7) λn1 =
1

|un1 |22

(
|∇un1 | − µ1|un1 |p2p1 − βr1

∫
RN
|un1 |r1 |un2 |r2dx

)
and

(3.8) λn2 =
1

|un2 |22

(
|∇un2 | − µ1|un2 |p2p1 − βr2

∫
RN
|un2 |r2 |un1 |r1dx

)
.

This proves point c). To prove point b), namely that {(λn1 , λn2 )} ⊂ R×R is bounded, it suffices to
recall that {(un1 , un2 )} ⊂ E is bounded and to use the estimates (3.2) and (3.3). Now from points
b) and c) it is standard to deduce d).

It remains to show that if λ1 < 0 then un1 → u1 strongly in H1(RN ), and in particular in
L2(RN ). Since

|un1 |p1p1 → |u1|p1p1 and
∫
RN
|un1 |r1 |un2 |r2 dx→

∫
RN
|u1|r1 |u2|r2 dx,
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and using the fact that 〈J ′(un1 , un2 )−λn1 (un1 , 0), (un1 , 0)〉 → 〈J ′(u1, u2)−λ1(u1, 0), (u1, 0)〉 = 0,
we deduce

(3.9) |∇un1 |22 − λn1 |un1 |22 → |∇u1|22 − λ1|u1|22.

As a consequence of the weak convergence uni ⇀ ui we obtain

|∇u1|22 ≤ lim inf |∇un1 |22 and |u1|22 ≤ lim inf |un1 |22.

Finally, since λn1 → λ1 we deduce from (3.9) that

|∇un1 |22 → |∇u1|22 and |un1 |22 → |u1|22

from which the strong convergence follows. The case of λ2 < 0 is treated in the same way.

Lemma 3.3. a) Suppose that q ∈]1, N
N−2 ] when N ≥ 3 and q ∈]1,∞[ when N = 1, 2. Let

u ∈ Lq(RN ) be a smooth nonnegative function satisfying −∆u ≥ 0 in RN . Then u ≡ 0
holds.

b) For 1 < q ≤ 1 + 2
N−2 the inequality −∆u ≥ uq does not have a positive classical solution

in RN .

Proof. a) can be found in [18, Lemma A.2]; b) is due to [16], a simple proof can be found in
[28].

Lemma 3.4. Assume N ≤ 4, or N ≥ 5 and p1 ≤ 2 + 2
N−2 . If (u1, u2) ∈ E is a solution of (1.5)

with u1 	 0 and u2 ≥ 0, then λ1 < 0. If (u1, u2) ∈ E is a solution of (1.5) with u2 	 0 and
u1 ≥ 0, then λ2 < 0.

Proof. In the first case since u1 	 0 satisfies

−∆u1 = λ1u1 + µ1u
p1−1
1 + r1βu

r1−1
1 u2

and since all summands on the right hand side are non negative if λ1 ≥ 0, we conclude by
Lemma 3.3 that u1 = 0. This contradicts the assumption that u1 	 0. The proof of the other
part is identical.

4 Proof of Theorem 2.1

Lemma 4.1. If p1, p2, r1 + r2 < 2 + 4
N then J is bounded from below and coercive on S for

any a1, a2 > 0. In addition there exists a bounded Palais-Smale sequence {(un1 , un2 )} ⊂ S which
satisfies (un1 )− → 0 and (un2 )− → 0 in H . Here (uni )− = max{0,−uni } for i = 1, 2.

Proof. Observe that N(pi−2)
2 < 2 because pi < 2 + 4

N , i = 1, 2, and that

(4.1)
N(r1q − 2)

2q
+
N(r2q

′ − 2)

2q′
< 2

9



since r1 + r2 < 2 + 4
N . It follows easily from (3.2), (3.3) and (4.1) that J is bounded below and

coercive on S.

Now let {(vn1 , vn2 )} ⊂ S be a minimizing sequence for J on S. By the coerciveness of J it
is bounded and also without restriction we can assume that vn1 ≥ 0 and vn2 ≥ 0. Using Ekeland’s
variational principle [13, 15] we deduce that there exists a minimizing sequence {(un1 , un2 )} ⊂ S
which is a Palais-Smale sequence for J restricted to S and which satisfies (un1 , u

n
2 )−(vn1 , v

n
2 )→ 0

in E. In particular (un1 )− → 0 and (un2 )− → 0 in H .

Proof of Theorem 2.1. From Lemmas 3.1 and 4.1 we deduce the existence of a bounded Palais-
Smale sequence {(un1 , un2 )} ⊂ S such that (un1 , u

n
2 ) ⇀ (u1, u2) weakly in E with u1 ≥ 0 and

u2 ≥ 0. We also obtain a couple (λ1, λ2) ∈ R × R for which (u1, u2) is solution of the system
(1.5). To conclude the proof it remains to show that un1 → u1 and un2 → u2 in H . Indeed if this is
the case then we both have u1 ∈ S(a1) and u2 ∈ S(a2) and that (u1, u2) is a least energy solution.
In addition by the strong maximum principle, applied separately to each equation, we obtain that
u1 > 0 and u2 > 0. In order to show the strong convergence in H we define

m(a1, a2) := inf
(u1,u2)∈S

J(u1, u2).

Since β ≥ 0 we clearly have

(4.2) m(a1, a2) ≤ mµ1
p1 (a1) +mµ2

p2 (a2) < 0

where the last inequality comes from Lemma 3.1. We now distinguish four cases and we show
that only the last one may occur:

Case 1: u1 = 0 and u2 = 0.
Then |un1 |

p1
p1 → 0, |un2 |

p2
p2 → 0 and

∫
RN |u

n
1 |r1 |un2 |r2 dx → 0. Thus lim supJ(un1 , u

n
2 ) ≥ 0 which

contradicts (4.2).

Case 2: u1 = 0 and u2 6= 0.
Then

lim supJ(un1 , u
n
2 ) ≥ 1

2
|∇u2|22 −

µ2

p2
|u2|p2p2 ≥ m(ā2)

where ā2 := |u2|22 ≤ a2. By Lemma 3.1 we know that m(ā2) ≥ m(a2), and since m(a1) < 0 we
have a contradiction with (4.2).

Case 3: u1 6= 0 and u2 = 0.
Reversing the rôle of u1 and u2 we obtain a contradiction similar to case 2.

Case 4: 0 < |u1|22 = ā1 ≤ a1 or 0 < |u2|22 = ā2 ≤ a2.
Necessarily this case occurs. Now using Lemma 3.4 we deduce that λ1 < 0 and λ2 < 0. Then
Lemma 3.2 implies un1 → u1 and un2 → u2 in H . At this point the proof of the theorem is
completed.
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5 Proof of Theorem 2.2

For c > 0 we define the sets

Ac = {u2 ∈ S(a2) : |∇u2|22 ≤ c} and Bc = {u2 ∈ S(a2) : |∇u2|22 = 2c}.

Setting Ju1(u2) := J(u1, u2) for u1 ∈ S(a1) we observe that

Ju1(u2) = Ju1(0) +
1

2

∫
RN
|∇u2|2 dx−

µ2

p2

∫
RN
|u2|p2 dx− β

∫
RN
|u1|r1 |u2|r2 dx.

Lemma 5.1. There exists a continuous function c : S(a1)→ R, u1 → c(u1), such that

sup
Ac(u1)

Ju1 < inf
Bc(u1)

Ju1 for all u1 ∈ S(a1).

The function c is bounded, and it is bounded away from 0 on bounded subsets of S(a1).

Proof. Fixing u1 ∈ S(a1) we first observe that for u2 ∈ Ac there holds:

Ju1(u2) ≤ Ju1(0) +
1

2

∫
RN
|∇u2|2 dx ≤ Ju1(0) +

1

2
c.

For u2 ∈ Bc and q as in (3.1), and γ = N(r2q′−2)
2q′ we have, using the Gagliardo-Nirenberg

inequality, see (3.2), (3.3),

Ju1(u2) ≥ Ju1(0) + c− µ2

p2
c(p2, N)|∇u2|

N
2

(p2−2)

2 |u2|
p2(1−N

2
)+N

2 − β|u1|r1r1q · |u2|r2r2q′

= Ju1(0) + c−K1c
N
4

(p2−2) −K2|u1|r1r1q · c
γ
2

HereK1 = K1(N,µ2, p2, a2) andK2 = K2(N, β, r2, a2, q). Observe that N4 (p2−2) > 1 because
p2 > 2 + 4

N , and γ > 2 provided q < 2N
2N−r2N+4 . We can choose q satisfying this inequality and

(3.1) because
2N

2N − r2N + 4
> max

{
2

r1
,

2∗

2∗ − r2

}
which is a consequence of r1 + r2 > 2 + 4

N and r2 > 2.
Observe that K1c

N
4

(p2−2) ≤ 1
8c if c > 0 is small because N(p2−2)

4 > 1, and K2|u1|r1r1q · c
γ
2 ≤

1
8c if c > 0 is small because γ > 2. More precisely, if c : S(a1)→ R+ satisfies

(5.1) c(u1) ≤ min

{
(8K1)

− 4
N(p2−2)−4 , (8K2)

− 2
γ−2 · |u1|

− 2r1
γ−2

r1q

}
,

then we have for u2 ∈ Bc(u1):

(5.2)
Ju1(u2) ≥ Ju1(0) + c(u1)− 1

8
c(u1)− 1

8
c(u1)

> Ju1(0) +
1

2
c(u1) ≥ sup

Ac(u1)

Ju1 .

Clearly we may define a continuous function c : S(a1) → R+ satisfying (5.1) and which is
bounded away from 0 on bounded subsets of S(a1). In fact, the right hand side of (5.1) may serve
as definition. By (5.1) c is also bounded above.
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Now we set
A(u1) = Ac(u1), B(u1) = Bc(u1)

and
B = {(u1, u2) : u1 ∈ S(a1), u2 ∈ B(u1)}.

Let u ∈ S(a1) be such that

(5.3) J(u, 0) = min
u∈S(a1)

J(u, 0) < 0.

The existence of u is insured by Lemma 3.1.

Lemma 5.2. There exist v ∈ A(u) and w ∈ S(a2) \A2c(u) such that

max{J(u, v), J(u,w)} < inf
(u1,u2)∈B

J(u1, u2).

Proof. Since J(u, u2) → J(u, 0) as |∇u2|2 → 0, in order to obtain v ∈ A(u) it is sufficient to
prove J(u, 0) < infB J . The functional J(·, 0) : S(a1)→ R is coercive because 2 < p1 < 2+ 4

N .
Choose R > 0 such that J(u1, 0) ≥ J(u, 0) + 1 if |∇u1|2 ≥ R. Then we have for (u1, u2) ∈ B
with |∇u1|2 ≥ R, cf. (5.2):

J(u1, u2) ≥ J(u1, 0) +
3

4
c(u1) > J(u, 0) + 1 .

By Lemma 5.1 there holds
ε := inf

|∇u1|2≤R
c(u1) > 0

which implies for (u1, u2) ∈ B with |∇u1|2 ≤ R:

J(u1, u2) ≥ J(u1, 0) +
3

4
c(u1) ≥ J(u, 0) +

3

4
ε .

In order to find w ∈ S(a2) \ A2c(u) as required we define for each u ∈ S(a2) and t ∈ R the

scaled function t ∗ u by (t ∗ u)(x) = et
N
2 u(etx). Clearly t ∗ u ∈ S(a2) for every t > 0, and

|∇(t ∗ u)|2 → ∞ as t → ∞. Now since p2 > 2 + 4
N , fixing an arbitrary u ∈ S(a2) we see that

J(u, (t ∗ u))→ −∞ as t→∞.

As a consequence of Lemma 5.2 the set

Γ :=
{
g ∈ C([0, 1],S) : g(0) = (v1, v2), g(1) = (w1, w2),

v2 ∈ A(v1), w2 /∈ A2c(w1), max{J(v1, v2), J(w1, w2)} < inf
B
J
}

is nonempty.

Lemma 5.3. We have
γ(a1, a2) := inf

g∈Γ
max
t∈[0,1]

J(g(t)) ≥ inf
B
J.

12



Proof. We just need to show that for each g(t) = (g1(t), g2(t)) ∈ Γ there exists a t ∈ [0, 1] such
that g(t) ∈ B. The map α : [0, 1]→ R given by t→ |∇g2(t)|22 − 2c(g1(t)) satisfies

α(0) = ||∇v2||22 − 2c(v1) ≤ c(v1)− 2c(v1) < 0

and
α(1) = ||∇w2||22 − 2c(w1) > 0.

Thus there exists a t ∈ [0, 1] such that α(t) = 0, which means g(t) ∈ B.

For future reference we also need.

Lemma 5.4. Assume that (H1) and (H2) hold. Then for any a1 > 0 and a2 > 0 we have

(5.4) γ(a1, a2) ≤ mµ1
p1 (a1) +mµ2

p2 (a2).

Proof. Let u ∈ S(a2) be such that

J(0, u) = I(u) = min
u∈V (a2)

I(u) = mµ2
p2 (a2)

whose existence and characterization is recalled in Lemma 3.1, with V (a) defined in (3.6). Since
u ∈ V (a2) it is readily seen that

(5.5) max
t∈R

I(t ∗ u) = I(0 ∗ u) = I(u).

We now consider the path h : [0, 1]→ S given by h(t) = (u, hs(t)) where

hs(t)(x) = es(2t−1)N
2 u
(
es(2t−1)x

)
.

Here s > 0 is choosen sufficiently large so that

hs(0)(·) = e−s
N
2 u(e−s·) ∈ A(u), hs(1)(·) = es

N
2 u(es·) 6∈ A2c(u) and max J(u, hs(1)) < 0.

Thus h belongs to Γ. Now using (5.5) and β ≥ 0 we obtain

max
t∈[0,1]

J(h(t)) ≤ J(u, 0) + max
t∈[0,1]

J(0, hs(t)) = mµ1
p1 (a1) +mµ2

p2 (a2).

Lemma 5.5. Assume that (H1) and (H2) hold. There exists a Palais-Smale sequence {(un1 , un2 )} ⊂
S for J at the level γ(a1, a2) which satisfies (un1 )− → 0, (un2 )− → 0 in H and the additional
property that Q(un1 , u

n
2 )→ 0 where Q is given in (2.2).

Remark 5.6. It is possible to prove that any solution (u1, u2) of (1.5), (1.2) must satisfy
Q(u1, u2) = 0. Thus Q(u1, u2) = 0 is a natural constraint. This condition is directly related
to the Pohozaev identity adapted to the presence of the constraint S. Formally it can be obtained
by looking at the function t 7→ (t ∗ u1, t ∗ u2) for (u1, u2) ∈ S. Then Q(u1, u2) = 0 corresponds
to the condition that the derivative of t 7→ J(t ∗ u1, t ∗ u2) is zero when t = 1.
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Results in the spirit of Lemma 5.5 have now been proved in a variety of situations [7,10,17,19,
20, 24] and we shall be rather sketchy here, refering the readers to these papers for more details.
We recall the stretched functional first introduced in [19]:

J̃ : R× E → R, (s, (u1, u2)) 7→ J(s ∗ u1, s ∗ u2).

In the sequel we write s∗(u1, u2) := (s∗u1, s∗u2) and recall that s∗(u1, u2) ∈ S if (u1, u2) ∈ S.
Now we define the set of paths

Γ̃ :=
{
g̃ ∈ C([0, 1],R× S) : g̃(0) = (0, (v1, v2)), g̃(1) = (0, (w1, w2))

v2 ∈ A(v1), w2 /∈ A2c(w1), max{J(v1, v2), J(w1, w2)} < inf
B
J
}

and
γ̃(a1, a2) := inf

g̃∈Γ̃
max
t∈[0,1]

J̃(g̃(t)).

Observe that γ̃(a1, a2) = γ(a1, a2). Indeed, by the definitions of γ̃(a1, a2) and γ(a1, a2) this
identity follows immediately from the fact that the maps

ϕ : Γ→ Γ̃, g 7→ ϕ(g) := (0, g),

and
ψ : Γ̃→ Γ, g̃ = (σ, g) 7→ ψ(g̃) := σ ∗ g, with (σ ∗ g)(t) = σ(t) ∗ g(t),

satisfy
J̃(ϕ(g)) = J(g) and J(ψ(g̃)) = J̃(g̃).

Proof of Lemma 5.5. From the observation that γ̃(a1, a2) = γ(a1, a2) we obtain a sequence
{(un1 , un2 )} ⊂ S such that

max
t∈[0,1]

J̃(0, (vn1 , v
n
2 ))→ γ̃(a1, a2).

Since J(u1, u2) = J(|u1|, |u2|) we can assume that vn1 (t) ≥ 0 and vn2 (t) ≥ 0 for t ∈ [0, 1].

Now Ekeland’s variational principle implies the existence of a Palais-Smale sequence
{(sn, (un1 , un2 ))} for J̃ restricted to R×S at the level γ(a1, a2) such that sn → 0 and uni −vni → 0

for i = 1, 2. It follows that (un1 )− → 0 and (un2 )− → 0. From J̃(s, (u1, u2)) = J̃(0, s ∗ (u1, u2))
we deduce that

(∂sJ̃)(s, (u1, u2)) = (∂sJ̃)(0, s ∗ (u1, u2))

and, for u = (u1, u2), φ = (φ1, φ2):

(∂uJ̃)(s, u)[φ] = (∂uJ̃)(0, s ∗ u)[s ∗ φ].

As a consequence, {(0, sn ∗ (un1 , u
n
2 ))} is also a Palais-Smale sequence for J̃ restricted to

R × S at the level γ(a1, a2). Thus we may assume that sn = 0. This implies, firstly, that
{(un1 , un2 )} ⊂ S is a Palais-Smale sequence for J restricted to S at the level γ(a1, a2) and sec-
ondly using ∂sJ̃(0, (un1 , u

n
2 ))→ 0 that Q(un1 , u

n
2 )→ 0 holds.
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Lemma 5.7. Assume (H1) and (H2) hold. Then the sequence {(un1 , un2 )} ⊂ S obtained in
Lemma 5.5 is bounded.

Proof. This property is directly related to the fact that the functional J restricted to the set
Q(u1, u2) = 0 is coercive. Indeed we can write, for any ε > 0,

J(u1, u2) =
ε

2
|∇u1|22 +

ε

2
|∇u2|22 + a(ε)|u1|p1p1 + b(ε)|u2|p2p2

+ βc(ε)

∫
RN
|u1|r1 |u2|r2 dx+

1− ε
2

Q(u1, u2).

where

a(ε) =
(1− ε)µ1N

2p1

(p1

2
− 1
)
− µ1

p1
, b(ε) =

(1− ε)µ2N

2p2

(p2

2
− 1
)
− µ2

p2

and

c(ε) =
(1− ε)N

2

(
r1 + r2

2
− 1

)
− 1.

The coefficient a(ε) is strictly negative but the corresponding term can be easily controlled by
ε|∇u1|22 using the Gagliardo-Nirenberg inequality once more because p1 < 2 + 4

N . Next ob-
serve that b(ε) > 0 holds for ε > 0 small enough, because p2 > 2 + 4

N . Now concerning the
term βc(ε)

∫
RN |u1|r1 |u2|r2 dx we immediately obtain that c(ε) > 0 for ε > 0 small. Using

Q(un1 , u
n
2 )→ 0 yields the boundedness of our Palais-Smale sequence.

At this point, using Lemma 3.2 we can assume that (un1 , u
n
2 ) ⇀ (u1, u2) weakly in E with

u1 ≥ 0 and u2 ≥ 0. In order to get the strong convergence, according to Lemmas 3.2 and 3.4, we
just need to show that u1 6= 0 and u2 6= 0.

Lemma 5.8. Assume that (H1) and (H2) hold, and that γ(a1, a2) 6= 0. Then u1 6= 0 and u2 6= 0.

Proof. Suppose by contradiction that at least one of u1 or u2 is zero. Then the strong convergence
in Lq(RN ) for q ∈ (2, 2∗) implies

β

∫
RN
|un1 |r1 |un2 |r2 dx→ 0.

Thus since {(un1 , un2 )} satisfies Q(un1 , u
n
2 )→ 0 it follows that

(5.6)
J(un1 , u

n
2 ) =

µ1

p1

[
N

2

(p1

2
− 1
)
− 1

]
|un1 |p1p1 +

µ2

p2

[
N

2

(p2

2
− 1
)
− 1

]
|un2 |p2p2

= −D1|u1|p1p1 +D2|u2|p2p2 + o(1).

where D1 > 0 and D2 > 0. We now distinguish three cases:

Case 1 : u1 = 0 and u2 = 0.
From (5.6) we obtain that J(un1 , u

n
2 ) → 0. Thus since we have assumed that γ(a1, a2) 6= 0 this

case cannot occur.
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Case 2 : u1 = 0 and u2 6= 0.
First note that by Lemma 3.4 we have λ2 < 0, hence un2 → u2 ∈ S(a2) strongly in H as a
consequence of Lemma 3.2. Using u1 = 0 it follows from (5.6) that

(5.7) J(un1 , u
n
2 )− I(un2 )→ 0 and J(un1 , u

n
2 )→ D2|u2|p2p2 .

Since (u1, u2) is a solution of the system (1.5) we see that u2 	 0 satisfies

−∆u− λ2u = µ2|u|p2−2u.

From Lemma 3.1 and (5.7) we deduce thatD2|u2|p2p2 = mµ2
p2 (a2) > 0. Therefore in order to obtain

a contradiction it suffices to show that γ(a1, a2) < mµ2
p2 (a2). But this is immediate from Lemma

5.4 because mµ1
p1 (a1) < 0. Thus case 2 is not possible.

Case 3 : u1 6= 0 and u2 = 0.
As in case 2 we can show that u1

n → u1 ∈ S(a1) strongly in H . Now since u2 = 0 it follows that

J(un1 , u
n
2 )− I(un1 )→ 0 and J(un1 , u

n
2 )→ −D1|u1|p1p1 .

Arguing as in case 2 we identify −D1|u1|p1p1 with the least energy level of

(5.8) −∆u− λ1u = µ1|u|p1−2u,

namely
−D1|u1|p1p1 = mµ1

p1 (a1).

Therefore in order to avoid that this case happens it suffices to show that γ(a1, a2) > mµ1
p1 (a1) =

I(u). But this is precisely what we can deduce from the lemmas 5.1, 5.3 and the definition of B.

Having proved that the cases 1, 2 and 3 are both impossible this concludes the proof of the
lemma.

Proof of Theorem 2.2. In view of the lemmas 3.2, 5.5, 5.7 and 5.8, in order to establish the theorem
it is enough to prove that γ(a1, a2) < 0. We see from Lemma 5.4 that this is the case ifmµ1

p1 (a1)+
mµ2
p2 (a2) < 0. Note also that u1 > 0 and u2 > 0 follows directly from the strong maximum

principle because u1 	 0 and u2 	 0.

Proof of Corollary 2.3. From Lemma 3.1 we know that mµ1
p1 (a1) < 0 and mµ1

p1 (a1) → −∞ as
a1 → 0. Also mµ2

p2 (a2) > 0 and mµ2
p2 (a2) → 0 as a2 → ∞. Therefore the corollary follows

directly from Theorem 2.2.
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