

Exact simulation of the first-passage time of diffusions

S. Herrmann

University of Burgundy, Dijon

joint work with Cristina ZUCCA, University of Torino, Italy

June 25° 2018

Outline

- **1** Introduction to the first-passage time (FPT)
- 2 Acceptance-rejection sampling: an exact simulation of the FPT
- 3 Efficiency of the algorithm
- 4 Examples of generalization and numerics

Introduction to the first-passage time

Modeling biological or physical stochastic systems often requires to handle with one-dimensional diffusion processes.

Two types of information:

- **1** the marginal probability distribution function at a fixed time *t*.
- **2** the description of the whole paths.

Introduction to the first-passage time

Modeling biological or physical stochastic systems often requires to handle with one-dimensional diffusion processes.

Two types of information:

- **1** the marginal probability distribution function at a fixed time t.
- **2** the description of the whole paths.

The marginal pdf is insufficient in many applications:

- financial derivatives with barriers
- ruin probability of an insurance fund
- optimal stopping problems
- neuronal sciences

Some Integrate and Fire models define the *spiking times* as the first hitting time of a threshold by the membrane potential. If the membrane potential is given by a stochastic differential equation, the spiking times are the **first hitting times of the threshold by such a diffusion**.

The leaky integrate-and-fire (LIF) neuron is probably one of the simplest spiking neuron models, its input signal is given by I(t):

$$\pi_m \frac{dv(t)}{dt} = -v(t) + R I(t)$$

• v(t) represents the membrane potential at time t,

- π_m is the membrane time constant
- *R* is the membrane resistance.

When the membrane potential v(t) reaches a threshold v^{th} (spiking threshold), it is instantaneously reset to a lower value v^r (reset potential) and the leaky integration process starts anew with the initial value v^r .

Introduction

First-passage time τ_L

Let $(X_t, t \ge 0)$ be a one-dimensional diffusion process satisfying

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x < L.$$

Aim: simulation of the FPT defined by $\tau_L := \inf\{t \ge 0 : X_t = L\}$.

Different tools for simulation purposes: explicit expression of the pdf, approximation of the stochastic process, rejection sampling...

First-passage time τ_L

Let $(X_t, t \ge 0)$ be a one-dimensional diffusion process satisfying

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x < L.$$

Aim: simulation of the FPT defined by $\tau_L := \inf\{t \ge 0 : X_t = L\}$.

Different tools for simulation purposes: explicit expression of the pdf, approximation of the stochastic process, rejection sampling...

Standard Brownian case ($B_0 = 0$):

The optional stopping thm applied to $M_t = \exp\{\lambda B_t - \frac{1}{2}\lambda^2 t\}$ leads to $\mathbb{E}[e^{-\lambda \tau_L}] = e^{-\sqrt{2\lambda}L}, \quad \lambda \ge 0.$ Inversion of the Laplace transform: where $C = \Lambda(0, 1)$

$$\mathbb{P}(au_L\in dt)=rac{1}{\sqrt{2\pi t^3}}\;e^{-rac{L^2}{2t}}dt,\quad t>0.$$

Hence $\tau_L \sim L^2/G^2$ where $G \sim \mathcal{N}(0, 1)$. Easy and exact simulation !

General one-dimensional diffusion processes:

We define the generator associated to the diffusion $(X_t, t \ge 0)$ by

$$Lf(x) = \frac{\sigma^2(x)}{2} \frac{d^2f}{dx^2}(x) + b(x) \frac{df}{dx}(x), \quad \text{for } x \in \mathbb{R}.$$

Then the Laplace transform of the FPT is the unique solution of the following Sturm-Liouville boundary value problem on] $-\infty$, *L*[:

$$\begin{cases} Lu(x) = \lambda u(x), \\ u|_{x=L} = 1 \\ \lim_{x \to -\infty} u(x) = 0. \end{cases}$$

Let ψ_{λ} the unique increasing positive solution of $Lu = \lambda u$.

The following property holds:

$$\mathbb{E}_{\mathsf{x}}[e^{-\lambda\tau_L}] = \frac{\psi_{\lambda}(\mathsf{x})}{\psi_{\lambda}(L)}$$

General one-dimensional diffusion processes:

We define the generator associated to the diffusion $(X_t, t \ge 0)$ by

$$Lf(x) = \frac{\sigma^2(x)}{2} \frac{d^2f}{dx^2}(x) + b(x) \frac{df}{dx}(x), \quad \text{for } x \in \mathbb{R}.$$

Then the Laplace transform of the FPT is the unique solution of the following Sturm-Liouville boundary value problem on] $-\infty$, *L*[:

$$\begin{cases} Lu(x) = \lambda u(x), \\ u|_{x=L} = 1 \\ \lim_{x \to -\infty} u(x) = 0. \end{cases}$$

$$\mathbb{E}_{x}[e^{-\lambda\tau_{L}}] = \frac{\psi_{\lambda}(x)}{\psi_{\lambda}(L)} = \frac{\mathcal{H}_{-\lambda/\theta}(x\sqrt{\theta})}{\mathcal{H}_{-\lambda/\theta}(L\sqrt{\theta})}.$$

Let ψ_{λ} the unique increasing positive solution of $Lu = \lambda u$.

• Ornstein-Uhlenbeck case ($\sigma = 1$, $b(x) = -\theta x$): Hermite functions

$$\mathcal{H}_{\nu}(z) = \frac{1}{2\Gamma(-\nu)} \sum_{m \ge 0} \frac{(-1)^m}{m!} \Gamma\left(\frac{m-\nu}{2}\right) (2z)^m.$$

• When the transition probability of (X_t) has an explicit expression... Let us define

$$\left\{ \begin{array}{l} f(t,x|s,y)dx := \mathbb{P}(X_t \in dx | X_s = y), \quad s \leq t, \\ \varphi(t,x|s,y) = b(x)f(t,x|s,y) - \frac{1}{2}\frac{\partial}{\partial x} \left[\sigma^2(x)f(t,x|s,y)\right]. \end{array} \right.$$

 φ represents the probability current of the diffusion process.

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi) The pdf $f_L(t)$ of the FPT τ_L satisfies the Voltera-type equation:

$$f_L(t) = 2\varphi(L,t|x,0) - 2\int_0^t f_L(s)\varphi(L,t|L,s)ds$$
, with $X_0 = x$.

• When the transition probability of (X_t) has an explicit expression... Let us define

$$\begin{cases} f(t,x|s,y)dx := \mathbb{P}(X_t \in dx | X_s = y), & s \le t, \\ \varphi(t,x|s,y) = b(x)f(t,x|s,y) - \frac{1}{2}\frac{\partial}{\partial x} \Big[\sigma^2(x)f(t,x|s,y) \Big]. \end{cases}$$

 φ represents the probability current of the diffusion process.

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi) The pdf $f_L(t)$ of the FPT τ_L satisfies the Voltera-type equation:

$$f_L(t) = 2\varphi(L,t|x,0) - 2\int_0^t f_L(s)\varphi(L,t|L,s)ds$$
, with $X_0 = x$.

Closed form results for the Brownian motion and for the O-U process. In general: numerical approximation of the integral... (it works fine due to the particular choice of the Voltera kernel – non singular !) What about the simulation of τ_L ?

General method: time discretization

Instead of considering the approximation of the pdf, it is possible to deal directly with an approximation of the diffusion process (Euler scheme).

$$X_{(n+1)\Delta} = X_{n\Delta} + \Delta b(X_{n\Delta}) + \sqrt{\Delta} \sigma(X_{n\Delta}) G_n, \quad n \ge 0,$$

where (G_n) stands for a sequence of independent Gaussian distributed r.v.

Let τ_I^{Δ} be the FPT of the **discrete-time process**.

Overestimation of the FPT: $\tau_L \leq \tau_L^{\Delta}$

Important to improve the algorithm:

- **1** a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)
- 2 computation of the probability for a Brownian bridge to hit the boundary during a small time interval (Giraudo-Saccerdote-Zucca)

Advantage: rough description the paths. But: bounded time interval !

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such that h(x) := f(x)/g(x) is upper-bounded by a constant c > 0. Aim: simulation of X with pdf f.

- **1** Generate a rv Y with pdf g.
- **2** Generate U uniformly distributed (independent from Y).
- 3 If $U \le h(Y)/c$, then set X = Y; otherwise go back to 1.

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such that h(x) := f(x)/g(x) is upper-bounded by a constant c > 0. Aim: simulation of X with pdf f.

- **1** Generate a rv Y with pdf g.
- **2** Generate U uniformly distributed (independent from Y).
- 3 If $U \le h(Y)/c$, then set X = Y; otherwise go back to 1.

Important: *h* should be bounded and have an explicit expression ! Application to the first passage problem: the Girsanov transformation permits to

■ link the distribution of the diffusion process $(X_t, t \ge 0)$ to the Brownian one $(B_t, t \ge 0)$.

give an expression of the function *h*.

Girsanov's transformation was already used for simulation purposes by Beskos and Roberts (exact simulation on some fixed interval [0, T]).

From now on, $\sigma = 1$ (diffusion coefficient). We assume that the drift term $b \in C^1(] - \infty, L]$) and introduce $\beta(x) = \int_0^x b(y) dy$ and $\gamma := \frac{b^2 + b'}{2}$.

Girsanov's transformation

For any bounded measurable function $\psi:\mathbb{R}\rightarrow\mathbb{R},$ we obtain

$$\mathbb{E}_{\mathbb{P}}[\psi(\tau_L)\mathbf{1}_{\{\tau_L < \infty\}}] = \mathbb{E}_{\mathbb{Q}}[\psi(\tau_L)\eta(\tau_L)] \exp\left\{\beta(L) - \beta(x)\right\},$$

where \mathbb{P} (resp. \mathbb{Q}) corresponds to X (resp. B) and

$$\eta(t) := \mathbb{E}\Big[\exp-\int_0^t \gamma(L-R_s)ds\Big|R_t = L-x\Big].$$

Here $(R_t, t \ge 0)$ stands for a 3-dimensional Bessel process with $R_0 = 0$.

Proof : Girsanov + Itô's formula + conditional distribution. $\mathbb{E}_{\mathbb{P}}[\psi(\tau_L)1_{\{\tau_L < \infty\}}] = \mathbb{E}_{\mathbb{Q}}\Big[\psi(\tau_L) \exp\left(\int_0^{\tau_L} b(B_s) dB_s - \frac{1}{2}\int_0^{\tau_L} b^2(B_s) ds\right)\Big] \quad \Box$

$$\begin{cases} \mathbb{E}_{\mathbb{P}}[\psi(\tau_L)\mathbf{1}_{\{\tau_L < \infty\}}] = \mathbb{E}_{\mathbb{Q}}[\psi(\tau_L)\eta(\tau_L)] \exp\left\{\beta(L) - \beta(x)\right\},\\ \eta(t) := \mathbb{E}\Big[\exp\left(-\int_0^t \gamma(L - R_s)ds\right] - \frac{R_t}{R_t} = L - x\Big]. \end{cases}$$

Advantages:

• Under \mathbb{Q} , it is easy to generate τ_L .

An appropriate situation for a rejection method, if $\tau_L < \infty$ under \mathbb{P} . Difficulties:

- the boundedness of η(t) for t ≥ 0. We suggest in a first phase to assume: γ(x) ≥ 0 for all x ∈ ℝ.
- the non-explicit expression of $\eta(t)$: we shall assume that $\gamma(x) \leq \kappa$ for all $x \in \mathbb{R}$ and introduce a Poisson Point Process.

To sum up, the main assumption becomes:

$$0 \leq \gamma(x) \leq \kappa.$$

Algorithm (A1) or (A2).

Step 1: Simulate a r.v. $T = (L - x)^2/G^2$ with $G \sim \mathcal{N}(0, 1)$.

Step 2: Simulate a 3-dimensional Bessel process (R_t) on the time interval [0, T] with endpoint $R_T = L - x$ and define

$$D_{R,T} := \left\{ (t,v) \in [0,T] \times \mathbb{R}_+ : v \leq \gamma(L-R_t) \right\}.$$

Step 3: Simulate a Poisson point process N on the state space $[0, T] \times \mathbb{R}_+$, independent of the Bessel process, whose intensity measure is the Lebesgue one.

Step 4: If $N(D_{R,T}) = 0$ then set Y = T otherwise go to Step 1.

Theorem (theoretical viewpoint)

The outcome Y and the FPT of the diffusion process τ_L are identically distributed.

S.Herrmann (University of Burgundy)

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all points, their averaged number is $\mathbb{E}[\kappa T] = \infty$: efficiency to be improved !

• \mathcal{I} the number of iterations (step 1)

We define:

■ $\mathcal{N}_1, \ldots, \mathcal{N}_\mathcal{I}$ the numbers of random points (Poisson process) used for each iteration.

 $\blacksquare \ \mathcal{N}_{\Sigma} = \mathcal{I} + \mathcal{N}_1 + \ldots + \mathcal{N}_{\mathcal{I}}$ the total number of r.v.

Proposition

The following upper-bound holds $\mathbb{E}[\mathcal{I}] \leq \exp((L-x)\sqrt{2\kappa})$.

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all points, their averaged number is $\mathbb{E}[\kappa T] = \infty$: efficiency to be improved !

• \mathcal{I} the number of iterations (step 1)

We define:

• $\mathcal{N}_1, \ldots, \mathcal{N}_\mathcal{I}$ the numbers of random points (Poisson process) used for each iteration.

 $\blacksquare \ \mathcal{N}_{\Sigma} = \mathcal{I} + \mathcal{N}_1 + \ldots + \mathcal{N}_{\mathcal{I}}$ the total number of r.v.

Proposition

The following upper-bound holds $\mathbb{E}[\mathcal{I}] \leq \exp((L-x)\sqrt{2\kappa})$.

Reduction of the number of iterations:

• For (L - x), linearization by space splitting.

■ For
$$\kappa$$
: if $0 < \gamma_0 \le \gamma(x) \le \kappa$ for all $x \in \mathbb{R}$,
then replace $\gamma(\cdot) \leftarrow \gamma(\cdot) - \gamma_0$, $\kappa \leftarrow \kappa - \gamma_0$ & introduce the
simulation of $IG\left(\frac{L-x}{\sqrt{2\gamma_0}}, (L-x)^2\right)$ (Michael-Schucany-Haas).

Proposition: number of r.v. during the first iteration.

Assumption: $\exists C_{\gamma} > 0$, $\exists r < 1$ such that

$$\inf_{y\leq z\leq L}\gamma(z)\geq C_{\gamma}|y|^{-r}, \hspace{0.1in} ext{for all} \hspace{0.1in} y\leq -1.$$

Then $\exists M_{\gamma,1} > 0$ and $\exists M_{\gamma,2} > 0$ s.t. the number of random points satisfies

$$\mathbb{E}[\mathcal{N}_1] \leq M_{\gamma,1} + \kappa M_{\gamma,2}(x^2 + (L-x)^{(1+r)/2}), \quad \text{for } x < L$$

Bounds for the (3d)-Bessel bridge:

Proof:
$$\mathbb{E}_{c}[\mathcal{N}_{1}] = H_{T} + \kappa I_{T}$$

with $R_{sT} \leq L - x + \sqrt{T} \ \overline{R}_{s}, \quad s \in [0, 1]$

$$\begin{cases} H_{\mathcal{T}} := e^{-\int_0^T \gamma(L-R_w) \, dw} \leq 1 \\ I_{\mathcal{T}} := \int_0^T e^{-\int_0^u \gamma(L-R_w) \, dw} \, du. \end{cases}$$

$$\overline{R}_s$$
)_{s>0} is a standard Bessel bridge.

$$\mathbb{P}(\sup_{[0,1]} \overline{R}_u > T^{\alpha}) \leq \frac{\sqrt{e\pi}}{4\sqrt{2}} \frac{\pi T^{\alpha}}{\sinh^2(T^{\alpha})}.$$

Using the agreement formula (see Chung or Pitman-Yor), we obtain

$$\mathbb{P}\Big(\sup_{u\in[0,1]}\bar{R}_u>T^{\alpha}\Big)=C_3\mathbb{E}\Big[\sqrt{\bar{\tau}}\mathbf{1}_{\{\bar{\tau}<\mathcal{T}^{-2\alpha}\}}\Big]$$

Here $C_3 = \sqrt{2}/\Gamma(3/2)$ and $\bar{\tau} = \tau + \hat{\tau}$ where τ is the first hitting time of the level 1 for a 3-dimensional Bessel process and $\hat{\tau}$ an independent copy of τ .

$$\mathbb{P}\Big(\sup_{u\in[0,1]}\bar{R}_u>T^{\alpha}\Big)\leq C_3T^{-\alpha}\mathbb{P}\Big(\exp-\lambda\bar{\tau}>\exp-\lambda T^{-2\alpha}\Big)$$
$$\leq C_3T^{-\alpha}e^{\lambda T^{-2\alpha}}\mathbb{E}[e^{-\lambda\bar{\tau}}]=C_3T^{-\alpha}e^{\lambda T^{-2\alpha}}\frac{(2\lambda)^{1/2}}{C_3^2I_{1/2}^2(\sqrt{2\lambda})},$$

for any $\lambda > 0$. I_{ν} stands for the Bessel function of the first kind. In particular $I_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sinh x$. The particular choice $\lambda = T^{2\alpha}/2$ leads to

$$\mathbb{P}\Big(\sup_{u\in[0,1]}\bar{R}_u>T^{\alpha}\Big)\leq\frac{\sqrt{e\pi}}{2\sqrt{2}}\,\frac{\pi\,T^{\alpha}}{2\,\sinh^2(T^{\alpha})}.$$

Examples of generalization and numerics

Example 1. $dX_t = (2 + \sin(X_t)) dt + dB_t$, $X_0 = 0$. We have $0 \le \gamma \le 5$.

Figure: Histogram of the hitting time distribution for 10 000 simulations corresponding to the level L = 2 and starting position $X_0 = 0$ (left), histogram of the number of iterations in Algorithm (A1) in the log₁₀-scale (right).

Figure: Number of random variables used in Algorithm (A1) for 10 000 simulations with L = 2, $X_0 = 0$ in the \log_{10} -scale (left) and mean number of iterations versus the level height L for Algorithm (A1)_{shift} respectively (A1) (dashed line resp. solid line), both curves are in the \log_{10} -scale (10 000 simulations have been used for the average estimation).

Figure: Histogram of the number of random variables in Algorithm (A1) using space splitting for 10 000 with L = 2, $X_0 = 0$, k = 20 (left), L = 20, k = 20 (right) both in the log₁₀-scale.

Figure: Averaged number of random variables used in Algorithm (A1) versus the number of slices k with $X_0 = 0$ and L = 5. The averaging uses 10 000 simulations.

Example 2: Ornstein-Uhlenbeck process with $b(x) = \alpha x + \beta$, $\alpha = -0.3$, $\beta = 1$ with starting position $X_0 = 0$ and boundary L = 1 ensures that γ is a positive function but *b* remains unbounded. We replace the original drift term by its modified version:

$$b_{\rho}(x) = \begin{cases} -\alpha x + \beta & \text{if } -\rho \leq x \leq L, \\ \alpha \rho + \beta - \alpha (x + \rho) e^{x + \rho} & \text{if } x < -\rho. \end{cases}$$

The modified γ satisfies $\gamma_{\rho}(x) = \gamma(x)$ for $x \in [-\rho, L]$ and

$$\gamma_{\rho}(x) = \frac{1}{2}(\alpha\rho + \beta - \alpha(x+\rho)e^{x+\rho})^2 - \frac{\alpha}{2}(1+x+\rho)e^{x+\rho} \quad \text{for } x < -\rho.$$

The function γ_{ρ} is now positive on the whole interval $]-\infty, L]$ and admits the following upper-bound:

$$\kappa = \frac{1}{2} \left(\alpha \rho + \beta + \frac{\alpha}{e} \right)^2 + \frac{\alpha}{2e^2}.$$

We can therefore apply Algorithm (A1) in order to simulate the approximated first-passage time τ_I^{ρ} .

S.Herrmann (University of Burgundy)

We define
$$eta(x)=\int_0^x b(y)dy$$
 and $p(x)=\int_0^x e^{-eta(y)}\,dy$

Proposition

We assume that $\lim_{x\to-\infty} p(x) = -\infty$. Then τ_L^{ρ} converges in distribution towards τ_L as $\rho \to \infty$. Moreover

$$d(au_L, au_L^
ho):= \sup\left\{|m{ extsf{F}}_{ au_L^
ho}(t) - m{ extsf{F}}_{ au_L}(t)| \ : \ t\in \mathbb{R}_+
ight\} = \mathcal{O}\Big(-
ho(-
ho)\Big) extsf{ as }
ho o \infty.$$

Histogram of the hitting time distribution for 10 000 simulations, L = 1, $X_0 = 0$ for $\rho = 5$ using Algorithm (A1) with modified drift.

Example 3: $dX_t = -\arctan(X_t) dt + dB_t$, $t \ge 0$, $X_0 = 0$, L = 1. $\gamma(x) = (\arctan(x)^2 - 1/(1 + x^2))/2$ satisfies $-m = -1/2 \le \gamma(x) \le \pi^2/8$ and the first-passage time is almost surely finite.

Step 1: Simulate T: distr. of $(L - x)^2/G^2$ given $(L - x)^2/G^2 \le t_0$. Step 2: Simulate a 3-d Bessel process (R_t) on [0, T] with $R_T = L - x$. $D_{R,T}^m := \left\{ (t, v) \in [0, T] \times \mathbb{R}_+ : v \le \gamma(L - R_t) + \frac{mt_0}{T} \right\}$. Step 3: Simulate a PPP N on $[0, T] \times \mathbb{R}_+$, independent of R, with Lebesgue intensity meas. Step 4: If $N(D_{R,T}^m) = 0$ then set Y = T otherwise go to Step 1.

Theorem for Algorithm (A3)

The outcome Y has the same distribution as τ_L given $\tau_L \leq t_0$.

Figure: Histogram of the hitting time distribution using Algorithm (A3) for $t_0 = 1$ and 100 000 simulations (left) and averaged number of iterations in Algorithm (A3) versus t_0 (right) for $X_0 = 0$, L = 1 and 10 000 simulations.

To sum up...

Condition on γ	r.v. simulated	Algorithm
$0 \leq \gamma(x) \leq \kappa$	$ au_{L}$	(A1) or (A2)
$0 < \gamma_0 \leq \gamma(x) \leq \kappa$	$ au_{L}$	$(A1)_{shift}$ or $(A2)_{shift}$
$-m \leq \gamma(x) \leq \kappa$	τ_L given $\tau_L \leq t_0$	(A3)
$0 \leq \gamma(x)$	$ au_L^ ho$ (approx.)	$(A1)^{ ho}$ or $(A2)^{ ho}$

To sum up...

Condition on γ	r.v. simulated	Algorithm
$0 \leq \gamma(x) \leq \kappa$	$ au_{L}$	(A1) or (A2)
$0 < \gamma_0 \leq \gamma(x) \leq \kappa$	$ au_{L}$	$(A1)_{shift}$ or $(A2)_{shift}$
$-m \leq \gamma(x) \leq \kappa$	τ_L given $\tau_L \leq t_0$	(A3)
$0 \leq \gamma(x)$	$ au_{L}^{ ho}$ (approx.)	$(A1)^{ ho}$ or $(A2)^{ ho}$

Work in progress and open questions:

- Exact simulation for unbounded γ , for time-inhomogeneous diffusions.
- Bound of the number of r.v. for general functions γ .
- Exit problem from an interval for one-dimensional diffusions.
- Exit time from a domain in \mathbb{R}^d with $d \geq 2$.