ON THE COHOMOLOGICAL DIMENSION OF SOME
PRO-p-EXTENSIONS ABOVE THE CYCLOTOMIC
7Z,-EXTENSION OF A NUMBER FIELD

JULIEN BLONDEAU, PHILIPPE LEBACQUE AND CHRISTIAN MAIRE

ABSTRACT. Let I~(§ be the maximal pro-p-extension of the cyclotomic Z,-
extension K¢ of a number field K, unramified outside the places above S
and totally split at the places above T. Let G% = Gal(K% /K).

In this work we adapt the methods developed by Schmidt in [Sch3| in
order to show that the group G% = Gal(K% /K) is of cohomological dimension
2 provided the finite set S is well chosen. This group GE is in fact mild in
the sense of Labute [La]. We compute its Euler characteristic, by studying
the Galois cohomology groups H i(ég,lﬁ‘p), i = 1,2. Finally, we provide new
situations where the group é§ is a free pro-p-group.

1. INTRODUCTION
Fix a prime p > 2 and an algebraic closure Q of Q.

Let K be a number field with signature (11, r2) and let K¢ be the cyclotomic
Zy-extension of K. Let I' = Gal(K%¥“/K) ~ Z,. In our work, we study pro-p-
extensions L of K% with restricted ramification where some given places split.

Let S and T be two disjoint finite sets of finite places of K. Denote by K% the
maximal pro-p-extension of K, unramified outside the places above S and to-
tally split at those above T' (unramified outside S, T-split). Put GL = Gal(K% /K).
It is a quotient of Gsupl, = Gal(Ksup,/K), where Kgupy, is the maximal pro-p-

extension of K unramified outside SUPI,,. It follows that ég is a finitely generated
pro-p-group. We later show that it admits a finite presentation.

We remark that if v is a place of K not dividing p which is not ramified in
L/K%¢ then L, = Ki’“. Thus it is sufficient to consider finite subsets S of places
of K and T of p-adic places P, of K such that SNT = (.

The case where T is empty andNS contains the p-adic places of K is already
well-known. The pro-p-extension K:‘g is indeed the maximal pro-p-extension of

K unramified outside S, and the group Gg := Gal(Ks/K) has cohomological
dimension 2 (see [NSW]). Moreover, if S does not contain all the places above p,
Schmidt proved in the series of papers [Schl], [Sch2|, [Sch3| that one can achieve
the cohomological dimension 2 property for Gg by adding to .S a finite set of tame
places. He also computed its Euler characteristic.

In this article, we show:
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Theorem 1.1. Let K be a number field not containing the p** roots of unity.
Let S’ and T be two finite sets of places of K with S'"NT = (. Then there exists
a finite set S of finite places of K such that
(i) S"C S and (S—S")NPL, =0;
(ii) the pro-p-group ég has cohomological dimension at most 2;
(111) X(ég) =11+ 72— Y, Ko 0 Q] where X((N}:‘g) stands for the Euler

characteristic associated to the cohomology groups H*(GT, Fp).

Remark 1.2. As noticed by Schmidt in [Sch3|, one can be more precise and ask
S to avoid a fixed set of places of K with zero Dirichlet density. For instance, one
can choose the places of S in the set of degree one places of K/Q.

Let #L = Gal(KL/K¥) and XF = HE /[HE, HE). In the case where T = (), we
denote Hg := HY and Xs := Hg/[Hs, Hs]. The Z,[[[']]-module Xs corresponds
to the inverse limit of the p-S-class group along K%¢/K and the homology groups
H;(Hg,Fp) are Fp[[I']]-modules. Let rg denote the [F,,[[I']]-rank of Xg. Recall that
rg = 0 conjecturally (the Ferrero-Washington theorem assures that it is true for
abelian extensions of Q and the works of Schneps [Schn| and Gillard [Gi] guarantee
that it holds also for abelian extensions of imaginary quadratic fields).

Using the Cebotarev density theorem, one can prove that by adding a finite set
S of well-chosen tame finite places, the group Hg becomes a free Fy[[I']]-module.

Corollary 1.3. There is a finite set S of places of K such that S NPl, =0 and
such that Ho(Hg,Fp) ~ Fp[[[]]71H72F7s.

Now we suppose that T' = Pl, and we consider H'y = Gal(IN{g/KCyC). When
S =0, the Zy[[Gal(K%¥/K)]]-module X" := Hj/[H;;, H] is well-known. It is the
inverse limit of the p-groups of p-classes along K%¢/K. Conjecturally again, the
coinvariants A}, are finite: it is a conjecture of Gross (see [?]).

Again, adding well-chosen primes, we obtain the following.

Corollary 1.4. There is a finite set S of places of K, satisfying SNPL, =0, such
that Hy(HY, Fp) o~ Fp[[L]] 1727

_ The proof of Theorem 1.1 requires information on the relations of the group
G and this can be done by considering the cup product (see [NSW]§IIL9)

Hl(é§7Fp) X Hl(éngp) - HQ(éTan)-

We first need to compute H 1((~?rT,IF]D). This is classical and is done through class
field theory. Then we need to estimate the second cohomology group H 2(@5, Fp).
This is done by considering the Shafarevich kernel H_[((N}g) which mesures the
obstruction of the relations of H 2(GT,IFp) to being local, and one gets control

of this group with the use of a Kummer group 1~/ST/ICXP (to be defined in §3.1).
These estimations which are the core of our work are gathered in the following
theorem.

Theorem 1.5. Let S,T be disjoint sets of places of a number field K such that
T C Pl, and K, contains the p™* roots of unity for any v € S — Pl,. Then we
have
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(i) dp(GE) = —(ri+ra+|T|=140(K)+[Pl—Sp [+ cs, (Ko : Q) + 0(Ky))+
|Sol + dp (VS /KC*P);
(ii) dpm(Gg) < dp(VST/’Cxp)i
(iii) dyH*(GE) < dp(VE /I*P) +1So| + [Pl — (S, UT) |+ 3 e, 0(Ko) —0(K) +
(K, S);

where (K, S),0(K,),0(K) € {0,1} (see §2.1 for a precise definition).

As a consequence of these computations, we obtain new situations where the
group Gg is a free pro-p-group.

Corollary 1.6. Suppose the following three conditions hold:

(i) K contains the p™ roots of unity,
(i) |S| =1 and SUT = Pl,;
(1ii) There is no non-trivial p-extension of K, unramified outside T and totally
split at S.
Then ég is a free pro-p-group with d(ég) =1—(r1+72)+[Ky, : Qp] generators,
where vy is the place of S.

Remark 1.7. A field K satisfying the conditions of Corollary 1.6 for the place v
is vo-rational according to the work of Jaulent and Sauzet |JSal.

Corollary 1.8. Suppose the three conditions are true:

(i) The fields K and K, do not contain the p-roots of unity;
(i) SUT = Ply;
(1ii) there is mo non-trivial unramified outside T and S-split p-extension of

K' = K((p)-

Then (N}Eg is a free pro-p-group with d(ég:) =1—(ri+r2) + > ,cqlKo 1 Q)
generators.

The paper is organised as follow. In section 2 we make precise the notation
and the context of our work. Section 3 is devoted to the estimations of the groups
H(GE, F,), for i = 1 and 2, and of a certain Shafarevich kernel H_I(ég) For that
purpose, we study a Kummer group 1~/ST . Section 4 contains technical prerequisites
for the proof of our main theorem 1.1, contained in Section 5.

Acknowledgement: The second author would like to thank warmly Alexander
Schmidt for his hospitality in Heidelberg and for very useful discussions in recent
years.

2. THE ARITHMETIC CONTEXT

2.1. First notation. Fix a prime number p > 2 and a number field K, an alge-
braic closure Q of Q. Put G = Gal(Q/K).

- pp is the set of ™ roots of unity in Q, (p is a generator of fi.

w1(K) denotes the set of p™-th roots of unity contained in K.

Let £* denote Z, ® K*.

Unless otherwise stated, all the considered sets of places are made of finite
places.
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Let M/L be a field extension, @ a set of places of L, R a set of places of
M. If no confusion is possible, () denotes also the set of places Qas of M
lying above the places of @, and R denotes also the set Ry, of places of L
lying under R.

Pl, = {v,v|p} is the set of p-adic places of K and, if S is a set of places of
K, put S, :== SNPlL, and Sy := 5 - 5.

If S is a set of places of a field L, let #(L, S) be 1 if S = () and L contains
the p'" roots of unity, and 0 otherwise. Put (L) := 6(L, ).

If M is a Z,-module, denote by ,M = M/pM the cokernel of M TN M,
by M[p] its kernel and by d,M := dimg,(M/pM) the p-rank of M.
If G is a pro-p-group and if i > 0, let us denote by H*(G) the cohomology
group H'(G,F,). Moreover, if G admits a finite presentation, put d(G) :=
dyHY(G,Fp), 7(G) = dp, H*(G,Fp), x2(G) = 1 —d(G) +7(G) and (as soon
as it makes sense) x(G) = Z(—l)idei(G,Fp).

i>0
If G is an abelian group, we put G* = Hom(G, Q/Z).
If S and T are sets of places of K, let Kg denote the maximal pro-p-
extension of K unramified outside .S and where the places of T" split com-
pletely. We put Kg = K% and KT = Ka The Galois group Gal(K%/K) is
denoted by Gg and we omit in the same way ) in the notation.
If L/K is a Galois extension (possibly infinite) of Galois group G and v
is a place of K, we denote by G, the decomposition group inside G of a
fixed place of L above v.

2.2. Local setting. Fix a finite place v of K and let K, be the maximal pro-p-
extension of K,. Let G, := Gal(K,/K,) be the absolute pro-p Galois group of K,
and let I, be its inertia subgroup.

Denote by

Frob, the arithmetic Frobenius of Gy /1,

K= ICLJ the maximal unramified pro-p-extension of K,,

K¢ the cyclotomic Zy-extension of K, (in particular, if v { p, K¢/ = KI'"),
Ko := K"K/, the maximal cyclotomically ramified pro-p-extension of
Koy,

I, = Gal(K,/K¥°K™), H, = Gal(K,/K¥), G = Gal(KZ/K,) and
G = Gal(K¥“/K,).

Definition 2.1. A pro-p-eztension L, /K, is said to be

cyc,

locally cyclotomic if L, C Ky”'°;
cyclotomically ramified if L, C K.

For v|p, remark that if L,/K, is cyclotomically ramified, the Galois group
Gal(L,/K,) is a quotient of G§" ~ ZI%.

Lemma 2.2. The extension K" /K, is contained in a pro-p-free extension F,, /K,

Proof. 1f v { p, it is obvious because Ki’“ = K" and G ~ Z,,.
For v|p, we take F, to be the extension K,Q,/K, (here p > 2, so that Q,/Q,
is pro-p-free). O



The normic local groups. Let K% be the maximal abelian pro-p-extension of K,
and let U, be the group of units of K,.
Denote by K = lim K7 /(K7 )”" the pro-p-completion of K and define U, =
—
Ly @ Uy.

The extension K% /K" is generated, via the Artin map, by the local units U,
and the extension K% /K{¥“ by the elements N, of IC, which are norms in Ki¥°/K,.
The extension KgbKﬁr /KY€ is therefore generated by the subgroup U, := N, NU,
of the group of units: they are the units which are norms in Ki/K,. It is the

group of the locally cyclotomic units.
Thus:

- Uy ~ pu(Ky) if v 1 p, otherwise U, ~ p(K,) x ZI[,K”:QP];
- Ny = U, if v 1 p, otherwise N, ~ u(K,) x ZI[)KU:Qp];
_ ﬂu =U, ~ pn(K,) if v 1 p, otherwise, L~{U ~ u(K,) X ZI[)KU:Qp]fll

ab
Kv

Nv /
Ko — U

v

s

K&

nr
K’U

Ky

2.3. Global setting. From now on, we fix S and T two finite sets of finite places
of K satisfying:
e For any place v of S not dividing p, the complete field K, contains the

p'" roots of unity;

e SNT = ()
o I'CPl,.

Recall that S, = SNPl, and Sp =S — 5.

Definition 2.3. We denote by Kg the pro-p-extension of K, maximal for the
following conditions:

) IN(E/K is cyclotomically ramified outside S;
° Kg/K 1s locally cyclotomic at all places v of T.

Put GL = Gal(KL /K).

Remark 2.4. KE/K s a subextension of the maximal pro-p-extension Ks; of K

unramified outside ¥ = Pl, U Sp.
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Remark 2.5. The field Kg contains the cyclotomic Zy-extension KY¢ of K and

ﬁg s the mazximal pro-p-extension of KY€ unramified outside the places above S
and totally split at the places above T.

One can describe the abelianization ég’ab of ég by using the Artin map. In-
deed, it induces an isomorphism ég’ab ~ 7 /Kxﬁg, where J = Jk is the re-
stricted product over all places v of K of the groups K with respect to the
groups U, and

a1 w (HM) IEAERIEAI?

v¢ SoUPL, veT vePL,—(SpUT) vgSuUT  veT

2.4. The Labute and Schmidt works. In [La], Labute gave for the first time
examples of groups Gg of cohomological dimension 2 with S NPL, = 0.

These results come from the study of the Lie algebra obtained considering the
descending central p-series of Gg. In certain good situations, the relations in this
algebra can be deduced from the first terms of the relations of Gg which were due
to Koch [Ko|. In this case, the group Gg is said to be mild.

In the series of articles [Sch2|, [Sch3], Schmidt gives interpretations of Labute’s
work, introducing the k(1) property for Gg (and GL) groups. He shows in
particular that, after enlarging the set .S, the groups Gg have finite cohomological
dimension, and he proves a Riemann existence theorem. In our setting, we use
the following result (already partially present in [La|).

Theorem 2.6 (Schmidt [Sch2|). Let G be a pro-p-group of finite type, not pro-p-
free. Suppose that H'(G) = U @V with

(i) ¥x1,x2 €V, x1Ux2 = 0 € H*(G);

(ii) HY(G)®V = H%(G) .
Then cd(G) = 2.

Remark 2.7. When the previous hypotheses are satisfied, the group G is mild,
and the Poincaré series P(t) associated to G is (1 — d(G)t + r(G)t?)~L.

: AT
We are going to apply Theorem 2.6 to the groups Gyg.

2.5. The pro-p-groups in the context of Iwasawa theory. Let G be a pro-
p-group, H a closed normal subgroup of G such that G/H =TI' ~ Z,. Denote by
A = Z,[[I']] the Iwasawa algebra associated with the pro-p-group I' and by 2 the
integral local ring = Fp|[[I']] := lim IF,[I'/U].

U
If M is a A-module of finite type, denote by pa(M) its A-rank and by pq its
Q-rank.
We recall that the module M is torsion if, for example, the set Mt of coinvari-
ants is a torsion Zjy,-module.

2.5.1. The case where G 1is pro-p-free. In this case, the normal subgroup H of G
is pro-p-free too. Put X = Aj. The following result is well known:

Proposition 2.8. If G is pro-p-free, then X is a free A-module of rank d(G) — 1.

Proof. See INSW|, Proposition 5.6.11 and Corollary 5.6.12. O
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2.5.2. The case where G has cohomological dimension 2. The case where G has
cohomological dimension at most 2 has been also widely studied, certainly because
the group Gg has cohomological dimension 2 as soon as S contains the p-adic
places. We recall the following fact:

Proposition 2.9. Suppose that G has cohomological dimension at most 2. Put
r = pa(X). Then

(i) the A-module Ho(H,Zy) is free of rank t, with t = p(X) + x(G);

(ii) the Q-module Hy(H,F)) is free of rank t', with t' =t +r.
Proof. This comes from Proposition 5.6.7 of [NSW| for the module Hay(H,Fp).

Notice that €2 has projective dimension 1.
O

2.6. Known results. The groups GT = é@T have been studied by several au-
thors: Jaulent and Soriano [JSo|, Jaulent and Maire [JM2]|, Assim [As|, et al.

The groups Gg := G% have been studied by Salle in [Sa].

In these situation, it turns out that the groups coming into play admit a finite
presentation. An estimation of the Euler characteristic is also given. It has to be
noted that this estimation gives rise to situations where Gfg is not analytic (see
[JM1] and [JM3]).

Theorem 2.10 (Salle [Sa|, Jaulent-Maire [JM1]). We still suppose p > 2.
(1) d(Gs) and r(Gg) are finite and
X2(GS) <ri+re+ 9(K7S) - Z [Kv : @p}v
vES)
where O(K, S) = 1 if S is empty and K contains the p™ roots of unity, (K, S) =0
otherwise. B B
(ii) If T = Pl,, d(GT) and r(GT) are finite and
XQ(GT) <r;+re+6(K),
where O(K) = 1 if K contains the p™ roots of unity, 0 otherwise.

3. THE GroUPs H'(GT)

3.1. Kummer groups and Shafarevich kernel. Throughout this paragraph,
S and T are again two finite sets of finite places of K satisfying the conditions of
§2.3.

Definition 3.1. We consider 175T ={ze KXz e Jp Hv¢SuTL~{v HveTNv}-

This Kummer group will play a central role in the following. The next propo-
sition is important, because it shows that, taking a suitable .S, one can ensure the
triviality of vsT/pr.

Proposition 3.2. (i) The group 1~/ST/ICXP is finite.

(ii) If S € S', then V& /KX s VI JKXP.

(1it) If K((p) has no non-trivial p-extension unramified outside Pl, and totally
split at S then Vg/lep = {1}.

(iv) There is a finite set S of finite places of K not dividing p such that
‘~/ST/ICXP = {1} for any T C Pl,.
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Proof. Points (i) and (ii) are clear.

(iii) follows from Kummer theory. Let x € 175T . Suppose that K contains the
p'f-roots of unity. Then the extension K(¢z)/K is cyclic of degree dividing p,
unramified outside Pl, and totally split at S. Therefore K(¢/z)/K is trivial, thus
z € KP.

If now (, ¢ K, the element x is for the same reason a p™ power, but this time
in K(¢p). As the degree of K(¢,)/K is prime to p, we obtain by taking the norm
that z is also a p™ power in K.

(iv) Using Cebotarev density theorem, one can consider a finite set S of places
of K containing places whose Frobenius morphisms generate the maximal abelian
p-elementary extension of K((,) unramified outside Pl,. By (iii), such a set S
satisfies the desired property. O

Let us state the following result which will be used later in Section 3.

Corollary 3.3. Let S and T be two finite sets of places satisfying the conditions of
§2.3. Then there is a set 3 of tame places of K such that, for any placep € SUX,

Vi s/ = {1}.

Proof. We take two disjoint finite sets S; and S of tame places satisfying (iv)
(using Cebotarev density theorem). By (ii) one deduces the desired result with

Y =51US8,. Ol

Before stating the first important result of this work, consider the following
Shafarevich kernel.

Definition 3.4.
Let

I(G§) =ker | H*(G§) - P H*G)e @  HXG) ],
veS v€EPI,—(SpUT)

where the first direct sum is taken over the set S, deprived of a place in the case
where K contains the p™ roots of unity and S is not empty.

3.2. The main result.

Theorem 3.5. Let S, T be disjoint sets of places of a number field K such that
T C Pl, and K, contains the p™ roots of unity for any v € S — Pl,. Then we
have
(i) dp(GE) = —(r1+r2+|T|=1+0(K))+[Pl— Sy [+ g, (Ko : Qp) + 0(Ky))+
Sol + (V2 /K2);
(ii) dpI(GE) < dp(Ve /KP);
(iti) deQ(Gg) < dp(VST/’CXP)‘i"SO|+‘P1P_(SPUT)’+ZUGSP 0(Ky) —0(K) +
(K, S).

We remark that, under these conditions, the dimension of each of the H?(G,)
and H?(GS") appearing in Definition 3.4 is smaller than 1.

One deduces immediately the following estimation:
8



Corollary 3.6.
Xz(ég) <ri+mryg— Z [KU : Qp] + Q(K, S).
vES)

Proof. (of Theorem 3.5)
(i) - This is a classical computation. We start with the following exact sequence
coming from class field theory:

1= VI /P = VI JIP [y Un T ey K/ (U5 TT, UE) — G
pGT,ab

where V1 = (Hung Uy [T,er KX TP) N K. We then compute the dimensions
using the exact sequence:

1 —— BB ——= VT I —— G —— 1|

where Eg; is the group of T-units of K.
(ii) and (iii) - In the commutative diagramm (see in particular Paragraph 2.1
and Defintion 3.4 for notation)

H?(GY) H2(G)

\w@i |

D HA(GL) P H2(G,)

the morphism ¢ factors as follow:
-forveT, o, : HQ(GE,U) — H?(GY) — H%(Gy). As G ~ Z,, @, is

zero.
-forv ¢ SUT, ¢, : HQ(G%:W) — H?(Ge) — H?*(G,). As G is a
subextension of a pro-p-free extension (see Lemma 2.2), ¢, has also a null
image.
Therefore, it follows that

ker (HZ(ég) — HZ(C)) = ker <H2(é}§) . H2(Gv)>
veS
and thus Hl(ég) is a subgroup of ker <H2(é£) — HQ(C)).

One deduces (ii) from the following lemma.
Lemma 3.7. We have
m(GH— (VI /cr)

The local and global inflation-restriction sequences give rise to the commutative
diagramm:
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1 (Q)/ 1Y (@) H (Gal(Q/KE)F = ker (H(TE) » H2(@))

«> | |

(S, T)¢ A(S,T) P =G
vg SUT
where
@ Hl /Hl Gcr D @ Hl /Hl(chC)
vg SUT veT
and where
@ Hl Gcr @@Hl chC)
vgSUT veT

Notice that the bottom right morphism is indeed surjective because for any
v ¢ SUT, the morphism H?(GS") — H?(G,) has a null image (again, K¢ /K, is
a subextension of pro-p-free extension, cf. lemma 2.2).

Then we have
P #cH= p  HAG).
vgSUT vePL,—(SpUT)

Thus the kernel of the right vertical arrow is exactly I_H((N}g) By the snake lemma,
we obtain

Hl(ég)c—> coker¢ .
In order to relate it with (‘75T /<P >* , we need the following result.

Proposition 3.8 (Salle [Sa).
HY(G,)/HY(GY) = (1,/ 1[Gy, Gu])".
It comes from the fact that G,/ fv ~ ZIQ, together with the following lemma:

Lemma 3.9. Let G be a pro-p-group of finite type and H a closed normal subgroup
of G such that G/H ~ Z},. Then GP N H C H?[G,G].

Proof. Recall that GP denotes the closure in G of the subgroup of G generated by
the elements ¢g?, g € G. Let x € GPNH. As [G, G] is open in G, there exists y € G
such that z = y? mod [G, G], in particular x = y?» mod H and y? =1 in G/H.
As this last quotient is p-torsion free, we have y € H, that is, z € HP[G,G]. O

We come back to the proof of Lemma 3.7. Taking the dual, we obtain
er< [[ 7./2G..G.) [[ &./B2(C, ]—>ker< [ERAIN GT‘”’)> — II(GT)".
vgSUT veT
By class field theory, one has

ker (,,Cab — pég’ab) ~ X JPUE K g,
and
( 0 fv/fm,evo (H ﬁv/ﬁs[ev,ev]) ~ Y

vgSUT veT
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We obtain that (cokerg)* ~ UL N(K* TP)/(UE)P ~ VI /K*P | the last isomorphism
coming from a local-global principle for p™ powers together with the fact that
Ul ngre = (UL)P. Lemma 3.7 follows.

(iii) of Theorem 3.5 follows from the following inequalities:

r(@5) < Z*:H(KU) + dy (ker (HA(CE) — HA(G)))
veS
< D T0Ky) + dpIII(GE) + [PL, — (S, UT)|
vES

(the * meaning that the sum is deprived of the contribution of one place in the
case where 11, C K and S is not empty), the last inequality coming from the exact
sequence

0 — TI(GT) — ker (H2(éf§) = H%@)) — D HNG)
vePL,—(SpUT)
Then Lemma 3.7 and

D 0(Ky) = |So] + > 0(Ky) — 0(K) + 0(K, S)
veS vES)
give the desired result. O

3.3. Some consequences.

3.3.1. On the freeness of (N}g Thanks to Theorem 3.5, we see that the triviality

of XN/ST /K*P implies that the global relations of ég are indeed local, i.e. that we
have an injection:

P o Qe d @ B

vESy vEPL,—(SpUT)

It allows us to give new situations where the group (N}g is free (other than Z,).
We thus obtain Corollaries 1.6 and 1.8.

Example 3.10. Let a =1 mod 3 be an integer and 8 a root of X3 +aX +1. Let
K =Q(0,(3) (here p=3). There is a place vy of K above 3 with residual degree
4. Let vy be the second place of K above 3. Put S = {vo} and T = {v1}.

It can be checked (with GP PARI [PA] for instance) that, for some values of
a, there is no non trivial 3-extension of K unramified outside T' (e.g. take a =1,

a =4...) In that cases, (N}g is wsomorphic to the free pro-3-group with 2 generators.

3.3.2. On the analytic structure of the groups ég Let G be a pro-p-group with
rank d(G) at least 3. If G is p-adic analytic, we have r(G) > d(G)?/4 (see [Se],
Annexe 3).

Thus, we immediately obtain the following.

Corollary 3.11. Suppose that d(é%?) > 3 and that
a=r+ro+0(K,8) — > [Ky: Q] >0.
vES)

If d(ég) > 2+ 2y/a, then the pro-p-group ég is not p-adic analytic.
11



3.3.3. The splitting of GT ab

Definition 3.12. Let Kg’el/K denote the mazimal abelian p-elementary pro-p-
extension of K contained in K% /K. The p-extension Kig’el/K corresponds by Ga-
lois theory to the quotient ,G o™ = G5 (Gg’ab)p.

Corollary 3.13. Suppose that VT/ICXP is trivial. Let 3 be a set of finite places
of K with norm congruent to 1 mod p. Then d<GSu2) = d(GL) + || and all the

places of ¥ are ramified in Kg el/Kg el

Proof. Indeed, for any tame place v, d(GEU{U}) < d(ég) + 1 with equality if
and only if v is ramified in Kg& }/K. As VSU{U}/ICXP C VST/ICXP = {1}, the

formula (i) of Theorem 3.5 shows that v is ramified in f(% /K. The relation
d(GSUE) d(GL) + |2 follows immediately. O

4. PREPARATORY RESULTS
4.1. A technical result. We first prove the following:

Proposition 4.1. Let S" and T be two finite sets of finite places of K with S'NT =
(). There exists a finite set S of finite places of K such that
(1) SNT=0,5 CS and (S—S5")NPL, =0;
(1t) for any place v € Sy, the decomposition group of v in KT EZ/K s of maxi-
mal rank, i.e. 1+ [K, : Qp] + 0(Ky);
(iit) For any place v € Pl, —(S,UT), the decomposition group of v in Kg’el/K
is of mazimal rank, i.e 2;
() any place v € Sy = S — S, is ramified in KT t2l/K;

(v) for any place v € S U (Pl, —T), there is a cyclic subgroup H, of ég’el
of order p such that H, NI, = {1}, where I, is the inertia group of v in
GT el.

Proof. (i)-(iv). Put P = Pl, — T'. It is sufficient to make sure that
JHTP 1] e [[V) = g/ I e [T K5 T M)
vgSUT  veET vgSUTUP  veP  weT

is of maximal rank, i.e. that

<JPICX 11 % H/\f,,) n[Icr=T] " [ k.

vgSUT  veT veEP vESH veEP—-S)p

According to Corollary 3.3 (for 7" and S’ ) there is a finite set 3 of tame places
such that, for any place v of S'UY, we have VS,UE (o }//Cxp {1} Put § = S'UX.

The elementary p-extension KL S / K realizes the quotients va for any v € S and
is cyclotomically ramified for v € P1, — (S, UT') with maximal p-rank (thanks to

Corollary 3.13, we know that all the tame places of S are ramified in KT ol JK).
(v) It is clear for any place v of Pl, — 7. For a tame place v € So, we have
I, ~ Z/pZ. 1t is thus also clear if Pl, — T # (). Otherwise, we have to ensure that

dp(N}g’el > 2, which can also be done enlarging .S if necessary. O
12



Remark 4.2. Condition (ii) can be weakened. We will see later that it is sufficient

to make sure that the decomposition group of v in Kg’el contains a certain cyclic
extension of degree p (see Section 5.3.1)

4.2. Gras-Munnier criterium. In order to obtain the cohomological dimension
less than or equal to 2 for the group Gg, we need to add tame places to S.
Corollary 3.13 is not sufficient. The extensions ramified at the new places, i.e. at
v € X — S, have to live above K. More precisely, one looks for places v of K for
which there exists an extension L/K of degree p, totally ramified at v and totally
split at T.

This problem has been considered and solved by Gras and Munnier in [GM]
(see also the book of Gras |Gr|, Chapter V, Corollary 2.4.4). One can find it
partially in the work of Schmidt [Sch2] (when Cl%[p] = {1}).

If S and T are two finite sets of places of K with SNT = 0, let Kr‘g’el denote the
maximal abelian elementary p-extension of K, unramified outside S and totally
split at T. We apply the Gras-Munnier criterium to exhibit places v for which the
extensions K{Tvil /K have degree p and are totally ramified at v.

Proposition 4.3 (Gras-Munnier, [GM]). Let T be a finite set of places of K such
that Clk[p] = {1}, where Clk stands for the group of T-classes of K. Let v be
a place of K not dividing p. Then Kﬁﬁl/K is non trivial (in fact, it is cyclic of
order p) if and only if v splits totally in K'({/Fxr)/K, where K" = K(¢,) and
where Ex 1 denotes the group of T'-units of K. In that case the extension K?SZ/K

1s totally ramified at v.
4.3. Schmidt’s elements. Throughout this paragraph, let 5,7 again be two
disjoint sets of places, with T C Pl,. Let T be a finite set of places of K such that
-TCTet TNPL =TNPL;
- CIg[p] = {1}.
For such T, we have

K* /(K" B 1) > @ ,gr Z/PL

the isomorphism being induced by the valuation. This is used to define Schmidt’s
elements for T.

Definition 4.4 (Schmidt’s elements). For v ¢ T, let s, € K* be such that
w(sy) equals T at v and O elsewhere: v(sy) = 1 mod p, v'(s,) = 0 mod p, for
v ¢ {v} UT.

The key point is the next proposition:

Proposition 4.5. Let S, T, T and Schmidt’s elements (s,) be as above. Let q be
a place of K not dividing p.

F‘gil{q}/K. It is non-trivial if and

only if q is totally split in K'({/Ex t)/K. In this case, the extension K’{l;’fl/K is
totally ramified at q.
b) Let p be a place of K prime to q (p may divide p). Then p splits totally in

K;I;}el/K if and only if q splits totally in K'( /3y, ¥/ Ex.1)/K' ({/Ex1)-

13
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Proof. a) The first point is clear, whereas the second follows from the triviality
of ClE[p]: this is the Gras-Munnier argument.

b) By class field theory, the place p splits totally in Kf{l;’fl /K if and only if the
morphism

T/TPE [Lper K Tlogrogey Yo —= T/ TPK* [erupy Ko ogrure Yo
is injective, that is, if and only if

Kijare TL s I uo) nicy = {1}
veT vgTU{q}
We remark that U, is in the denominator. Thus the triviality of this quotient is
equivalent to the existence of an element o € K* such that
(i) p(a) =1 mod p;
(i) for any v ¢ TU{p}, v(a) =0 mod p;
(iil) a € (K7)P.
The element s, satisfies these properties as soon as q splits totally in the ex-

tension K'( ¢/sp, ¢/ Ex,1)/K'({/Ex.1).

Conversely, the existence of such « implies that w(a/sq) =0, a € sq(K*)PEx 1
and q is totally split in K'( /5y, ¢/ Ex,7)/K'({/Ex.1)- O
Corollary 4.6. Suppose the conditions of Proposition 4.5 hold and let q be a place

satisfying (a).

PutT'q = Gal(K;rq’fl/K). Then I'q is a quotient of égﬁq} and the morphism

HY(Gg™) @ H' (Tg) — H'(Ggliyy)

induced by the inflation map is an isomorphism.
Proof. By class field theory, one knows that d(égﬁq}) < d((N}Zg’el) + 1. On the
other hand, the condition on ¢ implies that the extension Kafl /K is cyclic of

. . T,el r-1Tel - Tel _ 1 Teli Tel
degree p and is ramified at q. Thus K{q} NKg™ = K and KSu{q} = K{q} Kg™.

The results follows immediately.

5. PROOF OF THEOREM 1.1

The proof relies strongly on the work of Schmidt in [Sch2|. Put K’ = K({,).

5.1. On Schmidt’s conditions. In this paragraph again, let S be a finite set of
finite places whose tame places p satisfy Np =1 mod p, let T' C Pl,, and let T
be a finite set of places of K such that

- T C T and T NP, =T NPl
- CIE[p) = {1}.

Definition 5.1. Let S = {p1,--- ,pm}, T and T three finite sets of places of
K satisfying the previous conditions. Let 3 be a finite set of places of K with
YN (TUSUPL) =0.

We say that the set ¥ = {q1,- -+ ,qn} satisfies Schmidt’s conditions with respect
to the sets S and T (and T) if, for any q € ¥ and any Q|q, Q prime of K' above
q, we have:

14



(1) for any a = 1,...,n, Frobg, ¢ I,,, where I,, is the inertia group p, in
R /K
S .
(i4) for a # b, Qq splits in K'(¢/5p,)/K';
(iii) fora=1,...,n, Q. decomposes totally in K'({/Ex T)/K;
(i) fora=1,...,n, the place Qq is inert in K'( ¢/3,,)/K';
(v) for a < b, Qp is totally split in K"{qug/K,
(vi) for a < b, Qy is totally split in K'(y/5,,)/K.

Remark 5.2. The considered tame places v € S are such that K, contains the

p™* roots of unity.

The next proposition, which can (mostly) be found in [Sch3|, is of crucial
importance:

Proposition 5.3. Let S, T, T be as above.

(a) Let ¥ ={qu1, - ,qn} (possibly empty) be a set satisfying Schmidt’s condi-
tions with respect to S and T. Then the fields K'(¢/Ex, ), K'(¢/5p1), -

Ki(@/spm), Kg’elK’ and K'(¢/3q,), -+, K'(¢/3q,), are linearly disjoint over

K.

(b) There exists a set ¥ of cardinality |S| = m satisfying Schmidt’s conditions
with respect to S and T.

Proof. See the proof of [Sch3|, Theorem 6.1. Let us briefly prove the two points.
(a) By construction and Kummer theory, the fields K'({/Ex ), K'(¢/5p,),- -,
K'(¢/5p,,) and K'(¢/5q,),--- ,K'(/54,) are linearly disjoint over K'. Let L de-
note their compositum. Because p, is not contained in K, the Galois group
Gal(k(up)/k) acts non trivially by conjugation on Gal(L/K’) and this action shows
that for any subfield L' of L strictly containing K’, I//K is not an abelian exten-
sion, so that L' N Kig’el = K’. Therefore (a) holds.

(b) We take Qyq,...,9Q, recursively using Cebotarev density theorem. The asser-
tions (i7) — (iv) and (vi) are made possible because of the fact that the extensions
as linearly disjoint. For (7) one needs in addition Proposition 4.1 (v) and for the
point (v) one needs (the proof of) Corollary 4.6. O

5.2. The choice of tame places. Let 7' C Pl, and S’ two disjoints finite sets
of K as in Theorem 1.1.

e We first consider a set S,q satisfying Proposition 4.1 for S’ and T. In
particular, we have XN/S:CM/ICXP = {1}.

e Then we choose a set T” of tame places of K, such that CI£[p] = 0, where
T=TUT.

e Let now Spey be a set of places of K with cardinality m = |Sy4| satisfying
Schmidt’s conditions with respect to S,;q et T. Let S be the resulting set
S = Sold U Snew-

Thanks to (iii) of Definition 5.1 and Corollary 4.6, the inflation map induces
an isomorphism

~T,el ~Tel
H' (Gg)~H (G Yo @ H'(Ty).
qesnew
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We are going to compute the cup-product
~ ~ U ~
HY(@E) x H\GE) % HA(GE)
(z,y) — zUy
5.3. Computation of cup-products. Let V =g, .., HY(Ty).
Let (p;) denote the primes of Syq U (Pl, — Sp) and (q;) those of Spen. For

a=1,---,m, let n, be a generator of H!(T',,) seen as an element of Hl(ég’d).

5.3.1. Local cup-products.
In G,. Let v be a finite place of K such that ¢p € K. In that case, the cup-product
U: HY(G,) x HY(G,) — H?(G,) ~ Z/pZ is a non-degenerate bilinear form.

Put H}, := Inf(H'(G?)) and let ¢ be a generator of H},.

Let ¢ € H'(G,). We recall (see [NSW], Proposition 7.2.13) that ¥Up = 9 (o),
where K, (¢/¢)/K, is the unique unramified extension of degree p of K, and where
o is the element of p@f)b associated via class field theory to €. In particular, as
we can ensure that € is a unit, o, is an element of I,,.

We see immediately that H}. c (H}.)*. If in addition v { p, we have (H}, )+ =

H} by dimension. Thus, for v { p, if x € H., is an unramified non-trivial
character of ,G, and if vy € H'(G,), then x Uy € H?(G,) is non-zero if and only
if (T,) 0.
In GS. Let v|p. The cup product U: HY(GS) x HY(GE) —= H?(GS) can be
easily described thanks to the fact that G¢" ~ Z2: if x is unramified (and non
trivial) and if v € HY(GS), then y Uy € H?(GS) is non-zero if and only if
¥(I,) # 0, where I, denotes the inertia group of v in G¢.

5.3.2. Global cup-products. Denote by © the monomorphism (recall that VST/ICXP =

{1}):
N e el cr sl
H*(G§)— Sy H*(Gy) © D1, —(s,um) H*(Gy') @ Dicsien H*(Gy).

We study the cup-product H 1(@5) UH 1((~}£) from the following triangle:

HY(GE) = H'(GF)
U

~ O=0,0y 2l = cr fal
RED T @ @y D HEe @ HTG)
pESold pGPlp—(SpUT) qesnew

As p is odd, for any character y € Hl(ég) and any place v, O,(x U x) = 0.

As the places p; are unramified in the extensions Kﬁ}el /K, it follows from the

local computations that ©y,(n, Uny) = 0 for any a,b. Moreover Og, (7, Umn,) =0
as soon as a # k and b # k for the same reason. For a < b, by Definition 5.1 (v),
Oq, (MaUmy) = 0 and O, (1,Un,) = 0 thanks to (vi) together with Proposition 4.5.
Finally, for any a,b, ©(n, Umny) = 0 and therefore, by injectivity of ©, n, Un, = 0.
Thus we have shown that VUV = 0.
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Let x be a character of Hl(égﬁ) As x is unramified at the places q of Spew, it
follows that O, (xUn,) = 0 for a # b. As 1, is totally ramified at qq, O, (xUn,) =
0 if and only if x(Frobg,) = 0.

Finally ©,,(xUn,) = 0 for i # a because of the points (ii) and (iii) of Definition
5.1 associated to Proposition 4.5.

5.4. End of proof.

5.4.1. A reduction. Keeping the notation of Section 5.3, we prove first our main
theorem with the following assumptions.

Proposition 5.4. Suppose that for any v € Sp, 8(K,) = 1. Then the cup product
Hl(ég) xV -2 HQ((N}E) is surjective and © is an isomorphism.

Proof. For m characters ~; € Hl(ég), i=1,---,m, consider the m x m matrices
with coefficients in F:

A(vi) = (6, (7 U m))m,
and
B(’Yz) = (@qj (71' U m))m :

For ¢ =1,--- ,m, one chooses characters y; € Hl(égz) such that :

(a) xi(Frobg;) = 0;
(b) xi(dp;) # 0 if p; is prime to p or in Pl, — Sp;
(c) for p;|p with p; € Sy, xi(0oe;) # 0 (cf. Section 5.3.1).
Such x;’s exist because o, € I, and Froby, ¢ I, ((i) of Definition 5.1).

For ¢ = 1,...,m, we choose characters v); € Hl(é:‘g’el) such that v;(Froby,) #

old

0.

By Section 5.3.2, the matrix B(x;) and B(v;) are diagonal. The condition
xi(Frobg,) = 0 implies that the matrix B(x;) is zero. The condition 1;(Frobg,) # 0
implies that the diagonal matrix B(v;) is invertible (diagonal elements are not
Z€ro).

The matrix A(x;) is diagonal: this is the last point of Section 5.3.2. On the
diagonal of A(x;), the elements are non-zero (Conditions (b) or (c) on the x;’s).

Thus the matrix < ggizg: ) = ( ﬁgiﬁ; ggizg > is invertible. Therefore the

morphism O is an isomorphism and the cup product is surjective.

5.4.2. The general case. Put P, = {v € Pl,, 0(K,) = 1} and S’ = (SNPL,) USp.

Proposition 5.5. Suppose:
(i) V& /KT = {1};
(i) H(GL)=U® V;
(i) VUV =0€ H*(GE);
(iv) UUV = H*(GL).
Then (N}E has cohomological dimension at most 2 and X(éig) =1 +ry—
Zvesp Ky @p]-
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Proof. As 175T - ‘75;, we have 17T = K*P. Thus

0:H G — PHG)EPH P HAGY)
veS vEPl, —(S,UT)
is injective. B
As forv e S — 8, H3(G,) = 0, we obtain the following commutative diagram

H*(GL) @, cq H*(G v) @ Buep,—(syur) H(GT)

Infl i
H(GE) > @yes H*(Co) @ Biepy, —(s,ur) H(GF)

One deduces:

HY(GL) » H*GE) ~ P H G P PH  HXGD).

ves’ vePl,—(SpUT)

On the other hand, the inflation map H 1(@?,) — H 1(@5) induces the decom-

position H 1((~}:§) =U®V & U, where U’ is any complementary vector space of
U @ V. As the cup-product commutes with the inflation map, the conditions of
Theorem 2.6 are all satisfied. O

From Section 5.3 and Proposition 5.4, we see that the condition of Proposition

5.5 are satisfied for S’, taking U = Hl(Gg;el) and V = @ HY(T'y). The last
old
qunew
proposition concludes the proof.
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