Exact simulation of the first-passage time of diffusions

S. Herrmann

University of Burgundy, Dijon
joint work with Cristina ZUCCA, University of Torino, Italy
June 25' 2018

Outline

1 Introduction to the first-passage time (FPT)

2 Acceptance-rejection sampling: an exact simulation of the FPT

3 Efficiency of the algorithm

4 Examples of generalization and numerics

Introduction to the first-passage time

Modeling biological or physical stochastic systems often requires to handle with one-dimensional diffusion processes.

Two types of information:
1 the marginal probability distribution function at a fixed time t.
2 the description of the whole paths.

Introduction to the first-passage time

Modeling biological or physical stochastic systems often requires to handle with one-dimensional diffusion processes.

Two types of information:
1 the marginal probability distribution function at a fixed time t.
2 the description of the whole paths.
The marginal pdf is insufficient in many applications:

- financial derivatives with barriers
- ruin probability of an insurance fund
- optimal stopping problems

■ neuronal sciences

Some Integrate and Fire models define the spiking times as the first hitting time of a threshold by the membrane potential. If the membrane potential is given by a stochastic differential equation, the spiking times are the first hitting times of the threshold by such a diffusion.

The leaky integrate-and-fire (LIF) neuron is probably one of the simplest spiking neuron models, its input signal is given by $I(t)$:

$$
\pi_{m} \frac{d v(t)}{d t}=-v(t)+R I(t)
$$

- $v(t)$ represents the membrane potential at time t,
- π_{m} is the membrane time constant
- R is the membrane resistance.

When the membrane potential $v(t)$ reaches a threshold $v^{t h}$ (spiking threshold), it is instantaneously reset to a lower value v^{r} (reset potential) and the leaky integration process starts anew with the initial value v^{r}.

First-passage time τ_{L}

Let $\left(X_{t}, t \geq 0\right)$ be a one-dimensional diffusion process satisfying

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t, \quad X_{0}=x<L
$$

Aim: simulation of the FPT defined by $\tau_{L}:=\inf \left\{t \geq 0: X_{t}=L\right\}$.
Different tools for simulation purposes: explicit expression of the pdf, approximation of the stochastic process, rejection sampling...

First-passage time τ_{L}

Let $\left(X_{t}, t \geq 0\right)$ be a one-dimensional diffusion process satisfying

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t, \quad X_{0}=x<L
$$

Aim: simulation of the FPT defined by $\tau_{L}:=\inf \left\{t \geq 0: X_{t}=L\right\}$.
Different tools for simulation purposes: explicit expression of the pdf, approximation of the stochastic process, rejection sampling...

Standard Brownian case ($B_{0}=0$):

The optional stopping thm applied to $M_{t}=\exp \left\{\lambda B_{t}-\frac{1}{2} \lambda^{2} t\right\}$ leads to

$$
\mathbb{E}\left[e^{-\lambda \tau_{L}}\right]=e^{-\sqrt{2 \lambda L}}, \quad \lambda \geq 0
$$

Inversion of the Laplace transform:

$$
\begin{aligned}
& \text { Hence } \tau_{L} \sim L^{2} / G^{2} \\
& \text { where } G \sim \mathcal{N}(0,1)
\end{aligned}
$$

$$
\mathbb{P}\left(\tau_{L} \in d t\right)=\frac{1}{\sqrt{2 \pi t^{3}}} e^{-\frac{L^{2}}{2 t}} d t, \quad t>0
$$

Easy and exact simulation!

General one-dimensional diffusion processes:

We define the generator associated to the diffusion $\left(X_{t}, t \geq 0\right)$ by

$$
L f(x)=\frac{\sigma^{2}(x)}{2} \frac{d^{2} f}{d x^{2}}(x)+b(x) \frac{d f}{d x}(x), \quad \text { for } x \in \mathbb{R}
$$

Then the Laplace transform of the FPT is the unique solution of the following Sturm-Liouville boundary value problem on $]-\infty, L[$:

$$
\left\{\begin{array}{l}
L u(x)=\lambda u(x), \\
\left.u\right|_{x=L}=1 \\
\lim _{x \rightarrow-\infty} u(x)=0 .
\end{array}\right.
$$

The following property holds:

$$
\mathbb{E}_{x}\left[e^{-\lambda \tau_{L}}\right]=\frac{\psi_{\lambda}(x)}{\psi_{\lambda}(L)}
$$

Let ψ_{λ} the unique increasing positive solution of $L u=\lambda u$.

General one-dimensional diffusion processes:

We define the generator associated to the diffusion $\left(X_{t}, t \geq 0\right)$ by

$$
L f(x)=\frac{\sigma^{2}(x)}{2} \frac{d^{2} f}{d x^{2}}(x)+b(x) \frac{d f}{d x}(x), \quad \text { for } x \in \mathbb{R}
$$

Then the Laplace transform of the FPT is the unique solution of the following Sturm-Liouville boundary value problem on $]-\infty, L[$:

$$
\left\{\begin{array}{l}
L u(x)=\lambda u(x), \\
\left.u\right|_{x=L}=1 \\
\lim _{x \rightarrow-\infty} u(x)=0 .
\end{array}\right.
$$

The following property holds:

$$
\mathbb{E}_{x}\left[e^{-\lambda \tau_{L}}\right]=\frac{\psi_{\lambda}(x)}{\psi_{\lambda}(L)}=\frac{\mathcal{H}_{-\lambda / \theta}(x \sqrt{\theta})}{\mathcal{H}_{-\lambda / \theta}(L \sqrt{\theta})}
$$

Let ψ_{λ} the unique increasing positive solution of $L u=\lambda u$.

■ Ornstein-Uhlenbeck case $(\sigma=1, b(x)=-\theta x)$: Hermite functions

$$
\mathcal{H}_{\nu}(z)=\frac{1}{2 \Gamma(-\nu)} \sum_{m \geq 0} \frac{(-1)^{m}}{m!} \Gamma\left(\frac{m-\nu}{2}\right)(2 z)^{m}
$$

- When the transition probability of $\left(X_{t}\right)$ has an explicit expression... Let us define

$$
\left\{\begin{array}{l}
f(t, x \mid s, y) d x:=\mathbb{P}\left(X_{t} \in d x \mid X_{s}=y\right), \quad s \leq t \\
\varphi(t, x \mid s, y)=b(x) f(t, x \mid s, y)-\frac{1}{2} \frac{\partial}{\partial x}\left[\sigma^{2}(x) f(t, x \mid s, y)\right] .
\end{array}\right.
$$

φ represents the probability current of the diffusion process.
Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)
The pdf $f_{L}(t)$ of the FPT τ_{L} satisfies the Voltera-type equation:

$$
f_{L}(t)=2 \varphi(L, t \mid x, 0)-2 \int_{0}^{t} f_{L}(s) \varphi(L, t \mid L, s) d s, \quad \text { with } X_{0}=x
$$

- When the transition probability of $\left(X_{t}\right)$ has an explicit expression... Let us define

$$
\left\{\begin{array}{l}
f(t, x \mid s, y) d x:=\mathbb{P}\left(X_{t} \in d x \mid X_{s}=y\right), \quad s \leq t \\
\varphi(t, x \mid s, y)=b(x) f(t, x \mid s, y)-\frac{1}{2} \frac{\partial}{\partial x}\left[\sigma^{2}(x) f(t, x \mid s, y)\right] .
\end{array}\right.
$$

φ represents the probability current of the diffusion process.
Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)
The pdf $f_{L}(t)$ of the FPT τ_{L} satisfies the Voltera-type equation:

$$
f_{L}(t)=2 \varphi(L, t \mid x, 0)-2 \int_{0}^{t} f_{L}(s) \varphi(L, t \mid L, s) d s, \quad \text { with } X_{0}=x
$$

Closed form results for the Brownian motion and for the O-U process. In general: numerical approximation of the integral... (it works fine due to the particular choice of the Voltera kernel - non singular !)
What about the simulation of τ_{L} ?

- General method: time discretization

Instead of considering the approximation of the pdf, it is possible to deal directly with an approximation of the diffusion process (Euler scheme).

$$
X_{(n+1) \Delta}=X_{n \Delta}+\Delta b\left(X_{n \Delta}\right)+\sqrt{\Delta} \sigma\left(X_{n \Delta}\right) G_{n}, \quad n \geq 0
$$

where $\left(G_{n}\right)$ stands for a sequence of independent Gaussian distributed r.v.
Let τ_{L}^{Δ} be the FPT of the discrete-time process.
Overestimation of the FPT: $\tau_{L} \underset{s t}{\leq} \tau_{L}^{\Delta}$
Important to improve the algorithm:
1 a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)
2 computation of the probability for a Brownian bridge to hit the boundary during a small time interval (Giraudo-Saccerdote-Zucca)
Advantage: rough description the paths. But: bounded time interval !

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such that $h(x):=f(x) / g(x)$ is upper-bounded by a constant $c>0$. Aim: simulation of X with pdf f.
1 Generate a rv Y with pdf g.
2 Generate U uniformly distributed (independent from Y).
3 If $U \leq h(Y) / c$, then set $X=Y$; otherwise go back to 1 .

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such that $h(x):=f(x) / g(x)$ is upper-bounded by a constant $c>0$. Aim: simulation of X with pdf f.

1 Generate a rv Y with pdf g.
2 Generate U uniformly distributed (independent from Y).
3 If $U \leq h(Y) / c$, then set $X=Y$; otherwise go back to 1 .
Important: h should be bounded and have an explicit expression ! Application to the first passage problem: the Girsanov transformation permits to

■ link the distribution of the diffusion process $\left(X_{t}, t \geq 0\right)$ to the Brownian one ($B_{t}, t \geq 0$).

- give an expression of the function h.

Girsanov's transformation was already used for simulation purposes by Beskos and Roberts (exact simulation on some fixed interval $[0, T]$).

From now on, $\sigma=1$ (diffusion coefficient). We assume that the drift term $\left.\left.b \in \mathcal{C}^{1}(]-\infty, L\right]\right)$ and introduce $\beta(x)=\int_{0}^{x} b(y) d y$ and $\gamma:=\frac{b^{2}+b^{\prime}}{2}$.

Girsanov's transformation

For any bounded measurable function $\psi: \mathbb{R} \rightarrow \mathbb{R}$, we obtain

$$
\mathbb{E}_{\mathbb{P}}\left[\psi\left(\tau_{L}\right) 1_{\left\{\tau_{L}<\infty\right\}}\right]=\mathbb{E}_{\mathbb{Q}}\left[\psi\left(\tau_{L}\right) \eta\left(\tau_{L}\right)\right] \exp \{\beta(L)-\beta(x)\}
$$

where $\mathbb{P}($ resp. $\mathbb{Q})$ corresponds to $X($ resp. $B)$ and

$$
\eta(t):=\mathbb{E}\left[\exp -\int_{0}^{t} \gamma\left(L-R_{s}\right) d s \mid R_{t}=L-x\right] .
$$

Here $\left(R_{t}, t \geq 0\right)$ stands for a 3-dimensional Bessel process with $R_{0}=0$.
Proof: Girsanov + Itô's formula + conditional distribution.
$\mathbb{E}_{\mathbb{P}}\left[\psi\left(\tau_{L}\right) 1_{\left\{\tau_{L}<\infty\right\}}\right]=\mathbb{E}_{\mathbb{Q}}\left[\psi\left(\tau_{L}\right) \exp \left(\int_{0}^{\tau_{L}} b\left(B_{s}\right) d B_{s}-\frac{1}{2} \int_{0}^{\tau_{L}} b^{2}\left(B_{s}\right) d s\right)\right] \square$

$$
\left\{\begin{array}{l}
\mathbb{E}_{\mathbb{P}}\left[\psi\left(\tau_{L}\right) 1_{\left\{\tau_{L}<\infty\right\}}\right]=\mathbb{E}_{\mathbb{Q}}\left[\psi\left(\tau_{L}\right) \eta\left(\tau_{L}\right)\right] \exp \{\beta(L)-\beta(x)\} \\
\eta(t):=\mathbb{E}\left[\exp -\int_{0}^{t} \gamma\left(L-R_{s}\right) d s \mid R_{t}=L-x\right]
\end{array}\right.
$$

Advantages:
■ Under \mathbb{Q}, it is easy to generate τ_{L}.
■ An appropriate situation for a rejection method, if $\tau_{L}<\infty$ under \mathbb{P}.
Difficulties:

- the boundedness of $\eta(t)$ for $t \geq 0$. We suggest in a first phase to assume: $\gamma(x) \geq 0$ for all $x \in \mathbb{R}$.
- the non-explicit expression of $\eta(t)$: we shall assume that $\gamma(x) \leq \kappa$ for all $x \in \mathbb{R}$ and introduce a Poisson Point Process.

To sum up, the main assumption becomes:

$$
0 \leq \gamma(x) \leq \kappa
$$

Algorithm (A1) or (A2).

Step 1: Simulate a r.v. $T=(L-x)^{2} / G^{2}$ with $G \sim \mathcal{N}(0,1)$.
Step 2: Simulate a 3-dimensional Bessel process $\left(R_{t}\right)$ on the time interval $[0, T]$ with endpoint $R_{T}=L-x$ and define

$$
D_{R, T}:=\left\{(t, v) \in[0, T] \times \mathbb{R}_{+}: v \leq \gamma\left(L-R_{t}\right)\right\} .
$$

Step 3: Simulate a Poisson point process N on the state space $[0, T] \times \mathbb{R}_{+}$, independent of the Bessel process, whose intensity measure is the Lebesgue one.
Step 4: If $N\left(D_{R, T}\right)=0$ then set $Y=T$ otherwise go to Step 1 .

Theorem (theoretical viewpoint)

The outcome Y and the FPT of the diffusion process τ_{L} are identically distributed.

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all points, their averaged number is $\mathbb{E}[\kappa T]=\infty$: efficiency to be improved!

■ \mathcal{I} the number of iterations (step 1)
We define:
■ $\mathcal{N}_{1}, \ldots, \mathcal{N}_{\mathcal{I}}$ the numbers of random points (Poisson process) used for each iteration.
$■ \mathcal{N}_{\Sigma}=\mathcal{I}+\mathcal{N}_{1}+\ldots+\mathcal{N}_{\mathcal{I}}$ the total number of r.v.

Proposition

The following upper-bound holds $\mathbb{E}[\mathcal{I}] \leq \exp ((L-x) \sqrt{2 \kappa})$.

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all points, their averaged number is $\mathbb{E}[\kappa T]=\infty$: efficiency to be improved!

■ \mathcal{I} the number of iterations (step 1)
We define:
■ $\mathcal{N}_{1}, \ldots, \mathcal{N}_{\mathcal{I}}$ the numbers of random points (Poisson process) used for each iteration.
■ $\mathcal{N}_{\Sigma}=\mathcal{I}+\mathcal{N}_{1}+\ldots+\mathcal{N}_{\mathcal{I}}$ the total number of r.v.

Proposition

The following upper-bound holds $\mathbb{E}[\mathcal{I}] \leq \exp ((L-x) \sqrt{2 \kappa})$.
Reduction of the number of iterations:
■ For $(L-x)$, linearization by space splitting.
■ For κ : if $0<\gamma_{0} \leq \gamma(x) \leq \kappa$ for all $x \in \mathbb{R}$, then replace $\gamma(\cdot) \leftarrow \gamma(\cdot)-\gamma_{0}, \kappa \leftarrow \kappa-\gamma_{0}$ \& introduce the simulation of $I G\left(\frac{L-x}{\sqrt{2 \gamma_{0}}},(L-x)^{2}\right)$ (Michael-Schucany-Haas).

Proposition: number of r.v. during the first iteration.

Assumption: $\exists C_{\gamma}>0, \exists r<1$ such that

$$
\inf _{y \leq z \leq L} \gamma(z) \geq C_{\gamma}|y|^{-r}, \quad \text { for all } \quad y \leq-1
$$

Then $\exists M_{\gamma, 1}>0$ and $\exists M_{\gamma, 2}>0$ s.t. the number of random points satisfies

$$
\mathbb{E}\left[\mathcal{N}_{1}\right] \leq M_{\gamma, 1}+\kappa M_{\gamma, 2}\left(x^{2}+(L-x)^{(1+r) / 2}\right), \quad \text { for } x<L
$$

Bounds for the (3d)-Bessel bridge:
Proof: $\mathbb{E}_{c}\left[\mathcal{N}_{1}\right]=H_{T}+\kappa I_{T}$ with

$$
R_{s T} \leq \frac{\leq}{s t} L-x+\sqrt{T} \bar{R}_{s}, \quad s \in[0,1] .
$$

$$
\left\{\begin{array}{l}
H_{T}:=e^{-\int_{0}^{T} \gamma\left(L-R_{w}\right) d w} \leq 1 \\
I_{T}:=\int_{0}^{T} e^{-\int_{0}^{u} \gamma\left(L-R_{w}\right) d w} d u
\end{array}\right.
$$

$\left(\bar{R}_{s}\right)_{s \geq 0}$ is a standard Bessel bridge.

$$
\mathbb{P}\left(\sup _{[0,1]} \bar{R}_{u}>T^{\alpha}\right) \leq \frac{\sqrt{e \pi}}{4 \sqrt{2}} \frac{\pi T^{\alpha}}{\sinh ^{2}\left(T^{\alpha}\right)} .
$$

Using the agreement formula (see Chung or Pitman-Yor), we obtain

$$
\mathbb{P}\left(\sup _{u \in[0,1]} \bar{R}_{u}>T^{\alpha}\right)=C_{3} \mathbb{E}\left[\sqrt{\bar{\tau}} 1_{\left\{\bar{\tau}<T^{-2 \alpha}\right\}}\right] .
$$

Here $C_{3}=\sqrt{2} / \Gamma(3 / 2)$ and $\bar{\tau}=\tau+\hat{\tau}$ where τ is the first hitting time of the level 1 for a 3-dimensional Bessel process and $\hat{\tau}$ an independent copy of τ.

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{u \in[0,1]} \bar{R}_{u}>T^{\alpha}\right) \leq C_{3} T^{-\alpha} \mathbb{P}\left(\exp -\lambda \bar{\tau}>\exp -\lambda T^{-2 \alpha}\right) \\
& \leq C_{3} T^{-\alpha} e^{\lambda T^{-2 \alpha}} \mathbb{E}\left[e^{-\lambda \bar{\tau}}\right]=C_{3} T^{-\alpha} e^{\lambda T^{-2 \alpha}} \frac{(2 \lambda)^{1 / 2}}{C_{3}^{2} l_{1 / 2}^{2}(\sqrt{2 \lambda})}
\end{aligned}
$$

for any $\lambda>0$. I_{ν} stands for the Bessel function of the first kind. In particular $I_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sinh x$. The particular choice $\lambda=T^{2 \alpha} / 2$ leads to

$$
\mathbb{P}\left(\sup _{u \in[0,1]} \bar{R}_{u}>T^{\alpha}\right) \leq \frac{\sqrt{e \pi}}{2 \sqrt{2}} \frac{\pi T^{\alpha}}{2 \sinh ^{2}\left(T^{\alpha}\right)}
$$

Examples of generalization and numerics

Example 1. $d X_{t}=\left(2+\sin \left(X_{t}\right)\right) d t+d B_{t}, X_{0}=0$. We have $0 \leq \gamma \leq 5$.

Figure: Histogram of the hitting time distribution for 10000 simulations corresponding to the level $L=2$ and starting position $X_{0}=0$ (left), histogram of the number of iterations in Algorithm (A1) in the $\log _{10}$-scale (right).

Figure: Number of random variables used in Algorithm (A1) for 10000 simulations with $L=2, X_{0}=0$ in the $\log _{10}$-scale (left) and mean number of iterations versus the level height L for Algorithm (A1) shift respectively (A1) (dashed line resp. solid line), both curves are in the $\log _{10}$-scale (10 000 simulations have been used for the average estimation).

Figure: Histogram of the number of random variables in Algorithm (A1) using space splitting for 10000 with $L=2, X_{0}=0, k=20$ (left), $L=20, k=20$ (right) both in the $\log _{10}$-scale.

Figure: Averaged number of random variables used in Algorithm (A1) versus the number of slices k with $X_{0}=0$ and $L=5$. The averaging uses 10000 simulations.

Example 2: Ornstein-Uhlenbeck process with $b(x)=\alpha x+\beta, \alpha=-0.3$, $\beta=1$ with starting position $X_{0}=0$ and boundary $L=1$ ensures that γ is a positive function but b remains unbounded. We replace the original drift term by its modified version:

$$
b_{\rho}(x)= \begin{cases}-\alpha x+\beta & \text { if }-\rho \leq x \leq L \\ \alpha \rho+\beta-\alpha(x+\rho) e^{x+\rho} & \text { if } x<-\rho\end{cases}
$$

The modified γ satisfies $\gamma_{\rho}(x)=\gamma(x)$ for $x \in[-\rho, L]$ and

$$
\gamma_{\rho}(x)=\frac{1}{2}\left(\alpha \rho+\beta-\alpha(x+\rho) e^{x+\rho}\right)^{2}-\frac{\alpha}{2}(1+x+\rho) e^{x+\rho} \quad \text { for } x<-\rho .
$$

The function γ_{ρ} is now positive on the whole interval] $\left.-\infty, L\right]$ and admits the following upper-bound:

$$
\kappa=\frac{1}{2}\left(\alpha \rho+\beta+\frac{\alpha}{e}\right)^{2}+\frac{\alpha}{2 e^{2}} .
$$

We can therefore apply Algorithm (A1) in order to simulate the approximated first-passage time τ_{L}^{ρ}.

We define $\beta(x)=\int_{0}^{x} b(y) d y$ and $p(x)=\int_{0}^{x} e^{-\beta(y)} d y$

Proposition

We assume that $\lim _{x \rightarrow-\infty} p(x)=-\infty$. Then τ_{L}^{ρ} converges in distribution towards τ_{L} as $\rho \rightarrow \infty$. Moreover

$$
d\left(\tau_{L}, \tau_{L}^{\rho}\right):=\sup \left\{\left|F_{\tau_{L}^{\rho}}(t)-F_{\tau_{L}}(t)\right|: t \in \mathbb{R}_{+}\right\}=\mathcal{O}(-p(-\rho)) \text { as } \rho \rightarrow \infty
$$

Example 3: $d X_{t}=-\arctan \left(X_{t}\right) d t+d B_{t}, \quad t \geq 0, \quad X_{0}=0, \quad L=1$. $\gamma(x)=\left(\arctan (x)^{2}-1 /\left(1+x^{2}\right)\right) / 2$ satisfies $-m=-1 / 2 \leq \gamma(x) \leq \pi^{2} / 8$ and the first-passage time is almost surely finite.

Step 1: Simulate T : distr. of $(L-x)^{2} / G^{2}$ given $(L-x)^{2} / G^{2} \leq t_{0}$. Step 2: Simulate a 3-d Bessel process $\left(R_{t}\right)$ on $[0, T]$ with $R_{T}=L-x$.

$$
D_{R, T}^{m}:=\left\{(t, v) \in[0, T] \times \mathbb{R}_{+}: v \leq \gamma\left(L-R_{t}\right)+\frac{m t_{0}}{T}\right\}
$$

Step 3: Simulate a PPP N on $[0, T] \times \mathbb{R}_{+}$, independent of R, with Lebesgue intensity meas.
Step 4: If $N\left(D_{R, T}^{m}\right)=0$ then set $Y=T$ otherwise go to Step 1 .

Theorem for Algorithm (A3)

The outcome Y has the same distribution as τ_{L} given $\tau_{L} \leq t_{0}$.

Figure: Histogram of the hitting time distribution using Algorithm (A3) for $t_{0}=1$ and 100000 simulations (left) and averaged number of iterations in Algorithm (A3) versus t_{0} (right) for $X_{0}=0, L=1$ and 10000 simulations.

To sum up...

Condition on γ	r.v. simulated	Algorithm
$0 \leq \gamma(x) \leq \kappa$	τ_{L}	(A1) or (A2)
$0<\gamma_{0} \leq \gamma(x) \leq \kappa$	τ_{L}	$(\mathrm{~A} 1)_{\text {shift }}$ or (A2) ${ }_{\text {shift }}$
$-m \leq \gamma(x) \leq \kappa$	τ_{L} given $\tau_{L} \leq t_{0}$	$(\mathrm{~A} 3)$
$0 \leq \gamma(x)$	$\tau_{L}^{\rho}($ approx. $)$	$(\mathrm{A} 1)^{\rho}$ or $(\mathrm{A} 2)^{\rho}$

To sum up...

Condition on γ	r.v. simulated	Algorithm
$0 \leq \gamma(x) \leq \kappa$	τ_{L}	(A1) or (A2)
$0<\gamma_{0} \leq \gamma(x) \leq \kappa$	τ_{L}	$(\mathrm{~A} 1)_{\text {shift }}$ or (A2) ${ }_{\text {shift }}$
$-m \leq \gamma(x) \leq \kappa$	τ_{L} given $\tau_{L} \leq t_{0}$	(A3)
$0 \leq \gamma(x)$	τ_{L}^{ρ} (approx.)	$(\mathrm{A} 1)^{\rho}$ or (A2) $)^{\rho}$

Work in progress and open questions:
■ Exact simulation for unbounded γ, for time-inhomogeneous diffusions.

- Bound of the number of r.v. for general functions γ.
- Exit problem from an interval for one-dimensional diffusions.
- Exit time from a domain in \mathbb{R}^{d} with $d \geq 2$.

