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Objectives

Setup:

A portfolio of assets with time-varying composition,
the vector of individual returns follows a general dynamic
model.

Aims:

Estimate the conditional risk of the portfolio (market risk).
Evaluate the accuracy of the estimation (model risk):
⇒ quantify simultaneously the market and estimation risks.

Compare univariate and multivariate approaches.
Crystallized portfolios;
Optimal (conditional) mean-variance portfolios;
Minimal VaR porfolios.
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Risk factors

pt = (p1t, . . . ,pmt)′ vector of prices of m assets

yt = (y1t, . . . ,ymt)′ vector of log-returns, yit = log(pit/pi,t−1)

Vt value of a portfolio composed of µi,t−1 units of asset i, for
i= 1, . . . ,m:

Vt =
m∑

i=1
µi,t−1pit

Self-financing constraint: At date t, the investor may
rebalance his portfolio in such a way that

SF
∑m

i=1µi,t−1pit =∑m
i=1µi,tpit
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Return of the portfolio

Under SF, the return of the portfolio over the period [t−1, t],
assuming Vt−1 6= 0, is

Vt

Vt−1
−1=

m∑
i=1

ai,t−1 exp(yit)−1≈ rt

where
rt =

m∑
i=1

ai,t−1yit = a′
t−1yt,

with
ai,t−1 =

µi,t−1pi,t−1∑m
j=1µj,t−1pj,t−1

, i= 1, . . . ,m,

and at−1 = (a1,t−1, . . . ,am,t−1)′, yt = (y1t, . . . ,ymt)′ .
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Conditional VaR of the portfolio’s return

The conditional VaR of the portfolio’s return rt at risk level
α ∈ (0,1) is defined by

Pt−1

[
rt <−VaR(α)

t−1(rt)
]
=α

where Pt−1 denotes the historical distribution conditional on{
pu,u< t

}
.

Consequence
Evaluation of the conditional VaR can be achieved by a

Multivariate approach:
dynamic model for the vector of risk factors yt

Univariate approach:
dynamic model for the portfolio’s return rt
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Dynamic model for the vector of log-returns

Multivariate model with GARCH-type errors:

yt =mt(θ0)+εt, εt =Σt(θ0)ηt

where ηt
iid∼ (0,Im), θ0 ∈Rd

mt(θ0) =m(yt−1,yt−2, . . . ,θ0), Σt(θ0) =Σ(yt−1,yt−2. . . . ,θ0).

Examples of MGARCH

Thus
rt = a′

t−1mt(θ0)+a′
t−1Σt(θ0)ηt,

and
VaR(α)

t−1(rt) =−a′
t−1mt(θ0)+VaR(α)

t−1

(
a′

t−1Σt(θ0)ηt
)

.
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A simplification for elliptic conditional distributions

εt =mt(θ0)+Σt(θ0)ηt, (ηt) iid (0,Im),

Assume that the errors ηt have a spherical distribution:

A1: for any non-random vector λ ∈Rm, λ′ηt
d= ‖λ‖η1t

where ‖ ·‖ is the euclidean norm on Rm.

Remark: means that the conditional law of εt is elliptic.

Under A1

VaR(α)
t−1(rt) =−a′

t−1mt(θ0)+∥∥a′
t−1Σt(θ0)

∥∥VaR(α) (η)
,

where VaR(α) (η)
is the (marginal) VaR of η1t.

Example of spherical distributions
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Assumption on the conditional variance model

B1: There exists a continuously differentiable function
G :Rd 7→Rd such that for any θ ∈Θ, any K > 0, and any
sequence (xi)i on Rm,

KΣ(x1,x2, . . . ;θ) =Σ(x1,x2, . . . ;θ∗), and
m(x1,x2, . . . ;θ) =m(x1,x2, . . . ;θ∗)

where θ∗ =G(θ,K).

Examples of the CCC and DCC-GARCH
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VaR parameter for an elliptic conditional distribution

At the risk level α ∈ (0,0.5), the conditional VaR of the portfolio’s
return is

VaR(α)
t−1(rt) =−a′

t−1mt(θ0)+VaR(α)
t−1

(
a′

t−1Σt(θ0)ηt
)

=−a′
t−1mt(θ0)+∥∥a′

t−1Σt(θ0)
∥∥VaR(α)(η)

=−a′
t−1mt(θ

∗
0 )+‖a′

t−1Σt(θ
∗
0 )‖,

where, under B1,

θ∗0 =G
(
θ0,VaR(α)(η)

)
.

The parameter θ∗0 can be called conditional VaR parameter.

Remark: The conditional VaR parameter
does not depend on the portfolio composition
summarizes the risk at a given level
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1 General framework

2 Estimating the conditional VaR
Multivariate estimation under ellipticity
Relaxing the ellipticity assumption
Univariate approaches

3 Numerical comparison of the different VaR estimators
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Estimating the conditional VaR parameter

Observations: y1, . . . ,yn (+ initial values ỹ0, ỹ−1, . . .).
θ̂n: estimator of θ0

m̃t(θ) =m(yt−1, . . . ,y1, ỹ0, ỹ−1, . . . ,θ)
Σ̃t(θ) =Σ(yt−1, . . . ,y1, ỹ0, ỹ−1, . . . ,θ)

Residuals: η̂t = Σ̃−1
t (θ̂n){yt − m̃t(θ̂n)}) = (η̂1t, . . . , η̂mt)′.

Under the sphericity assumption,

�VaR
(α)
S,t−1(r) =−a′

t−1m̃t(θ̂n)+‖a′
t−1Σ̃t(θ̂n)‖�VaR

(α)
n

(
η
)

where �VaR
(α)
n

(
η
)= ξn,1−2α

is the (1−2α)-quantile of {|η̂it|,1≤ i≤m,1≤ t ≤ n}.
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Assumptions

A2: (yt) is a strictly stationary and nonanticipative solution.

A3: We have θ̂n → θ0, a.s. and the following expansion

p
n
(
θ̂n −θ0

) oP(1)= 1p
n

n∑
t=1
∆t−1V(ηt),

where ∆t−1 ∈F t−1, V :Rm 7→RK for some K ≥ 1,
EV(ηt) = 0, var{V(ηt)} =Υ is nonsingular and E∆t =Λ is full row
rank. Example of the Gaussian QML

A4: The functions θ 7→m(x1,x2, . . . ;θ) and θ 7→Σ(x1,x2, . . . ;θ) are C 1.

A5: |η1t| has a density f which is continuous and strictly positive in a
neighborhood of ξ1−2α (the (1−2α)-quantile of |η1t|).
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Asymptotic distribution

Asymptotic normality

p
n
(

θ̂n −θ0
ξn,1−2α−ξ1−2α

)
L→ N

(
0,Ξ :=

(
Ψ Ξθξ
Ξ′
θξ

ζ1−2α

))
,

where Ω′ =E
[{

vec
(
Σ−1

t
)}′ { ∂

∂ϑ′ vec (Σt)
}]

, Wα =Cov(V(ηt),Nt),
γα = var(Nt), with Nt =∑m

j=1 1{|ηjt |<ξ1−2α} −1+2α, and

Ξθξ = −1
m

{
ξ1−2αΨΩ+ 1

f (ξ1−2α)
ΛWα

}
, Ψ=E(∆tΥ∆

′
t)

ζ1−2α = 1
m2

{
ξ2

1−2αΩ
′ΨΩ+ 2ξ1−2α

f (ξ1−2α)
Ω′ΛWα+ γα

f 2(ξ1−2α)

}
.
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Estimation of the asymptotic variance

Most quantities involved in the asymptotic covariance
matrix Ξ can be estimated by empirical means.
The estimation of

Ω′ =E
[{

vec
(
Σ−1

t

)}′{ ∂

∂ϑ′ vec (Σt)

}]
can be delicate due to the presence of the derivatives of Σt.

Example: linear SRE on the derivatives of Ht
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Asymptotic normality of the VaR-parameter estimator

VaR-parameter: θ∗0 =G
(
θ0,VaR(α)(η)

)
A simple application of the delta method gives the asymptotic
distribution of the estimator

θ̂
∗
n =G

{
θ̂n, �VaR

(α)
n

(
η
)}

.

VaR parameter

p
n
(
θ̂
∗
n −θ∗0

)
L→ N

(
0,Ξ∗ := ĠΞĠ′)

with
Ġ=

[
∂G(θ,ξ)

∂(θ′,ξ)

]
(θ0,ξ1−2α)

.
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Evaluation of the estimation risk

�VaR
(α)
S,t−1(r) =−a′

t−1m̃t(θ̂n)+‖a′
t−1Σ̃t(θ̂n)‖�VaR

(α)
n

(
η
)

An asymptotic (1−α0)% confidence interval for VaRt(α) has
bounds given by

�VaR
(α)
S,t−1(rt)± 1p

n
Φ−1

1−α0/2
{
δ′t−1Ξ̂δt−1

}1/2
,

where

δ′t−1 =
[

a′
t−1

∂m̃(θ̂n)

∂θ′
+ (at−1 ⊗at−1)′

2‖a′
t−1Σ̃t(θ̂n)‖

∂vecH̃t(θ̂n)

∂θ′
‖a′

t−1Σ̃t(θ̂n)‖
]

,

with H̃t(·) = Σ̃t(·)Σ̃′
t(·).

Remark: The statistical estimation risk α0 is not related to the
financial risk α.
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Accuracy intervals for the estimated conditional VaR
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1%-VaR (true in full black line, estimated in full blue line) and estimated
95%-confidence intervals (dotted blue line) on a simulation of a fixed portfolio

of a bivariate BEKK (700 values for the estimation of the VaR parameter).
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Filtered Historical Simulation (FHS) approach
Barone-Adesi et al. (J. of Future Markets, 1999), Mancini and Trojani (JFE, 2011)

Relies on

i) interpreting the conditional VaR as the α-quantile of a linear
combination (depending on t) of the components of ηt:

VaR(α)
t−1(rt) =VaR(α)

t−1

{
bt(θ0)+c′t(θ0)ηt

}
where bt(θ) = a′

t−1mt(θ) and c′t(θ) = a′
t−1Σt(θ).

ii) replacing ηt by the GARCH residuals η̂s and computing the
empirical α-quantile of the estimated linear combination.�VaR

(α)
FHS,t−1(r) =−qα

(
{bt(θ̂n)+c′t(θ̂n)η̂s, 1≤ s≤ n}

)
.

Remark: for each value of s, bt(θ̂n)+c′t(θ̂n)η̂s is a simulated value of
the return rt conditional on the past prices.
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Notations and assumptions

Let c :Θ 7→Rm and b :Θ 7→R be C 1 functions.

ξα(θ): α-quantile of b(θ)+c′(θ)ηt(θ),

ξn,α(θ): empirical α-quantile of {b(θ)+c′(θ)ηt(θ),1≤ t ≤ n}.

Suppose ξα(θ0) > 0 and c′(θ0)ηt admits a density fc which is
continuous and strictly positive in a neighborhood of
x0 =−b(θ0)+ξα(θ0).
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Asymptotic distribution

Estimator of the quantile of a linear combination of ηt

Under the previous assumptions (but without the sphericity
assumption A1),

p
n{ξn,α(θ̂n)−ξα(θ0)}

L→N

(
0,σ2 :=ω′Ψω+2ω′ΛAα+ α(1−α)

f 2
c (x0)

)
,

where Aα =Cov(V(ηt),1{b(θ0)−c′(θ0)ηt<ξα(θ0)}),

ω′ =
[
c′(θ0)E(Ct)− ∂b

∂θ′
(θ0) d′

α

{
(c′(θ0)⊗ Im)E(Ω∗

t )− ∂c
∂θ′

(θ0)

}]
,

dα =E(ηt | b(θ0)+c′(θ0)ηt = ξα(θ0)),
Ω∗

t and Ct are matrices involving the derivatives of Σt and mt.
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Two univariate approaches

Naive approach: estimate a univariate GARCH model on
the series of portfolio returns.
Generally invalid due to the time-varying combination of the individual
returns.

Virtual Historical Simulation (VHS): reconstitute a "virtual
portfolio" whose returns are built using the current
composition of the portfolio.
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Invalidity of the naive univariate approach

For crystallized portfolios (µi,t−1 =µi, ∀i,∀t), in general

P(at−1 ∈ {e1, . . . ,em}) → 1 as t →∞.

The composition tends to be totally undiversified, but is not always close
to the same single-asset composition ei. Illustration of the nonstationarity

In general, the naive method based on a fixed stationary
model for rt will produce poor results.
For static portfolios (ai,t−1 = ai for all i and t) the non
stationarity issue vanishes.

However, on simulated series, multivariate models outperform
univariate models for estimating the VaR’s of static portfolios.
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Virtual Historical Simulation

Given the current portfolio composition at−1 = x, we construct a
(stationary) series of virtual returns mimicking the current return

r∗s (x) = x′ys s ∈Z.

We have a model of the form

r∗s (x) =µs(x)+σs(x)us, Es−1(us) = 0, vars−1(us) = 1.

The conditional VaR thus satisfies

VaR(α)
t−1(rt) =−µt(at−1)+σt(at−1)VaR(α)

t−1(ut)

STEP 1: Compute the virtual returns r∗s (x) for s= 1, . . . ,n.
STEP 2: Estimate µs(x) and σs(x). Let ûs = {r∗s (x)− µ̂s(x)}/σ̂s(x).
STEP 3: Compute the α-quantile ξu

n,α(x) of {ûs,1≤ s≤ n} and let

�VaR
(α)
VHS,t−1(r) =−µ̂t(x)− σ̂t(x)ξu

n,α(x).
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Remarks on Step 2: estimation of a univariate model
for the virtual returns

To obtain asymptotic properties of the procedure, we make
parametric assumptions on the univariate model:

σs(x;%) =σ(r∗s−1(x),r∗s−2(x), . . . ;%),

In general, a multivariate GARCH-type model for yt is not
compatible with a univariate GARCH for r∗s (x) = x′ys.

Due to the fact that the conditional distribution of r∗s (x) is not
only a function of the past virtual returns.

If a GARCH(1,1) is used in Step 2, it will generally be an
approximation.

Under the sphericity assumption A1, (ut) is i.i.d.
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Simulation designs
Different cDCC-GARCH(1,1) models for m= 2 assets. Designs

For the Minimum variance portfolio Illustration

r∗t = ε′ta∗
t−1, a∗

t−1 =
Σ−2

t (θ0)e
e′Σ−2

t (θ0)e
,

the true conditional VaR is explicit under sphericity, and is
evaluated by means of simulations otherwise.
N = 100 independent simulations of the cDCC-GARCH(1,1)
model.

First n1 = 1000 observations: estimation of θ0 + empirical
quantiles of the residuals.
Last n−n1 = 1000 simulations: comparison of the theoretical
conditional VaR’s of the portfolio with the three estimates
(spherical, FHS and VHS methods).
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Empirical Relative Efficiency

Table: Relative efficiency of the Spherical method with respect to the FHS
method (S/F) and with respect to the VHS method (S/V).

n1 α A B C D E F G H BEKK
1000 1% S/F 1.30 1.11 2.35 1.62 1.53 1.51 1.57 1.36 1.41

S/V 91.6 23.4 303. 79.8 1.93 2.53 4.43 2.23 8.27
5% S/F 1.14 1.03 2.07 1.00 1.25 1.08 1.33 1.01 1.13

S/V 55.4 15.7 267. 82.5 1.75 2.44 4.14 2.01 8.23

A∗ B∗ C∗ D∗ E∗ F∗ G∗ H∗ BEKK∗

1000 1% S/F 0.08 0.03 0.02 0.02 0.06 0.03 0.03 0.04 0.05
S/V 2.20 2.43 2.31 1.67 0.05 0.04 0.07 0.06 0.50

5% S/F 0.34 0.19 0.09 0.11 0.30 0.24 0.21 0.29 0.34
S/V 3.78 6.68 10.2 8.72 0.26 0.35 0.59 0.44 2.65

A-H: Spherical innovations; A∗-H∗: Non spherical innovations
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The two components follow persistent volatility models
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Two very different volatility models for the two components (design A)
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Daily returns of exchange rates against the Euro

Canadian Dollar (CAD), Chinese Yuan (CNY), British
Pound (GBP), Japanese Yen (JPY) and US Dollar (USD).
January 14, 2000 to May 5, 2015 (n= 2582).
2 settings

A BEKK model estimated over the whole sample except the
last 100 returns. Equally-weighted crystalized portfolio
(µi = 1 for i= 1, . . . ,5). VaR estimates based on sphericity.
DCCC GARCH(1,1) model on the first 2000 observations
with estimated minimum-variance portfolio. Backtesting
(unconditional coverage, independence of violations,
conditional coverage).
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Equally-weighted portfolio of 5 exchange rates
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Returns for the period 09/12/2014 to 05/05/2015, estimated 1%- VaR and
95%-confidence interval based on the estimation of a BEKK model.
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Minimum-variance portfolio of 5 exchange rates
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Returns of estimated minimum-variance portfolios of 5 exchange rates and
their estimated VaR’s.
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Backtests
Christoffersen (2003), Escanciano and Olmo (2010, 2011)

Table: p-values of three backtests for minimum-variance portfolios

Method α % of Viol UC IND CC
Spherical 1% 2/582 0.065 0.906 0.182
FHS 1% 2/582 0.065 0.906 0.182
Spherical 5% 20/582 0.067 0.232 0.092
FHS 5% 18/582 0.023 0.283 0.043
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Conclusions: univariate approaches

Not always a good idea to fit a stationary univariate
GARCH model on portfolios returns:

does not exploit the multivariate dynamics of the risk
factors;
the naive approach (based on a fixed stationary model) is
generally inconsistent when the composition of the portfolio
is time-varying;
The VHS approach circumvents the non stationarity
problem but

is generally found inefficient in simulations compared to the
multivariate approaches,
is not necessarily simpler to implement (GARCH models
have to be re-estimated at any date and for any portfolio
composition),
does not allow to choose optimally the weights of the
portfolio.
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Conclusions: multivariate approaches

For both approaches, asymptotic CIs for the conditional
VaR can be built.
⇒ allows to visualize on the same graph both market and
estimation risks.
Exploiting the sphericity simplifies estimation and also
gives more accurate VaRs when this assumption holds.
The method based on sphericity may yield inconsistent
VaR estimators when this assumption is in failure.
The FHS method performs well in both cases and
outperforms the first approach in the absence of sphericity.

Thanks for your attention!
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Conclusions: multivariate approaches

For both approaches, asymptotic CIs for the conditional
VaR can be built.
⇒ allows to visualize on the same graph both market and
estimation risks.
Exploiting the sphericity simplifies estimation and also
gives more accurate VaRs when this assumption holds.
The method based on sphericity may yield inconsistent
VaR estimators when this assumption is in failure.
The FHS method performs well in both cases and
outperforms the first approach in the absence of sphericity.

Thanks for your attention!
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Vector GARCH model

εt = H1/2
t ηt, Ht positive definite, (ηt) iid (0,I)

vech(Ht) = ω+
q∑

i=1
A(i)vech(εt−iε

′
t−i)+

p∑
j=1

B(j)vech(Ht−j)

The most direct generalization of univariate GARCH
Positivity conditions are difficult to obtain
No explicit stationarity conditions
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BEKK-GARCH model

Engle and Kroner (1995), Comte and Lieberman (2003)
εt = H1/2

t ηt, (ηt) iid (0,I)

Ht = Ω+
q∑

i=1

K∑
k=1

Aikεt−iε
′
t−iA

′
ik +

p∑
j=1

K∑
k=1

BjkHt−jB′
jk

Coefficients of a BEKK representation are difficult to
interpret
Positivity conditions are simple. Identifiability of a BEKK
representation requires additional constraints.
Stationarity conditions exist (Boussama, Fuchs, Stelzer,
2011) but no explicit solution can be exhibited
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Constant Conditional Correlation (CCC) model
Bollerslev (1990); Extended CCC by Jeantheau (1998)

ht =

 h11,t
...

hmm,t

 , Dt = diag
(
h1/2

11,t, . . . ,h1/2
mm,t

)
, εt =

 ε2
1t
...
ε2

mt

 .


εt = H1/2

t ηt, Ht =DtRDt, R: correlation matrix

ht = ω+
q∑

i=1
Aiεt−i +

p∑
j=1

Bjht−j

Simple conditions ensuring the positive definiteness of Ht.
Explicit stationarity condition (of the form γ< 0...)
The assumption of CCC can be too restrictive
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Dynamic Conditional Correlation (DCC) model

Engle (2002)

Ht =DtRtDt, Rt = (diagQt)
−1/2Qt(diagQt)

−1/2,

where η∗t =D−1
t εt and

Qt = (1−α−β)S+αη∗t−1η
∗′
t−1 +βQt−1,

where α,β≥ 0,α+β< 1, S is a correlation matrix

The existence of strictly stationary solution is a complex
issue (recent PhD thesis by Malongo, 2014)
No asymptotic theory of estimation exists
Incorrect interpretation of S as Var(η∗t ) and Qt as Vart−1(η∗t ).
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Dynamic Conditional Correlation (DCC) model

Corrected DCC (Aielli (2013)

Qt = (1−α−β)S+αQ∗1/2
t−1 η

∗
t−1η

∗′
t−1Q∗1/2

t−1 +βQt−1,

where Q∗
t = diag (Qt).

Identifiability constraint: diag(S) = Im.
Parcimony but the m(m−1)/2 conditional correlations have
the same dynamic structure.

Return

Francq, Zakoian Conditional VaR of a portfolio



General framework
Estimating the conditional VaR

Numerical comparison of the different VaR estimators

On dynamic portfolios
On portfolios of exchange rates
Appendix

Example: Linear SRE on the derivatives of Ht

BEKK-GARCH(1,1) model:

εt =H1/2
t ηt, Ht =C0 +A0εt−1ε

′
t−1A′

0 +B0Ht−1B′
0

Let θ = (vec(A)′,vec(B)′,vec(C)′)′. For j= 1, . . . ,3d,
∂vec(Ht)

∂θj
= ∂vec(C)

∂θj
+ ∂(A⊗A)

∂θj
vec(εtε

′
t)

+∂(B⊗B)

∂θj
vec(Ht−1)+ (B⊗B)

∂vec(Ht−1)

∂θj
,

allows to compute recursively the derivatives of Ht (for some
initial values).
We note that Σt

∂Σt
∂θi

+ ∂Σt
∂θi
Σt = ∂Ht

∂θi
. Thus

(Im ⊗Σt +Σt ⊗ Im)vec
(
∂Σt

∂θi

)
= vec

(
∂Ht

∂θi

)
.

Return
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Steps of the proof (I)

1 We have p
n(ξn,1−2α−ξ1−2α) = argmin

z∈R
Qn(z)

where

Qn(z) =
m∑

k=1

n∑
t=1

{
ρ1−2α

(
|η̂kt|−ξ1−2α−

zp
n

)
−ρ1−2α(|ηkt|−ξ1−2α)

}
.

2 We show that

|η̂kt| = |ηkt|−uktM′
kt(θ̂n −θ0)+oP(n−1/2),

where ukt =±1, and Mkt is a matrix depending on the
derivatives of mt and Σt.
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Steps of the proof (II)

3 We use the identity, for u 6= 0,

ρτ(u−v)−ρτ(u) =−v(τ−1{u<0})+
∫ v

0

{
1{u≤s} −1{u<0}

}
ds

4 Qn(z) =∑m
k=1 zXn,k +Yn,k + In,k(z)+Jn,k(z), where

Xn,k = 1p
n

n∑
t=1

(1{|ηkt |<ξ1−2α} −1+2α),

In,k(z) =
n∑

t=1

∫ z/
p

n

0
(1{|ηkt |≤ξ1−2α+s} −1{|ηkt |<ξ1−2α})ds,

Jn,k(z) =
n∑

t=1

∫ (z+Rt,n,k)/
p

n

z/
p

n
(1{|ηkt |≤ξ1−2α+s} −1{|ηkt |<ξ1−2α})ds,

with Rt,n,k
oP(1)= uktM′

kt
p

n(θ̂n −θ0).
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Steps of the proof (III)

5 We have In,k(z) → z2

2 f (ξ1−2α) in probability as n→∞, and

m∑
k=1

Jn,k(z)
oP(1)= zξ1−2αf (ξ1−2α)Ω′pn(θ̂n −θ0)+A

6 We have

p
n(ξn,1−2α−ξ1−2α)

oP(1)= −ξ1−2α

m
Ω′pn(θ̂n−θ0)− 1

f (ξ1−2α)

1
m
p

n

n∑
t=1

Nt

and the conclusion follows.

Return
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Example of spherical distribution

If V ∼χ2
ν independent of Z∼N (0,Im), then

Zp
V/ν

∼ tm(ν)

follows the spherical multivariate Student with ν degrees of
freedom. Since

Z= ‖Z‖ Z
‖Z‖ with R2 := ‖Z‖2 ∼χ2

m independent of S := Z
‖Z‖

uniformly distributed on the Sphere of Rd,

tm(ν) ∼ %S, %=
√

V
ν

R∼
√

ν

χ2
ν

√
χ2

m, V ,R,S independent.

Return
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Example: Gaussian QML

For the pure GARCH model εt =Σt(θ0)ηt, let the Gaussian
QMLE

θ̂n = arg min
θ∈θ

n−1
n∑

t=1

˜̀t(θ) where ˜̀t(θ) = ε′tH̃
−1
t (θ)εt+log |H̃t(θ)|,

with H̃t(θ) = Σ̃t(θ)Σ̃
′
t(θ). Under some regularity conditions we

have
p

n
(
θ̂n −θ0

) oP(1)= 1p
n

n∑
t=1
∆t−1V(ηt)

with
∆t−1 = J−1 ∂vec′Ht(θ0)

∂θ

{
Σ−1

t (θ0)⊗Σ−1
t (θ0)

}
and

V(ηt) = vec
{
Im −ηtη

′
t
}

.

Return

Francq, Zakoian Conditional VaR of a portfolio



General framework
Estimating the conditional VaR

Numerical comparison of the different VaR estimators

On dynamic portfolios
On portfolios of exchange rates
Appendix

Some references on QML estimation for GARCH:

ARCH(q) or GARCH(1,1): Weiss (Econ. Theory, 1986),
Lee and Hansen (Econ. Theory, 1994), Lumsdaine
(Econometrica, 1996),
GARCH(p,q): Berkes, Horváth and Kokoszka (Bernoulli,
2003), Francq and Zakoïan (Bernoulli, 2004), Hall and Yao
(Econometrica, 2003), Mikosch and Straumann (Ann.
Statist., 2006).
More general stationary GARCH models: Straumann
and Mikosch (Ann. Statist., 2006), Robinson and Zaffaroni
(Ann. Statist., 2006), Bardet and Wintenberger (Ann.
Statist., 2009), Meitz and Saikkonen (Econ. Theory, 2011).

Return
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Example: B1 for CCC and DCC-GARCH models
εt = Σtηt, Σ2

t =DtRtDt, D2
t = diag(ht),

ht = ω+
q∑

i=1
Aiεt−i +

p∑
j=1

Bj,ht−j, εt =

 ε2
1t
...
ε2

mt


where Rt is a correlation matrix:

Rt =R(ρ) for CCC and Rt =R(εu,u< t;ρ) for DCC.

With
ϑ= (ω′,vec′(A1), . . . ,vec′(Bp),ρ′)′,

we have

G(ϑ,K) =
(
K2ω′,K2vec′(A1), . . . ,K2vec′(Aq),vec′(B1), . . . ,vec′(Bp),ρ′

)′
.

Return to B1
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Example

An equally weighted portfolio of 3 assets:

Vt =
3∑

i=1
pit.

The vector of the log-returns

yt ∼ iid N (0,DRD),

with

D=
 0.01 0 0

0 0.02 0
0 0 0.04

 , R=
 1 −0.855 0.855

−0.855 1 −0.810
0.855 −0.810 1

 .

The composition of the log-return portfolio is not constant:
ai,t−1 = pi,t−1∑3

j=1 pj,t−1
.
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A trajectory of (Vt)
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The process (Vt) is non stationary.
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A trajectory of (rt)
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The return process (rt) (also non stationary)
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Time-varying composition of the portfolio
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Return

Francq, Zakoian Conditional VaR of a portfolio



General framework
Estimating the conditional VaR

Numerical comparison of the different VaR estimators

On dynamic portfolios
On portfolios of exchange rates
Appendix

DCC-GARCH model for the individual returns
εt = Σtηt, Σ2

t =DtRtDt, D2
t = diag(ht),

ht = ω0 +A0εt−1 +B0,ht−1, εt =

 ε2
1t
...
ε2

mt


where B0 is diagonal, and the correlation Rt follows the cDCC
model (Engle (2002), Aielli (2013))

Rt =Q∗−1/2
t QtQ

∗−1/2
t ,

Qt = (1−α0 −β0)S0 +α0Q∗1/2
t−1 η

∗
t−1η

∗′
t−1Q∗1/2

t−1 +β0Qt−1,

where α0,β0 ≥ 0,α0 +β0 < 1, S0 is a correlation matrix, Q∗
t is the

diagonal matrix with the same diagonal elements as Qt, and
η∗t =D−1

t εt.
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Designs of the numerical experiments

Table: Design of Monte Carlo experiments.

ω′
0 (vecA0)′ diagB0 S0(1,2) α β Pη

A (10−6, 4×10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0.7 0.04 0.95 N (0,I2)
B (10−6, 4×10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0.7 0.04 0.95 S t7
C (10−6, 4×10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0 0 0 N (0,I2)
D (10−6, 4×10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0 0 0 S t7
E (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0.7 0.04 0.95 N (0,I2)
F (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0.7 0.04 0.95 S t7
G (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0 0 0 N (0,I2)
H (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0 0 0 S t7

Designs A∗-H∗ are the same as Designs A-H, except that Pη follows
an asymmetric AEPD (introduced by Zhu and Zinde-Walsh (2009)).

Numerical experiments
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More details on the estimators
Conditional VaR of the minimum-variance portfolio:

VaR(α)
t−1

(
r∗t

)= ∥∥∥a∗′
t−1Σt(θ0)

∥∥∥F−1
|η1|(1−2α) = 1√

e′Σ−2
t (θ0)e

F−1
|η1|(1−2α)

Estimates obtained from the spherical and FHS methods:

�VaR
(α)
S,t−1(r∗) = ξn1,1−2α√

e′Σ̃−2
t (θ̂n1 )e

,

�VaR
(α)
FHS,t−1(r∗) =−qα

({
e′Σ̃−1

t (θ̂n1 )η̂u

e′Σ̃−2
t (θ̂n1 )e

,u= 1, . . . ,n1

})
,

For the VHS method, the estimator is baised on
GARCH(1,1).

Numerical experiments
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Empirical Relative Efficiency

Table: Relative efficiency of the spherical method with respect to the FHS
method.

n1 α A B C D E F G H
500 1% 1.181 1.109 2.567 2.350 1.076 1.174 1.232 1.424

5% 1.209 1.029 1.813 1.403 1.181 1.115 1.122 1.186
1000 1% 1.301 1.105 2.354 1.623 1.533 1.511 1.572 1.549

5% 1.144 1.025 2.070 0.999 1.249 1.077 1.332 1.011
A∗ B∗ C∗ D∗ E∗ F∗ G∗ H∗

500 1% 1.366 0.509 1.562 0.388 1.303 0.865 1.664 0.918
5% 1.256 0.477 1.741 0.216 1.112 0.589 1.158 0.337

1000 1% 1.045 0.381 0.957 0.211 1.598 0.507 1.852 0.526
5% 1.356 0.289 1.225 0.129 1.203 0.339 1.303 0.337

A-H: Spherical innovations; A∗-H∗: Non spherical innovations

Numerical experiments
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Minimum VaR portfolios
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Three competing VaR estimators (assuming µt = 0)

�VaR
(α)
t−1(ε(P)) = ‖a′

t−1Σ̃t(ϑ̂n)‖ξn,1−2α

based on an elliptic distribution for the conditional
distribution of the risk factor returns.

�VaR
(α)
FHS,t−1(ε(P)) =−ξn,α(t, ϑ̂n)

the filtered historical simulation VaR based on a
multivariate GARCH-type model.

�VaR
(α)
U,t−1(ε(P)) =−σ̃t(ζ̂n)F̂ν(α)

based on a univariate volatility model for the return rt of the
portfolio: rt =σt(ζ)νt where σt(ζ) =σ(ε(P)

t−1, . . . ;ζ).
Advantages and drawbacks
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Static model

Consider the static model rt = a′εt = a′Σt(ϑ0)ηt where

Σt(ϑ0) =Σ(ϑ0) =

 σ01 0
. . .

0 σ0m

 .

We have ϑ0 = (σ2
01, . . . ,σ2

0m)′ and the conditional VaR is constant:

VaR(α)
t−1(ε(P)) =VaR(α)(ε(P)).

Univariate method: (1−2α)-quantile of |rt|;
Spherical method:

√
a′Σ2(ϑ̂n)aξn,α, where ξn,α is the

(1−2α)-quantile of η̂it;
"Multivariate FHS" method = univariate HS method:
opposite of the α-quantile of rt. Return
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The VaR and its 3 estimates
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VaR of crystallized and minimal variance portfolios
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VaR of crystallized and minimal variance portfolios
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Three competing VaR estimators (assuming µt = 0)

�VaR
(α)
S,t−1(ε(P)) = ‖a′

t−1Σ̃t(ϑ̂n)‖ξn,1−2α

based on an elliptic distribution for the conditional
distribution of the risk factor returns.

�VaR
(α)
FHS,t−1(ε(P)) =−ξn,α(t, ϑ̂n)

the filtered historical simulation VaR based on a
multivariate GARCH-type model.

�VaR
(α)
U,t−1(ε(P)) =−σ̃t(ζ̂n)F̂ν(α)

based on a univariate volatility model for the return rt of the
portfolio: rt =σt(ζ)νt where σt(ζ) =σ(ε(P)

t−1, . . . ;ζ).

Return
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Static model

Consider the static model rt = a′εt = a′Σt(ϑ0)ηt where

Σt(ϑ0) =Σ(ϑ0) =

 σ01 0
. . .

0 σ0m

 .

We have ϑ0 = (σ2
01, . . . ,σ2

0m)′ and the conditional VaR is constant:

VaR(α)
t−1(ε(P)) =VaR(α)(ε(P)).

Univariate (naive or VHS) method: (1−2α)-quantile of |rt|;
Spherical method:

√
a′Σ2(ϑ̂n)aξn,α, where ξn,α is the

(1−2α)-quantile of the |η̂it|’s;
"Multivariate FHS" method = univariate (V)HS method:
opposite of the α-quantile of rt.
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Conclusions drawn from the example

For the simple (but unrealistic) static model:
1 All the methods are consistent (under sphericity);
2 When ηt ∼N (0,Im), the theoretical ARE can be explicitly

computed and compared; Details

3 The empirical and theoretical ARE’s are in perfect
agreement;

4 The method based on the sphericity assumption is often
much more efficient. Details
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The framework of a crystallized portfolio

An equally weighted portfolio of 3 assets:

Vt =
3∑

i=1
pit.

The vector of the log-returns

εt ∼ iid N (0,DRD),

with

D=
 0.01 0 0

0 0.02 0
0 0 0.04

 , R=
 1 −0.855 0.855

−0.855 1 −0.810
0.855 −0.810 1

 .
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Non-stationarity of the portfolio returns

The composition of the log-return portfolio is not constant:
ai,t−1 = pi,t−1∑3

j=1 pj,t−1
and rt = a′

t−1εt is non-stationary.

Indeed, the ratio

a1,t

a2,t
= p1,t

p2,t
= p1,0

p2,0
exp

{
t∑

k=1

(
ε1,k −ε2,k

)}

is non stationary by Chung-Fuchs’s theorem: the
non-singularity of Σ entails that the variance of ε1,k −ε2,k is non
degenerated. This property holds under more general
assumptions, for instance if the sequence (ε1,k −ε2,k) is mixing
and nondegenerated.
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A trajectory of (rt)
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Time-varying composition of the portfolio
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The VaR and its 3 estimates
Other illustrations and backtests
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Conclusions drawn from the example

The naive univariate approach is not suitable because
1 the return of the portfolio is not stationary in general;
2 the dynamics is multivariate;
3 the information is also multivariate

VaR(α)
t−1(ε(P)) =VaR(α) (rt | pu,u< t

) 6=VaR(α) (rt | ε(P)
u ,u< t

)
.
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Asymptotic comparison of two VaR estimators

Asymptotic variances of the two estimators of VaR(α):

σ2
U(α,a): univariate; σ2

S(α,a): spherical distribution method.

When ηt ∼N (0,Im), we have

σ2
S(α,a)

σ2
U(α,a)

= 1
m

− ξ2
1−2αφ

2(ξ1−2α)

mα(1−2α)
+ ξ2

1−2αφ
2(ξ1−2α)

mα(1−2α)

1
m

∑m
i=1 a4

i σ
4
0i( 1

m
∑m

i=1 a2
i σ

2
0i

)2 .

1/m because sphericity allows to use m times more
residuals,
negative second term because it is easier to estimate the
quantile from residuals than from innovations (in the
Gaussian case),
the third term is the price paid for the estimation of Σ(ϑ0).
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Asymptotic comparison of two VaR estimators

When ηt ∼N (0,Im), we have

1
m

≤ σ2
S(α,a)

σ2
U(α,a)

≤ 1
m

[
1+ (m−1)

ξ2
1−2αφ

2(ξ1−2α)

α(1−2α)

]
< 1

for m≥ 2.
the bound 1/m is obtained for aiσ0i = ajσ0j for all i and j
(and any α),
the upper bound is obtained with a totally undiversified
portfolio of one asset.

Static model
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On 10,000 replications of simulations of length n= 500
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Estimation errors of the spherical distribution method (red) and univariate
method (blue) when ηt is Gaussian.
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An extreme case in favor of the univariate method
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As previously, but m= 2 and ηt ∼ t2(5).
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The 3 methods
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The "multivariate" method (in green) is called asymmetric.

Static model
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