
A SHORT COURSE ON NON LINEAR GEOMETRY OF BANACH

SPACES

G. LANCIEN

Abstract. In this course we show how some linear properties of Banach spaces,
in particular properties related to the asymptotic structure of Banach spaces, are
stable under coarse-Lipschitz embedddings or uniform homeomorphisms. We will
focus on the recent use of some fundamental metric graphs or trees in the subject.

Foreword.

These notes are based on a series of five lectures given at the Winter school on
“Functional and Harmonic Analysis” organized in Lens (France) in December 2010.
I am glad to thank S. Grivaux and D. Li for the excellent organization of this school
and for giving me the opportunity to present this series of lectures. I also would like
to thank the participants and especially the students and young researchers for the
very friendly and mathematically intense atmosphere they helped to create during
this week.

A great part of this course will be based on Nigel Kalton’s work. Unfortunately,
Nigel Kalton passed away in August 2010. This is a terrible loss for his family, his
friends and for Mathematics. One of the goals of this course is to give a flavour of
some of the wonderful ideas he has left for the researchers in this field.

1. Introduction

The fundamental problem in non linear Banach space theory is to describe how
the linear structure of a Banach space is (or is not) determined by its linear structure.
In other words, we try to exhibit the linear properties of Banach spaces that are
stable under some particular non linear maps. These non linear maps can be of very
different nature: Lipschitz isomorphisms or embeddings, uniform homeomorphisms,
uniform or coarse embeddings.

It is often said that the birth of the subject coincides with the famous theorem
by Mazur and Ulam [34] in 1932 who showed that any onto isometry between two
normed spaces is affine. Much later, another very important event for this area was
the publication in 2000 of the authoritative book by Benyamini and Lindenstrauss
[7]. Since then, there has been a lot of progress in various directions of this field.

In this series of lectures we will concentrate on uniform homeomorphisms and
more generally on coarse-Lipschitz embeddings between Banach spaces (roughly
speaking, a coarse-Lipschitz embedding is a map which is bi-Lipschitz for very large
distances).

In section 2 we will very shortly visit the most important results on isometric
embeddings. Section 3 is devoted to Lipschitz embeddings and isomorphisms. This
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subject is extremely vast and nicely exposed in the book by Benyamini and Linden-
strauss [7]. We will just recall the results that will be needed for the sequel such as
the differentiability properties of Lipschitz maps and the applications to the Lips-
chitz classification of Banach spaces. Section 4 is the heart of this course. We will
study uniform homeomorphisms and coarse-Lipschitz embeddings between Banach
spaces. Our approach will be based on the use of particular graph metrics on the k-
subsets of N. These tools have been developed in the last few years by N.J. Kalton.
We will see how to use them in order to obtain older results, such as the celebrated
theorem by Johnson, Lindenstrauss and Schechtman [22] on the uniqueness of the
uniform structure of `p for 1 < p <∞. We will also show how they yield new results
on the stability of the asymptotic structure of Banach spaces. In section 5, we con-
sider a few universality problems. We recall Aharoni’s theorem on the universality
of c0 for separable metric spaces and Lipschitz embeddings. We address the ques-
tion of its converse and a few variants of this problem. We study the Banach spaces
that are universal for locally finite metric spaces and Lipschitz embeddings. We
also focus on a theorem of Kalton, asserting that a Banach space universal for sep-
arable metric spaces and coarse embeddings cannot be reflexive. Finally, in section
6, we give a few examples of linear properties that can be characterized by purely
metric conditions. We detail the proof of a recent characterization, due to Johnson
and Schechtman [24], of super-reflexivity through the Lipschitz embeddability of
diamond graphs.

2. Isometries

We begin this course with a quick review of the proof of Mazur-Ulam’s theorem
[34]. This will allow us to use for the first time the notion of metric midpoints whose
variants will be very useful in the sequel.

Theorem 2.1. (Mazur-Ulam 1932) Let X and Y be two real normed spaces and
suppose that f : X → Y is a surjective isometry. Then f is affine.

Proof. It is clearly enough to show that for any x, y ∈ X, f(x+y2 ) = f(x)+f(y)
2 .

So let us fix x, y ∈ X and define

K0 = Mid(x, y) = {u ∈ X, ‖u− x‖ = ‖u− y‖ =
1

2
‖x− y‖},

the set of the so-called metric midpoints of x and y. Then we build by induction

Kn+1 = {u ∈ Kn, Kn ⊂ B(u,
diam (Kn)

2
)},

It is then easy to show by induction that x+y
2 ∈ Kn and that Kn is symmetric about

x+y
2 . Since diam (Kn) tends to 0, we obtain that ∩∞n=0Kn = {x+y2 }.

On the other hand, starting, with F0 = Mid(f(x), f(y)), we define similarly

Fn+1 = {v ∈ Kn, Fn ⊂ B(v,
diam (Fn))

2
}.

Since the sets Kn and Fn are defined in purely metric terms and f is an isometry,
we have that f(Kn) = Fn, for all n ≥ 0. This yields our conclusion.
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We finish this very short section by mentioning an important recent result by G.
Godefroy and N.J. Kalton [15] on isometries.

Theorem 2.2. (Godefroy-Kalton 2003) Let X and Y be separable Banach spaces
and suppose that f : X → Y is an into isometry, then X is linearly isometric to a
subspace of Y .

Let us just give a few indications on the scheme of the proof. Clearly, we may
assume that Y is equal to the closed linear span of f(X). The first step is due to
Figiel in [13] who proved that there exists a linear quotient map Q : Y → X such
that ‖Q‖ = 1 and Qf = IX . Then, 35 years later Godefroy and Kalton proved that
if X is a separable Banach space and if Q : Y → X is a continuous linear quotient
map with a Lipschitz lifting f (that is Qf = IX), then Q admits a linear lifting L,
with ‖L‖ = Lip(f). The map L is the desired linear isometric embedding.

Remarks.
(a) Of course, the map f does not need to be linear. For instance f(t) = (t, sin t)

is an isometric embedding from R into `2∞ = (R2, ‖ ‖∞).
(b) The above result is false in the non separable case. It is also proved in [15]

that `∞ is isometric to a subset of the free space F(`∞) but not isomorphic to any
subspace of F(`∞).

3. Lipschitz embeddings and isomorphisms

We start with the following

Definition 3.1. Let (M,d) and (N, δ) be two metric spaces. The map f : M → N
is a Lipschitz embedding if

∃A,B > 0 ∀x, y ∈M Ad(x, y) ≤ δ(f(x), f(y)) ≤ Bd(x, y).

We denote M
Lip
↪→ N .

If C ≥ B/A, we shall write M
C
↪→ N .

If moreover f is onto we will say that it is a Lipschitz isomorphism and denote

M
Lip∼ N .

The subject of this section is very vast. We will just summarize the classical
results that we need for the sequel of this course. We refer the reader to the book
[7] for a complete exposition.

3.1. Differentiability results. The first natural idea in order to get a linear map
from a Lipschitz map is to use differentiation. It is indeed well known that a Lip-
schitz map between finite dimensional real normed spaces is almost everywhere
differentiable. It is no longer true when the target space is infinite dimensional.
This justifies the following definition.

Definition 3.2. A Banach space Y is said to have the Radon-Nikodỳm Property
(RNP) if every Lipschitz map f : R→ Y is a.e. differentiable.
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Let us just mention that separable dual spaces and reflexive spaces have RNP
(this is due to Gelfand [14]). Notice also that the spaces c0 and L1 do not have
(RNP). This last remak can easily be checked by considering the maps f : R → c0
and g : R→ L1 defined by f(t) = (eint/n)∞n=1 and g(t) = 1[0,t].

The next obstacle is the lack of a Haar measure on infinite dimensional Banach
spaces. This difficulty was overcome by various authors in the seventies, by defining
a suitable notion of negligible set in this setting. Let us mention one of them,
without further explanation. A Borel subset A of a separable Banach space X is
said to be Gauss null if µ(A) = 0, for every non degenerate Gaussian measure on
X. We refer the reader to [7] (chapter 6) for all the details. Let us just point the
two main features of this notion: it is stable under countable unions and X is not
Gauss-null. We can now state the following fundamental differentiability result.

Theorem 3.3. (Aronszajn, Christensen, Mankiewicz 1970’s) Let X be a
separable Banach space, Y a Banach space with the (RNP) and f : X → Y a
Lipschitz map. Then there is Gauss-null subset A of X such that f is Gâteaux-
differentiable at every point of X \A.

We can immediately deduce

Corollary 3.4. Let X be a separable Banach space and Y a Banach space with the

(RNP) such that X
Lip
↪→ Y . Then X is linearly isomorphic to a subspace of Y .

In particular, if X
Lip
↪→ `2 and X is infinite dimensional, then X is linearly isomorphic

to `2 (we denote X ' `2).

By using weak∗- Gâteaux differentiability and the notion of Gauss-null sets, Hein-
rich and Mankiewicz [19] were then able to prove the following.

Theorem 3.5. (Heinrich, Mankiewicz 1982) Let X be a separable Banach space

and Z be a Banach space. Assume that X
Lip
↪→ Z∗, then X is linearly isomorphic

to a subspace of Z∗. In particular, if X
Lip
↪→ Y , then X is linearly isomorphic to a

subspace of Y ∗∗.

Remark. As we will recall later, a theorem by I. Aharoni [1] asserts that every
separable metric space Lipschitz embeds into c0. However, not every separable
Banach space is linearly isomorphic to a subspace of c0.

3.2. The use of complemented subspaces. For most of the Banach spaces be-
sides `2, the structure of their subspaces is extremely complicated and the above
differentiability results are clearly not sufficient. However, their complemented sub-
spaces are often much simpler. Therefore, the next natural idea is to find conditions
under which two Lipschitz isomorphic spaces are complemented in each other. This
was initiated by Lindenstrauss in [32] and developed by Heinrich and Mankiewicz
in [19]. Here are the statements that we shall use.

Theorem 3.6. (Lindenstrauss 1964) Let Y be a closed subspace of a Banach
space X. Assume that Y is complemented in Y ∗∗ and that there is a Lipschitz
retraction from X onto Y . Then Y is complemented in X.
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Theorem 3.7. (Heinrich, Mankiewicz 1982)
(i) Let X and Y two Banach spaces and Y0 be a separable complemented subspace of

Y . Assume that X has (RNP), Y is complemented in Y ∗∗ and that X
Lip∼ Y . Then

Y0 is isomorphic to a complemented subspace of X (we denote Y0 ⊆c X).

In particular

(ii) Let X,Y be two separable Banach spaces with (RNP) such that X
Lip∼ Y and Y

is complemented in Y ∗∗. Then Y ⊆c X.

and

(iii) Let X,Y be two separable reflexive Banach spaces such that X
Lip∼ Y . Then

Y ⊆c X and X ⊆c Y .

It is now quite easy to deduce the following

Theorem 3.8. Let X be a Banach space and 1 < p < +∞.

(i) If X
Lip∼ `p, then X ' `p.

(ii) If X
Lip∼  Lp = Lp([0, 1]), then X ' Lp.

Proof. (i) It is clear that X is infinite dimensional and it follows from the previous
theorem that X ⊆c `p. Then a classical result of Pe lczyński [37] insures that X ' `p.

(ii) It is not true that a complemented subspace of Lp is isomorphic to Lp. So let
use that there are Banach spaces X1 and Y1 such that Lp ' X⊕X1 and X ' Lp⊕Y1.
First notice that Lp ⊕ Lp ' Lp. So Lp ⊕X ' Lp ⊕ Lp ⊕ Y1 ' Lp ⊕ Y1 ' X.
On the other hand, Lp ' `p(Lp).
So Lp ⊕ X ' `p(X ⊕ X1) ⊕ X ' X ⊕ `p(X) ⊕ `p(X1) ' `p(X) ⊕ `p(X1) ' Lp.
The proof is finished. This last trick, is known as the “Pe lczyński” decomposition
method. �

3.3. Other results and main open questions. First, we need to say that it is not
true that two Lipschitz isomorphic Banach spaces are always linearly isomorphic.
Indeed

Theorem 3.9. (Aharoni, Lindenstrauss [2] 1978) There exist an uncountable

set Γ and a Banach space X such that X
Lip∼ c0(Γ) but X is not linearly isomorphic

to any subspace of c0(Γ).

However, the following was proved in [16]

Theorem 3.10. Let X be a Banach space such that X
Lip∼ c0. Then X ' c0.

We end this section with two major open questions.

(1) Assume that X,Y are two separable Banach spaces such that X
Lip∼ Y . Does

this imply that X ' Y ?

(2) Assume that X is a Banach space and X
Lip∼ `1. Does this imply that X ' `1?
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4. Uniform homeomorphisms, coarse Lipschitz embeddings and
asymptotic structure of Banach spaces

4.1. Notation - Introduction.

Definition 4.1. Let (M,d) and (N, δ) be two metric spaces and f : M → N .
(a) f is a uniform homeomorphism if f is a bijection and f and f−1 are uniformly

continuous (we denote M
UH∼ N).

(b) If (M,d) is unbounded, we define

∀s > 0 Lips(f) = sup{δ((f(x), f(y))

d(x, y)
, d(x, y) ≥ s} and Lip∞(f) = inf

s>0
Lips(f).

f is said to be coarse Lipschitz if Lip∞(f) <∞.

(c) f is a coarse Lipschitz embedding if there exist θ,A,B > 0 such that

∀x, y ∈M d(x, y) ≥ θ ⇒ Ad(x, y) ≤ δ(f(x), f(y)) ≤ Bd(x, y).

We denote M
CL
↪→ N .

Remark. If M is a normed space and the following implication is satisfied:

‖x− y‖ ≤ η ⇒ δ(f(x), f(y)) ≤ ε.
Then

‖x− y‖ ≥ η ⇒ δ(f(x), f(y)) ≤ ε(‖x− y‖
η

+ 1) ≤ 2ε

η
‖x− y‖.

Therefore a uniformly continuous map defined on a normed space is coarse Lips-
chitz and a uniform homeomorphism between normed spaces is a bi-coarse Lipschitz
bijection.

In the sequel we will study the uniform classification of Banach spaces. The main

question being whether X
UH∼ Y implies X ' Y ? The general answer is negative,

even in the separable case, as shown by the following result.

Theorem 4.2. (Ribe [39] 1984) Let (pn)∞n=1 in (1,+∞) be a strictly decreasing

sequence such that lim pn = 1. Denote X = (
∑∞

n=1 `pn)`2. Then X
UH∼ X ⊕ `1.

Note that X is reflexive, while X⊕`1 is not. Therefore reflexivity is not preserved
under uniform homeomorphisms or coarse Lipschitz embeddings.

The local properties of a Banach space can be roughly described as the prop-
erties determined by its finite dimensional subspaces. The type and cotype of a
Banach space or the super-reflexivity are typical examples of local properties of Ba-
nach spaces. The fact that local properties are preserved under coarse Lipschitz
embeddings is essentially due to Ribe [40]. This is made precise in the following
statement.

Theorem 4.3. Let X and Y be two Banach spaces such that X
CL
↪→ Y . Then there

exists a constant K ≥ 1 such that for any finite dimensional subspace E of X there
is a finite dimensional subspace F of Y which is K-isomorphic to E.
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Proof. Instead of Ribe’s original proof, we propose the modern argument using
ultra-products as in [7].
So assume that f : X → Y is a coarse Lipschitz embedding and E is a finite
dimensional subspace of X. Let U be a non principal ultrafilter on N. To a bounded
sequence (xn)∞n=1 in X, we associate the sequence (f(xn)/n)∞n=1 which is bounded in

Y . This induces a Lipschitz embedding between the ultra-products Φ : XU
C
↪→ YU .

Then by Heinrich and Mankiewicz differentiation theorem, E is C-isomorphic to a
subspace of Y ∗∗U . We conclude by using the principle of local reflexivity and the fact
that YU and Y have the same finite dimensional subspaces. �

Remark. By Kwapien’s theorem, a Banach space is isomorphic to a Hilbert space
if and only if it is of type 2 and cotype 2. Therefore a Banach space which coarse
Lipschitz embeds in `2 is either finite dimensional or isomorphic to `2.

The next important result is the following.

Theorem 4.4. (Johnson, Lindenstrauss and Schechtman [22] 1996)

Let 1 < p <∞ and X a Banach space such that X
UH∼ `p. Then X ' `p.

The original proof of this theorem was based on the so-called “Gorelik principle”,
that we shall not see in this course. However, we will show in detail how to obtain
this result and improve it with other tools. The first one known as the “metric
midpoints principle” is very classical and close in spirit to the proof of the Mazur-
Ulam theorem. The other technique is due to N.J Kalton and based on the use of
special graph metrics on the k-subsets of N. The main objective of this course is to
describe these recent tools and some of their implications. The end of this section
is essentially taken from a paper by N.J. Kalton and N.L. Randrianarivony [31].

4.2. The approximate midpoints principle. Given a metric spaceX, two points
x, y ∈ X, and δ > 0, the approximate metric midpoint set between x and y with
error δ is the set:

Mid(x, y, δ) =

{
z ∈ X : max{d(x, z), d(y, z)} ≤ (1 + δ)

d(x, y)

2

}
.

The use of metric midpoints in the study of nonlinear geometry is due to Enflo
in an unpublished paper and has since been used elsewhere, e.g. [8], [18] and [22].

The following version of the midpoint Lemma was formulated in [31] (see also [7]
Lemma 10.11).

Proposition 4.5. Let X be a normed space and suppose M is a metric space. Let
f : X → M be a coarse Lipschitz map. If Lip∞(f) > 0 then for any t, ε > 0 and
any 0 < δ < 1 there exist x, y ∈ X with ‖x− y‖ > t and

f(Mid(x, y, δ)) ⊂ Mid(f(x), f(y), (1 + ε)δ).

Proof. Let ε′ > 0. There exist s > t such that Lips(f) ≤ (1 + ε′)Lip∞(f). Then we
can find x, y ∈ X such that

‖x−y‖ ≥ 2s

1− δ
and ‖f(x)−f(y)‖ ≥ 1

1 + ε′
Lip∞(f)‖x−y‖ ≥ 1

(1 + ε′)2
Lips(f)‖x−y‖.
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Let now u ∈Mid(x, y, δ). We have that ‖y − u‖ ≥ 1−δ
2 ‖x− y‖ ≥ s. Therefore

‖f(y)−f(u)‖ ≤ Lips(f)‖y−u‖ ≤ Lips(f)
1 + δ

2
‖x−y‖ ≤ (1+ε′)2

1 + δ

2
‖f(x)−f(y)‖.

The same is true for ‖f(x) − f(u)‖ and a choice of ε′ small enough yields the
conclusion. �

In view of this proposition, it is natural to study the approximate metric midpoints
in `p. This is done in the next lemma, which can be found in [31].

Lemma 4.6. Let 1 ≤ p < ∞. We denote (ei)
∞
i=1 the canonical basis of `p and for

N ∈ N, EN is the closed linear span of {ei, i > n}. Let now x, y ∈ `p, δ ∈ (0, 1),

u = x+y
2 and v = x−y

2 . Then

(i) There exists N ∈ N such that u+ δ1/p‖v‖BEN
⊂Mid(x, y, δ).

(ii) There is a compact subset K of `p such that Mid(x, y, δ) ⊂ K + 2δ1/p‖v‖B`p.

Proof. Fix ν > 0. Let N ∈ N such that
∑N

i=1 |vi|p ≥ (1− νp)‖v‖pp.
(i) We may clearly assume that p > 1. Let now z ∈ EN so that ‖z‖p ≤ δ‖v‖p.
Then ‖x − (u + z)‖p = ‖v − z‖p ≤ ‖v‖p + (‖z‖ + ν‖v‖)p ≤ (1 + δ)p‖v‖p, if ν was
chosen small enough. The computation is the same for ‖y − (u+ z)‖ = ‖v + z‖. So
u+ z ∈Mid(x, y, δ).

(ii) Assume that u+z ∈Mid(x, y, δ) and write z = z′+z” with z′ ∈ FN = sp{ei, i ≤
N} and z” ∈ EN .
Since ‖v−z‖, ‖v+z‖ ≤ (1+δ)‖v‖, we get, by convexity that ‖z′‖ ≤ ‖z‖ ≤ (1+δ)‖v‖.
Therefore, u+ z′ belongs to the compact set K = u+ (1 + δ)‖v‖BFN

.
It follows also from convexity that

∀i ≥ 1 max{|vi|p, |zi|p} ≤
1

2
(|vi − zi|p + |vi + zi|p).

Summing over all i’s yields: (1−νp)‖v‖p+‖z”‖p ≤ 1
2(‖v−z‖p+‖v+z‖p). Therefore

‖z”‖p ≤ [(1 + δ)p− (1− νp)]‖v‖p ≤ 2pδ‖v‖p, if ν was carefully chosen small enough.
�

We can now combine Proposition 4.5 and Lemma 4.6 to obtain

Proposition 4.7. Let 1 ≤ p < q < ∞ and f : `q → `p a coarse Lipschitz map.
Then for any t > 0 and any ε > 0 there exist u ∈ `q, τ > t, N ∈ N and K a compact
subset of `p such that

f(u+ τBEN
) ⊂ K + ετB`p .

Proof. If Lip∞(f) = 0, the conclusion is clear. So we assume that Lip∞(f) > 0. We
choose a small δ > 0 (to be detailed later). Then we choose s large enough so that
Lips(f) ≤ 2Lip∞(f) (the actual choice of s will also be specified later). Then, by
Proposition 4.5,

∃ x, y ∈ `q ‖x− y‖ ≥ s and f(Mid(x, y, δ)) ⊂Mid(f(x), f(y), 2δ).
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Denote u = x+y
2 , v = x−y

2 and τ = δ1/q‖v‖. By Lemma 4.6, there exists N ∈ N
such that u + τBEN

⊂ Mid(x, y, δ) and there exists a compact subset K of `p so

that Mid(f(x), f(y), 2δ) ⊂ K + (2δ)1/p‖f(x)− f(y)‖B`p . But

(2δ)1/p‖f(x)− f(y)‖ ≤ 2Lip∞(f)(2δ)1/p‖x− y‖ = 4Lip∞(f)21/pδ1/p−1/qτ ≤ ετ,
if δ was chosen initially chosen small enough. Then an appropriate choice of a large
s will ensure that τ ≥ 1

2δ
1/qs > t. This finishes the proof. �

As a simple consequence, we have

Corollary 4.8. Let 1 ≤ p < q <∞.
Then `q does not coarse Lipschitz embed into `p.

Proof. Let f : `q → `p be a coarse Lipschitz map. With the notation of the previous
Proposition, we can find a sequence (un)∞n=1 in u+ τBEN

such that ‖un − um‖ ≥ τ
for n 6= m. Then f(un) = kn+ετvn with kn ∈ K and vn ∈ B`p . Since K is compact,
by extracting a subsequence, we may assume that ‖f(un) − f(um)‖ ≤ 3ετ. Since ε
can be chosen arbitrarily small and τ arbitrarily large, it implies that f cannot be
a coarse Lipschitz embedding. �

4.3. Kalton-Randriarivony’s graphs. Our next step will be to prove the con-
clusion of Corollary 4.8 for 1 ≤ q < p <∞. This will be less elementary and require
the introduction of special metric graphs. The use of these graphs in this setting is
due to N.J. Kalton and N.L. Randriarivony [31]

Let M be an infinite subset of N and k ∈ N. We denote

Gk(N) = {n = (n1, .., nk), ni ∈M n1 < .. < nk}.
Then we equip Gk(M) with the distance d(n,m) = |{j, nj 6= mj}|. The fundamental
result of the whole section is an estimate of the minimal distortion of any Lipschitz
embedding of (Gk(N), d) in an `p-like Banach space.

Theorem 4.9. (Kalton-Randriarivony 2008) Let Y be a reflexive Banach space
so that there exists p ∈ (1,∞) with the following property. If y ∈ Y and (yn)∞n=1 is
a weakly null sequence in Y , then

lim sup ‖y + yn‖p ≤ ‖y‖p + lim sup ‖yn‖p.
Assume now that M is an infinite subset of N and f : Gk(M) → Y is a Lipschitz
map. Then for any ε > 0, there exists an infinite subset M′ of M such that:

diam f(Gk(M′)) ≤ 2Lip(f)k1/p + ε.

Proof. We will prove by induction on k the following statement (Hk):
for any f : Gk(M)→ Y Lipschitz and any ε > 0, there exist an infinite subset M′ of
M and u ∈ Y so that:

∀n ∈ Gk(M′) ‖f(n)− u‖ ≤ Lip(f)k1/p + ε.

Assume k = 1. By weak compactness, there is an infinite subset M0 of M and
u ∈ Y such that f(n) tends weakly to u, as n→∞, n ∈M0. It follows that

∀n ∈M0 ‖u− f(n)‖ ≤ lim sup
m∈M0

‖f(m)− f(n)‖ ≤ Lip(f).
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We then obtain (H1) by taking a further subset M′ of M0.

Assume that (Hk−1) is true and f : Gk(M)→ Y is Lipschitz and let ε > 0. Using
again weak compactness, we can find an infinite subset M0 of M such that

∀n ∈ Gk−1(M0) w − lim
nk∈M0

f(n, nk) = g(n) ∈ Y.

Clearly, the map g : Gk−1(M0) → Y satisfies Lip(g) ≤ Lip(f). Let η > 0, by the
induction hypothesis we can find an infinite subset M1 of M0 and u ∈ Y so that

∀n ∈ Gk−1(M1) ‖g(n)− u‖ ≤ Lip(f)(k − 1)1/p + η.

Now,

lim sup
nk∈M1

‖u− f(n, nk)‖p ≤ ‖u− g(n)‖p + lim sup
nk∈M1

‖g(n)− f(n, nk)‖p

≤ (Lip(f)(k − 1)1/p + η)p + Lip(f)p.

It follows that

lim sup
nk∈M1

‖u− f(n, nk)‖ ≤ Lip(f)k1/p +
ε

2
,

if η was chosen small enough.
Finally we can use Ramsey’s Theorem to obtain an infinite subset M′ of M1 such
that

∀n,m ∈ Gk(M′)
∣∣‖u− f(n)‖ − ‖u− f(m)‖

∣∣ ≤ ε

2
.

This concludes the inductive proof of (Hk). �

Remarks.

(1) Y = (
∑∞

n=1 Fn)`p , where the Fn’s are finite dimensional is a typical example of
a space satisfying the assumptions of Theorem 4.9.

(2) Reflexivity is an important assumption. Indeed, c0 fulfills the other condition
(actually for any p finite), but it is not difficult to check that all (Gk(N), d) Lipschitz
embed into c0 with a constant independent of k. This last fact can also be deduced
from Aharoni’s theorem (see [1]).

We are now in position to deduce the following.

Corollary 4.10. Let 1 ≤ q < p <∞.
Then `q does not coarse Lipschitz embed into `p.

Proof. Suppose that `q
CL
↪→ `p. Then, using homogeneity, we get the existence of

f : `q → `p and C ≥ 1 such that

∀x, y ∈ `q ‖x− y‖q ≥ 1⇒ ‖x− y‖q ≤ ‖f(x)− f(y)‖p ≤ C‖x− y‖p (∗)

Denote (en)∞n=1 the canonical basis of `q. Consider the map ϕ : Gk(N)→ `q defined
by ϕ(n) = en1 + ..+ enk

. It is clear that Lip(ϕ) ≤ 2. Besides, ‖ϕ(n)− ϕ(m)‖q ≥ 1
whenever n 6= m, so Lip(f ◦ ϕ) ≤ 2C. Then, by Theorem 4.9, there is an infinite

subset M of N such that diam (f ◦ ϕ)(Gk(M)) ≤ 6Ck1/p. But diam (ϕ(Gk(M)) =

(2k)1/q. This is in contradiction with (∗), when k is large enough. �
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Let us now indicate how to finish the proof of Theorem 4.4 on the uniqueness
of the uniform structure of `p, for 1 < p < ∞. We shall just reproduce the linear
argument of [22].

Proof. Suppose that X
UH∼ `p, with 1 < p < ∞. We may assume that p 6= 2.

Then the ultra-products XU and (`p)U are Lipschitz isomorphic. In fact, (`p)U is
isometric to some huge Lp(µ) space. since X is separable and Lp(µ) has (RNP), X is
isomorphic to a subspace of Lp(µ) and therefore reflexive. Thus X is complemented
in XU and Theorem 3.7 implies that X is isomorphic to a complemented subspace
of Lp(µ). Since X is separable, a classical argument yields that X is isomorphic to
a complemented subspace of Lp = Lp([0, 1]).
Now, it follows from corollaries 4.8 and 4.10 that X does not contain any isomorphic
copy of `2. Then we can conclude with a classical result of Johnson and Odell [23]
which asserts that any infinite dimensional complemented subspace of Lp that does
not contain any isomorphic copy of `2 is isomorphic to `p. �

In fact, a lot more can be deduced from Theorem 4.9. The aim of the paper [31]
was to prove the uniqueness of the uniform structure of `p ⊕ `p. We will now try to
explain this result. We start with the following improvement of corollaries 4.8 and
4.10.

Corollary 4.11. Let 1 ≤ p < q <∞. and r ≥ 1 such that r /∈ {p, q}.
Then `r does not coarse Lipschitz embed into `p ⊕ `q.

Proof. When r > q, the argument is based on a midpoint technique like in the proof
of Corollary 4.8. If r < p, we mimic the proof of Corollary 4.10. So we assume that
1 ≤ p < r < q < ∞. This is the situation where the graph technique will provide
the answer that the Gorelik principle did not.
So assume that f : `r → `p ⊕∞ `q is a map such that there exists C ≥ 1 satisfying

∀x, y ∈ `r ‖x− y‖r ≥ 1⇒ ‖x− y‖r ≤ ‖f(x)− f(y)‖ ≤ C‖x− y‖r (∗∗)

The map f has two components: f = (g, h). Fix k ∈ N and ε > 0. Denote (en)n
the canonical basis of `r.
We start by applying the midpoint technique to the coarse Lipschitz map g and
deduce from Proposition 4.7 that there exist τ > k, u ∈ `r, N ∈ N and K a compact
subset of `p such that

g(u+ τBEN
) ⊂ K + ετB`p .

LetM = {n ∈ N, n > N} and define ϕ(n) = u+τk−1/r(en1 +..+enk
) for n ∈ Gk(M).

Then we have that (g ◦ϕ)(Gk(M)) ⊂ K+ετB`p . Thus, by Ramsey’s theorem, there
is an infinite subset M′ of M such that diam (g ◦ ϕ)(Gk(M′)) ≤ 3ετ.
We now turn to the graph technique in order to deal with the map h. We have that
‖ϕ(n) − ϕ(m)‖q ≥ τk−1/r ≥ 1 whenever n 6= m. So Lip(h ◦ ϕ) ≤ Lip(f ◦ ϕ) ≤
2k−1/rτC. Then, by Theorem 4.9, there exists an infinite subset M′′ of M′ such that
diam (h ◦ ϕ)(Gk(M′′)) ≤ 6Ck1/q−1/rτ ≤ ετ, if k is big enough.
Finally we have that diam (f ◦ϕ)(Gk(M′′)) ≤ 3ετ , while diam ϕ(Gk(M′′)) ≥ τ. This
in contradiction with (∗∗) if ε < 1/3. �
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We can now state and prove the main result of [31].

Theorem 4.12. Let 1 < p < q <∞ such that 2 /∈ {p, q}.
Assume that X is Banach space such that X

UH∼ `p ⊕ `q. Then X ' `p ⊕ `q.

Proof. The key point is to show that X does not contain any isomorphic copy of `2.
This follows clearly from the above corollary. To conclude the proof, we need to use
a few deep linear results. The cases 1 < p < q < 2 and 2 < p < q, were actually
settled in [22], which is not a surprise after the remark made at the beginning of the
proof of the previous corollary. So let us only explain the case 1 < p < 2 < q.

Assume that X
UH∼ `p ⊕ `q = E. Then XU

Lip∼ EU = Lp(µ) ⊕ Lq(µ). As in the
proof of Theorem 4.4, we obtain that X ⊆c Lp ⊕ Lq.
Since `2  X and q > 2, a theorem of W.B Johnson [21] insures that any bounded
operator from X into Lq factors through `q. Then, it is not difficult to see that
X ⊆c Lp ⊕ `q.
Then we notice that Lp and `q are totally incomparable, which means that they
have no isomorphic infinite dimensional subspaces. We can now use a theorem of
Èdeľstĕın and Wojtaszczyk [11] to obtain that X ' F ⊕ G, with F ⊆c Lp and
G ⊆c `q. First it follows from [37] that G is isomorphic to `q or is finite dimensional.
On the other hand, we know that `2  F , and by the Johnson-Odell theorem [23]
F is isomorphic to `p or finite dimensional.
Summarizing, we have that X is isomorphic to `p, `q or `p ⊕ `q. But we already
know that `p and `q have unique uniform structure. Therefore X is isomorphic to
`p ⊕ `q.

�

Remarks.

(1) This result extends to finite sums of `p spaces. More precisely, if 1 < p1 < .. <
pn <∞ are all different from 2, then `p1 ⊕ ...⊕ `pn has a unique uniform structure.

(2) Let 1 < p < ∞ and p 6= 2. It is unknown whether Lp or even `p ⊕ `2 has a
unique uniform structure.

In [31], other applications of Theorem 4.9 yield interesting partial results in this
direction. Let us just state them without proof.

Theorem 4.13. Let 1 < p <∞ and p 6= 2.
Then `p(`2) and therefore Lp do not coarse Lipschitz embed into `p ⊕ `2.

4.4. Asymptotic stucture of Banach spaces. In this last paragraph of our cen-
tral section, we will further explore the ideas and implications of Theorem 4.9. Our
main purpose, will be to give an abstract version of it that will show some stabil-
ity properties of the asymptotic structure of Banach spaces under coarse Lipschitz
embeddings. First, we need a few definitions.

Definition 4.14. Let (X, ‖ ‖) be a Banach space and t > 0. We denote by BX the
closed unit ball of X and by SX its unit sphere. For x ∈ SX and Y a closed linear
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subspace of X, we define

ρ(t, x, Y ) = sup
y∈SY

‖x+ ty‖ − 1 and δ(t, x, Y ) = inf
y∈SY

‖x+ ty‖ − 1.

Then

ρX(t) = sup
x∈SX

inf
dim(X/Y )<∞

ρ(t, x, Y ) and δX(t) = inf
x∈SX

sup
dim(X/Y )<∞

δ(t, x, Y ).

The norm ‖ ‖ is said to be asymptotically uniformly smooth (in short AUS) if

lim
t→0

ρX(t)

t
= 0.

It is said to be asymptotically uniformly convex (in short AUC) if

∀t > 0 δX(t) > 0.

These moduli have been first introduced by V. Milman in [35].

Remarks.

(1) If X = (
∑∞

n=1 Fn)`p , 1 ≤ p < ∞ and the Fn’s are finite dimensional, then

ρX(t) = δX(t) = (1 + tp)1/p − 1.

(2) For all t ∈ (0, 1), ρc0(t) = 0.

(3) The following consequence of the definition of ρX(t) will be useful: for any
x ∈ X \ {0} and any weakly null sequence in X

lim sup ‖x+ xn‖ ≤ ‖x‖
(

1 + ρX
( lim sup ‖xn‖

‖x‖
))
.

This is clearly a general version of the assumption of Theorem 4.9.

We will start with a positive result on the stability of reflexivity under coarse
Lipschitz embeddings. One should remember that Ribe’s counterexample implies
that this is not true in general. The following result appeared in [5].

Theorem 4.15. Let X be a Banach space and Y be a reflexive Banach space with
an equivalent AUS norm. Assume that X coarse Lipschitz embeds into Y . Then X
is reflexive.

Proof. We can clearly assume that X and Y are separable. Then it follows from the
work of Odell and Schlumprecht (see [36]) that Y can be renormed in such a way
that there exists p ∈ (1,+∞) so that

(4.1) lim sup ‖y + yn‖p ≤ ‖y‖p + lim sup ‖yn‖p,
whenever y ∈ Y and (yn) is a weakly null sequence in Y .
Suppose now that X is a non reflexive Banach space and fix θ ∈ (0, 1). Then, James’
Theorem [21] insures the existence of a sequence (xn)∞n=1 in SX and a sequence
(x∗n)∞n=1 in SX∗ such that

x∗n(xi) = θ if n ≤ i and x∗n(xi) = 0 if n > i.

In particular

(4.2) ‖xn1 + ..+ xnk
− (xm1 + ..+ xmk

)‖ ≥ θk, n1 < .. < nk < m1 < .. < mk.



14 G. LANCIEN

Assume finally that f : X → Y is a map so that

(4.3) ∀x, x′ ∈ X ‖x− x′‖ ≥ θ ⇒ ‖x− x′‖ ≤ ‖f(x)− f(x′)‖ ≤ C‖x− x′‖.
For k ∈ N we consider h : Gk(M) → X defined by h(n) = xn1 + .. + xnk

. We have
that ‖h(n)−h(m)‖ ≥ θ, whenever n 6= m. Thus Lip(f ◦h) ≤ 2C. Then Theorem 4.9
insures the existence of an infinite subset M of N such that diam (f ◦ h)(Gk(M)) ≤
6Ck1/p. This in contradiction with (4.2) and (4.3). Therefore X cannot coarse
Lipschitz embed into Y . �

It is proved in [17] that the condition “having an equivalent AUS norm” is stable
under uniform homeomorphisms. So we immediately deduce.

Corollary 4.16. The class of all reflexive Banach spaces with an equivalent AUS
norm is stable under uniform homeomorphisms.

We shall now give a more abstract version of Theorem 4.9 as it is done in the
last section of [31]. So let us consider a reflexive Banach space Y and denote by ρY
its modulus of asymptotic uniform smoothness. It is easily checked that ρY is an
Orlicz function. Then we define the Orlicz sequence space:

`ρY = {x ∈ RN, ∃r > 0
∞∑
n=1

ρY (
|xn|
r

) <∞},

equipped with the norm

‖x‖ρY = inf{r > 0,
∞∑
n=1

ρY (
|xn|
r

) ≤ 1}.

Fix now a = (a1, .., ak) a sequence of non zero real numbers and define the following
distance on Gk(M), for M infinite subset of N:

∀n,m ∈ Gk(M), da(n,m) =
∑

j, nj 6=mj

|aj |.

At this stage, we should point out something that we have so far carefully hidden.
The fact that the elements of Gk(M) are ordered k-subsets of M has been totally
useless until now. Indeed, the very same proof would work if we just consider the
k-subsets of M with the distance d′(A,B) = 1

2 |A∆B|. Now, with the definition of
da we clearly need to work with ordered k-subsets and we shall prove the following
generalization of Theorem 4.9.

Theorem 4.17. (Kalton-Randriarivony 2008) Let Y be a reflexive Banach
space, M an infinite subset of N and f : (Gk(M), da) → Y a Lipschitz map. Then
for any ε > 0, there exists an infinite subset M′ of M such that:

diam f(Gk(M′)) ≤ 2eLip(f)‖a‖ρY + ε.

Proof. Define the following norm on R2:

N(ξ, η) = |η| if ξ = 0 and N2(ξ, η) = |ξ|(1 + ρY ( |η||ξ| ) if ξ 6= 0. Then define by

induction Nk(ξ1, .., ξk) = N2(Nk−1(ξ1, .., ξk−1), ξk) on Rk.
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(a) The first step is to prove that for any ε > 0, there exist an infinite subset M′ of
M and u ∈ Y so that:

∀n ∈ Gk(M′) ‖f(n)− u‖ ≤ Nk(a1, .., ak)Lip(f) + ε.

For the argument just notice that for any y ∈ Y and any weakly null sequence
(yn) in Y : lim sup ‖y + yn‖ ≤ N2(‖y‖, lim sup ‖yn‖). Then just mimic the proof of
Theorem 4.9.

(b) The conclusion then follows from the inequality: Nk(a) ≤ e‖a‖ρY .
Indeed, let a so that ‖a‖ρY ≤ 1 and assume as we may that Nk(a) > 1. Denote r
the smallest integer in {1, .., k} such that Nr(a1, .., ar) > 1. Then

∀j > r Nj(a1, .., aj) ≤ Nj−1(a1, .., aj−1)(1 + ρY (|aj |)).

If r > 1, Nr(a1, .., ar) ≤ N2(1, ar) = 1 + ρY (|ar|) and if r = 1, N1(a1) = |a1| ≤
1 + ρY (|a1|). In both cases

Nk(a) ≤
k∏
i=1

(1 + ρY (|ai|),

which yields the conclusion. �

As it is described in [28] we can now derive the following.

Corollary 4.18. Let X be a Banach space and Y be a reflexive Banach space.
Assume that X coarse Lipschitz embeds into Y . Then there exists C > 0 such
that for any normalized weakly null sequence (xn)∞n=1 in X and any sequence a =
(a1, .., ak) of non zero real numbers, there is an infinite subset M of N such that:

∀n ∈ Gk(M) ‖
k∑
i=1

aixni‖ ≤ C‖a‖ρY .

Proof. Let f : X → Y so that

(4.4) ∀x, x′ ∈ X ‖x− x′‖ ≥ 1⇒ ‖x− x′‖ ≤ ‖f(x)− f(x′)‖ ≤ C‖x− x′‖.

For λ > 0, we consider h : (Gk(N), da) → X defined by h(n) = λ
∑k

i=1 aixni .
We clearly have that Lip(h) ≤ 2λ. Notice that we may assume, by passing to
a subsequence, that (xn) is a basic sequence with basis constant at most 2. In
particular, if n 6= m, ‖h(n) − h(m)‖ ≥ λ

4 min{|ai|, 1 ≤ i ≤ k}. So we can choose
λ > 0 so that ‖h(n)−h(m)‖ ≥ 1, whenever n 6= m. Then, F = f ◦h is 2Cλ-Lipschitz.
Then it follows from Theorem 4.17 that there is an infinite subset M of N such that

∀n,m ∈M, with n1 < .. < nk < m1 < .. < mk ‖F (n)− F (m)‖ ≤ 4Ceλ‖a‖ρY + 1.

The left hand side of (4.4) yields

∀n,m ∈M st n1 < .. < nk < m1 < .. < mk ‖
∞∑
i=1

aixni−
∞∑
i=1

aixmi‖ ≤ 4Ce‖a‖ρY +
1

λ
.



16 G. LANCIEN

Letting mk,..,m1 and then λ tend to ∞ we obtain

∀n1 < .. < nk ∈M ‖
∞∑
i=1

aixni‖ ≤ 4Ce‖a‖ρY .

�

The above result can be rephrased in a more abstract way, by using the notion
of spreading models. We shall not detail this generalization, but just mention this
other statement (see [28] for details).

Corollary 4.19. Let X be a Banach space and Y be a reflexive Banach space.
Assume that X coarse Lipschitz embeds into Y . Then there exists C > 0 such that
for any spreading model (ei) of a normalized weakly null sequence in X and any
finitely supported sequence a = (ai) in R:

‖
∑

aiei‖S ≤ K‖a‖ρY .

Remarks. In a recent preprint, N.J. Kalton [28] made a real breakthrough by
proving some permanence properties of the asymptotic uniform convexity under
coarse Lipschitz embeddings. It will be impossible for us to give in this course a fair
idea of the proofs. Let us just mention the main result.

Theorem 4.20. (Kalton 2010) Let X and Y be Banach spaces such that X coarse
Lipschitz embeds into Y . Then there exists C > 0 such that for any spreading model
(ei) of a normalized weakly null sequence in X:

∀k ∈ N ‖
k∑
i=1

ei‖δY ≤ K‖
k∑
i=1

ei‖S .

In the same paper [28], this is used, together with new deep linear results to show
the stability of the class of subspaces of `p (1 < p < ∞) under coarse Lipschitz
embeddings, or of the class of quotients of `p (1 < p < ∞) under uniform homeo-
morphisms. It is also proved that for 1 < p, r < ∞, the Banach space (

∑∞
n=1 `

n
r )`p

has a unique uniform structure.

5. Universality questions

The general question addressed in this section is the following: given a class M
of metric spaces and a type (E) of embedding, try to describe the Banach spaces X
such that for any M in M, there exists an embedding of type (E) from M into X.
The classes of metric spaces that we shall consider are: S the class of all separable
metric spaces, K the class of all compact metric spaces, P the class of all proper
metric spaces (i.e. with relatively compact balls) and LF the class of all locally
finite metric spaces (i.e. with finite balls). Concerning the embeddings, we will
look at isometric, Lipschitz and coarse embeddings. We now need to define this last
notion.
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Definition 5.1. Let (M,d) and (N, δ) be two unbounded metric spaces.
A map f : M → N is said to be a coarse embedding if there exist two increasing
functions ρ1, ρ2 : [0,∞)→ [0,∞) such that lim∞ ρ1 = +∞ and

∀x, y ∈M ρ1(d(x, y)) ≤ δ(f(x), f(y)) ≤ ρ2(d(x, y)).

We denote M
co
↪→ N .

5.1. Isometric embeddings. This section will be very short. We first recall the
fundamental result by S. Banach and S. Mazur.

Theorem 5.2. (Banach - Mazur 1933) Any separable Banach space is linearly
isometric to a subspace of C([0, 1]). As a consequence, any separable metric space
is isometric to a subset of C([0, 1]).

Let us also mention, that using the tools developed by G. Godefroy and N.J.
Kalton in [15], Y. Dutrieux and the author ([10]) were able to show the following.

Theorem 5.3. There exists a compact metric space K such that any Banach space
containing an isometric copy of K has a subspace which is linearly isometric to
C([0, 1]).

Remarks.
(a) In [42], A. Szankowski constructed a separable reflexive Banach space con-

taining an isometric copy of every finite dimensional normed space. We thank V.
Zizler for pointing out this result to us.

(b) Assume that a Banach space contains an isometric copy of any locally finite
metric space. We do not know if it necessarily contains an isometric copy of C([0, 1]).

5.2. Lipschitz embeddings. We start with the most important result of this sub-
section, due to Aharoni [1], which states that c0 is universal for separable metric
spaces and Lipschitz embeddings. More precisely:

Theorem 5.4. (Aharoni 1974) There exists a universal constant K ≥ 1 such that

for any separable metric space K, we have M
K
↪→ c0.

In fact, Aharoni proved that K can be taken such that K ≤ 6 + ε, for any ε > 0.
He also showed that K cannot be taken less than 2 for M = `1. The optimal
quantitative result was obtained by N.J. Kalton and the author in [30] who proved
the following.

Theorem 5.5. Let (M,d) be a separable metric space. Then there exists f : M → c0
such that

∀x 6= y ∈M d(x, y) ≤ ‖f(x)− f(y)‖∞ < 2d(x, y).

Open questions.
(a) Is the converse of Aharoni’s theorem true? Namely if c0 Lipschitz embeds

into a Banach space X, does X admit a subspace linearly isomorphic to c0?
(b) Similarly, if a Banach space is universal for Lipschitz embeddings and compact

metric spaces (or proper metric spaces) does it admit a subspace linearly isomorphic
to c0?
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We finish this paragraph on Lipschitz embeddings with a recent characterization,
due to F. Baudier and the author [6] and G. Schechtman [41] of the Banach spaces
that are universal for locally finite metric spaces.

Theorem 5.6. Let X be a Banach space. The the following assertions are equiva-
lent.
(i) X has a trivial cotype.
(ii) There is a universal constant K ≥ 1 such that for any locally finite metric space

M : M
K
↪→ X.

Proof. We will only sketch the proof, and use the following characterization of Ba-
nach spaces without cotype due to B. Maurey and G. Pisier [33]: there is a constant
K ≥ 1 (which can actually always be taken less than 1 + ε, for any ε > 0) such
that for any n ∈ N there is a n-dimensional subspace Xn of X and an isomorphism
Tn : `n∞ → Xn with ‖Tn‖ ‖T−1n ‖ ≤ K.

(i)⇒(ii). Let M be a locally finite metric space. Fix x0 in M and denote Bn =

B(x0, 2
n) for n ∈ N. Then Bn is finite and the map Φn : Bn → `

|Bn|
∞ defined by

∀x ∈ Bn Φn(x) = (d(x, y)− d(x0, y))y∈Bn

is an isometric embedding of Bn into `
|Bn|
∞ . It is a classical embedding known as the

Fréchet-embedding.
Then we use the assumption (i) and a classical gliding hump argument to build
a subspace Z of X with a finite dimensional Schauder decomposition: Z = Z1 ⊕
.. ⊕ Zn ⊕ .... so that for any n ≥ 1 there is an isomorphism Tn : `

|Bn|
∞ → Zn, with

‖Tn‖ ≤ 2 and ‖T−1n ‖ ≤ 1. Denote ψn = Tn ◦ Φn. We finally define Φ : M → Z by
embedding each set Bn \Bn−1 in Zn ⊕ Zn+1 as follows:

∀x ∈ Bn \Bn−1, Φ(x) = λ(x)ψn(x) + (1−λ(x))ψn+1 where λ(x) =
2n+1 − d(x, x0)

2n
.

(ii)⇒(i). The proof of this converse relies on an argument due to G. Schechtman
[41]. Let us fix n ∈ N. Then for any k ∈ N, there exists a map fk : ( 1kZ

n, ‖ ‖∞)→ X
such that fk(0) = 0 and

∀x, y ∈ 1

k
Zn ‖x− y‖∞ ≤ ‖fk(x)− fk(y)‖ ≤ K‖x− y‖∞.

Then we can define a map λk : `n∞ → 1
kZ

n such that for all x ∈ `n∞: ‖λk(x)−x‖∞ =

d(x, 1kZ
n). We can now set ϕk = fk ◦ λk.

Let U be a non trivial ultrafilter. We define ϕ : `n∞ → XU ⊆ X∗∗U by ϕ(x) = (ϕk(x))U .
It is easy to check that ϕ is a Lipschitz embedding. Then it follows from Theorem
3.7 that `n∞ is K-isomorphic to a linear subspace of X∗∗U . Finally, using the local
reflexivity principle and properties of the ultra-product, we get that `n∞ is (K + 1)-
isomorphic to a linear subspace of X.

�
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5.3. Coarse embeddings. Very little is known about the coarse embeddings of
metric spaces into Banach spaces. We will start by mentioning without proof a
result of F. Baudier [3].

Theorem 5.7. Let X be a Banach space without cotype. Then every proper metric
space embeds coarsely and uniformly into X.

For some time it was not known if a reflexive Banach space could be universal
for separable metric spaces and coarse embeddings. This section will be essentially
devoted to explaining Kalton’s solution for this question. This will enable us to
introduce a new graph distance on Gk(N). This is taken from the article [26] by
N.J. Kalton.

Theorem 5.8. (Kalton 2007) Let X be a separable Banach space. Assume that c0
coarsely embeds into X. Then one of the iterated duals of X has to be non separable.
In particular, X cannot be reflexive.

Before to proceed with the proof of this theorem, we need to introduce a new graph
metric on Gk(M), for M infinite subset of N. We will say that n 6= m ∈ Gk(M) are
adjacent (or d(n,m) = 1) if they interlace or more precisely if

m1 ≤ n1 ≤ .. ≤ mk ≤ nk or n1 ≤ m1 ≤ .. ≤ nk ≤ mk.

For simplicity we will only show that X cannot be reflexive. So let us assume
that X is a reflexive Banach space and fix a non principal ultrafilter U on N. For a
bounded function f : Gk(N)→ X we define ∂f : Gk−1(N)→ X by

∀n ∈ Gk−1(N) ∂f(n) = w − lim
nk∈U

f(n1, .., nk−1, nk).

Note that for 1 ≤ i ≤ k, ∂if is a bounded map from Gk−i(N) into X and that
∂kf is an element of X. We first need to prove a series of simple lemmas about the
operation ∂.

Lemma 5.9. Let h : Gk(N) → R be a bounded map and ε > 0. Then there is an
infinite subset M of N such that

∀n ∈ Gk(M) |h(n)− ∂kh| < ε.

Proof. The set M = {m1, ..,mi, ..} is built by induction on i so that for any subset

n of{m1, ..,mi} with 1 ≤ |n| ≤ min(i, k), we have |∂k−|n|h(n)− ∂kh| < ε.
For i, we easily pick m1 such that |∂k−1h(m1)− ∂kh| < ε.
Assume now that m1, ..,mi have been constructed. Then for every n ⊂ {m1, ..,mi}
with |n| ≤ k − 1, there is Mn ∈ U such that

∀n ∈Mn m > mi and |∂k−|n|−1h(n,m)− ∂kh| < ε.

Then pick mi+1 ∈ M =
⋂
nMn, where n runs through the subsets of {m1, ..,mi}

satisfying |n| ≤ k − 1. �

The proof of the next Lemma is clear.
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Lemma 5.10. Let f : Gk(N) → X and g : Gk(M) → X∗ be two bounded maps.
Define f ⊗ g : G2k(N)→ R by

(f ⊗ g)(n1, .., n2k) = 〈f(n2, n4, .., n2k), g(n1, .., n2k−1)〉.

Then ∂2(f ⊗ g) = ∂f ⊗ ∂g.

Lemma 5.11. Let f : Gk(N)→ X be a bounded map and ε > 0. Then there is an
infinite subset M of N such that

∀n ∈ Gk(M) ‖f(n)‖ ≤ ‖∂kf‖+ ωf (1) + ε,

where ωf is the modulus of continuity of f .

Proof. For all n ∈ Gk(N), we can find g(n) ∈ SX∗ such that 〈f(n), g(n)〉 = ‖f(n)‖.
By an iterated application of the previous lemma we get that

|∂2k(f ⊗ g)| = |〈∂kf, ∂kg〉| ≤ ‖∂kf‖.

Then, by Lemma 5.9, there is an infinite subset M0 of N such that for all p ∈
G2k(M0): |(f⊗g)(p)| ≤ ‖∂kf‖+ε. Then write M0 = {n1 < m1 < .. < ni < mi < ..}
and set M = {n1 < n2 < .. < ni < ..}. Thus for all n = (n1, .., nk) ∈ Gk(M),

‖f(n)‖ = 〈f(n), g(n)〉 ≤ |〈f(m1, ..,mk), g(n1, .., nk)〉|+ ωf (1) ≤ ‖∂kf‖+ ε+ ωf (1).

�

The last preparatory lemma is the following.

Lemma 5.12. Let ε > 0, X be a separable reflexive Banach space and I be an
uncountable set. Assume that for each i ∈ I, fi : Gk(N) → X is a bounded map.
Then there exist i 6= j ∈ I and an infinite subset M of N such that

∀n ∈ Gk(M) ‖fi(n)− fj(n)‖ ≤ ωfi(1) + ωfj (1) + ε.

Proof. Since X is separable and I uncountable, there exist i 6= j ∈ I such that
‖∂kfi − ∂kfj‖ < ε/2. Then we can apply Lemma 5.11 to (fi − fj) to conclude. �

We are now ready for the proof of the theorem. As we will see, the proof relies on
the fact that c0 contains uncountably many isometric copies of the Gk(N)’s with too
many points far away from each other (which will be in contradiction with Lemma
5.12).

Proof of Theorem 5.8. Assume X is reflexive and let h : c0 → X be a map which is
bounded on bounded subsets of c0. Let (ek)

∞
k=1 be the canonical basis of c0. For an

infinite subset A of N we now define

∀n ∈ N sA(n) =
∑

k≤n, k∈A
ek

and

∀n = (n1, .., nk) ∈ Gk(N) fA(n) =
k∑
i=1

sA(ni).
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Then the h ◦ fA’s form an uncountable family of bounded maps from Gk(N) to X.
It therefore follows from Lemma 5.12 that there are two distinct infinite subsets A
and B of N and another infinite subset M of N so that:

∀n ∈ Gk(M) ‖h ◦ fA(n)− h ◦ fB(n)‖ ≤ ωh◦fA(1) + ωh◦fB (1) + 1 ≤ 2ωh(1) + 1.

But, since A 6= B, there is n ∈ Gk(M) with ‖fA(n) − fB(n)‖ = k. By taking
arbitrarily large values of k we deduce that h cannot be a coarse embedding. �

Remarks.

(a) Similarly, one can show that h cannot be a uniform embedding, by composing
h with the maps tfA and letting t tend to zero.

(b) It is now easy to adapt this proof in order to obtain the stronger result stated
in Theorem 5.8. Indeed, one just has to change the definition of the operator ∂ as
follows. If f : Gk(N)→ X is bounded, define ∂f : Gk−1(N)→ X∗∗ by

∀n ∈ Gk−1(N) ∂f(n) = w∗ − lim
nk∈U

f(n1, .., nk−1, nk).

We leave it to the reader to rewrite the argument.

(c) On the other hand, N.J. Kalton proved in [25] that c0 embeds uniformly and
coarsely in a Banach space X with the Schur property. In particular, X does not
contain any subspace linearly isomorphic to c0.

(d) We conclude by mentioning that N.J. Kalton recently used the same graph
distance on Gk(ω1), where ω1 is the first uncountable ordinal (see [29]). As a conse-
quence he showed that the unit balls of `∞/c0 or C([0, ω1]) do not uniformly embed
into `∞. He also built a (non separable) Banach space X such that there is no
uniform retract from X∗∗ onto X.

6. Metric invariants

In this last section, we will try to characterize some linear classes of Banach spaces
by a purely metric condition. The conditions we will consider will be of the following

type. Given a metric space M , what are the Banach spaces X so that M
Lip
↪→ X. Or,

given a family M of metric spaces, what are the Banach spaces X for which there

is a constant C ≥ 1 so that for all M in M, M
C
↪→ N .

If the linear class of Banach spaces that can be characterized in such a way is
already known to be stable under Lipschitz or coarse-Lipschitz embeddings, this can
be seen as an improvement of this previous result. We will also show one situation
where this process yields new results about such stabilities.

We will only consider two examples. First we shall review (without proof) the
results about hyperbolic trees. Then we will prove in detail a recent characterization
of super-reflexivity through the embedding of “diamond graphs”.

6.1. Trees. We start with J. Bourgain’s metric characterization of super-reflexivity
given in [9]. The metric invariant discovered by Bourgain is the collection of the
hyperbolic dyadic trees of arbitrarily large height N . If we denote ∆0 = {∅}, the

root of the tree. Let Ωi = {−1, 1}i, ∆N =
⋃N
i=0 Ωi and ∆∞ =

⋃∞
i=0 Ωi. Then we
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equip ∆∞, and by restriction every ∆N , with the hyperbolic distance ρ, which is
defined as follows. Let s and s′ be two elements of ∆∞ and let u ∈ ∆∞ be their
greatest common ancestor. We set

ρ(s, s′) = |s|+ |s′| − 2|u| = ρ(s, u) + ρ(s′, u).

Bourgain’s characterization is the following:

Theorem 6.1. (Bourgain 1986) Let X be a Banach space. Then X is not su-
perreflexive if and only if there exists a constant C ≥ 1 such that for all N ∈ N,

(∆N , ρ)
C
↪→ X.

Remarks. It has been proved in [4] that this is also equivalent to the metric
embeddability of the infinite hyperbolic dyadic tree (∆∞, ρ). It should also be
noted that in [9] and [4], the embedding constants are bounded above by a universal
constant. We also recall that it follows from the Enflo-Pisier renorming theorem
([12] and [38]) that super-reflexivity is equivalent to the existence of an equivalent
uniformly convex and (or) uniformly smooth norm.

Similarly , one can define for a positive integerN , TN =
⋃N
i=0Ni, where N0 := {∅}.

Then T∞ =
⋃∞
N=1 TN is the set of all finite sequences of positive integers. Then

the hyperbolic distance ρ is defined on T∞ as previously. The following asymptotic
analogue of Bourgain’s theorem has been obtained by F. Baudier, N.J. Kalton and
the author in [5].

Theorem 6.2. Let X be a reflexive Banach space. The following assertions are
equivalent.

(i) There exists C ≥ 1 such that T∞
C
↪→ X.

(ii) There exists C ≥ 1 such that for any N in N, TN
C
↪→ X.

(iii) X does not admit any equivalent asymptotically uniformly smooth norm or
X does not admit any equivalent asymptotically uniformly convex norm.

We will only mention one application of this result.

Corollary 6.3. The class of all reflexive Banach spaces that admit an equivalent
AUS norm and an equivalent AUC norm is stable under coarse Lipschitz embeddings.

Proof. Assume that X coarse Lipschitz embeds in a space Y which is reflexive, AUS
renormable and AUC renormable. First, it follows from Theorem 4.15 that X is
reflexive. Assume now that X is not AUS renormable or not AUC renormable.
Then, we know from Theorem 6.2 ((iii) ⇒ (i)) that T∞ Lipschitz embeds into X
and therefore into Y . This is in contradiction with (i)⇒ (iii) in Theorem 6.2. �

Open questions.

(a) We do not know if the class of all reflexive and AUS renormable Banach spaces
is stable under coarse Lipschitz embeddings.

(b) We do not know if the class of all Banach spaces that AUS renormable and
AUC renormable is stable under coarse Lipschitz embeddings or uniform homeo-
morphisms.
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6.2. Diamonds. in this very last paragraph we will detail a nice result By W.B
Johnson and G. Schechtman [24] who recently characterized the super-reflexivity
through the non embeddability of the so-called “diamond graphs”. Let us start
with an intuitive description of these graphs. D0 is made of two connected vertices
(therefore at distance 1), that we shall call T (top) and B (bottom). D1 is a
diamond, therefore made of four vertices T , B, L (left) and R (right) and four
edges : [B,L], [L, T ], [T,R] and [R,B]. Assume DN is constructed, then DN+1 is
obtained by replacing each edge of DN by a diamond D1. The distance on DN+1

is the path metric of this new discrete graph. Throughout this section the graph
distance on a diamond DN will be denoted by d.

The result is the following

Theorem 6.4. Let X be a Banach space. Then X is not super-reflexive if and only

if there is a constant C ≥ 1 such that for all N ∈ N, (DN , d)
C
↪→ X.

Proof. (⇐) : Suppose that X is super-reflexive. Then we may assume that its
norm is uniformly convex. Namely, for any ε > 0 there exists δ(ε) > 0 so that
‖(x + y)/2‖ ≤ 1 − δ(ε) whenever ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε. We start with the
following simple Lemma.

Lemma 6.5. Let f : D1 → X be an injective map such that Lip(f) ≤ M and
Lip(f−1) ≤ 1. Then

‖f(T )− f(B)‖ ≤ 2M
(
1− δ( 2

M
)
)
.

Proof. Without loss of generality, we may assume that f(B) = 0. We have that

‖f(L)

M
− f(R)

M
‖ ≥ 2

M
.

On the other hand

‖f(L)

M
‖, ‖f(R)

M
‖, ‖f(T )− f(R)

M
‖, ‖f(T )− f(L)

M
‖ ≤ 1.

Therefore, by uniform convexity

‖f(L) + f(R)

2M
‖, ‖f(T )

M
− f(L) + f(R)

2M
‖ ≤ 1− δ( 2

M
).

Hence

‖f(T )‖ ≤ 2M
(
1− δ( 2

M
)
)
.

�

We now denote by MN = inf{M ≥ 1, DN
M
↪→ X}. So, for any M > MN there

is f : DN → X with Lip(f) ≤ M and Lip(f−1) ≤ 1. By the previous Lemma, the
distance between the images of the top and bottom points of a sub-diamond D1 of
DN is at most 2M

(
1 − δ( 2

M )
)
. By construction, the set of all the top and bottom

points of the the copies of D1 in DN make a doubled copy of DN−1. Therefore

∀M > MN 2MN−1 ≤ 2M
(
1− δ( 2

M
)
)
, thus MN−1 ≤MN

(
1− δ( 2

MN
)
)
.
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Assume now that the increasing sequence (MN )N is bounded and denote µ its limit.
We get that µ ≤ µ

(
1 − δ( 2

µ)
)
, which is impossible. This finishes the proof of the

first implication.

(⇒) : Our first step will be to describe how to build inductively an isometric copy

of DN in `1. More precisely, we shall see it as a subset of ({0, 1}2N , ‖ ‖1). This
could actually be taken as our definition of DN . So D0 is simply {0, 1}. Assume

that DN−1 is constructed as a subset of ({0, 1}2N−1
, ‖ ‖1). Then we define an

operation δ : DN−1 → {0, 1}2
N

, by δ(a1, .., a2N−1) = (a1, a1, a2, a2, .., a2N−1 , a2N−1).
By applying δ, we are just “‘doubling” DN−1 and constructing the top and bottom
points of the copies of D1 in DN . Now we have to introduce the left and right
points of those D1’s. This will be done by noting that for any a, a′ in DN−1 with

‖a − a′‖1 = 1 there are exactly two points in {0, 1}2N that are at distance 1 from
δ(a) and δ(a′). We add those points to δ(DN−1) to finish the construction of DN .
Let us make some remarks on the DN ’s. Let 1 ≤ i ≤ N . If a and a′ are adjacent
in Di, then x = δN−i(a) and x′ = δN−i(a′) belong to DN and differ exactly on one
interval of the form I =](j − 1)2N−i, j2N−i], on which x is constantly 0 and x′ is
constantly 1 (for instance). The set of vertices between x and x′ (or equal to x
and x′ outside I) is an isometric copy of DN−i, that will be called a sub-diamond
D of level i of DN . Let us now denote I0 =](j − 1)2N−i, (j − 1)2N−i + 2N−i−1]
and I1 =](j − 1)2N−i + 2N−i−1, j2N−i]. We denote vT = x′ and vB = x the top
and bottom vertices of D (remember that vB = 0 on I, vT = 1 on I and vB = vT
elsewhere). Similarly, we denote vL and vR the left and right vertices of D. They
can be described by vL = 0 on I0, vL = 1 on I1, vR = 1 on I0, vR = 0 on I1 and
vR = vL = vT = vB elsewhere.
Let y ∈ D. We will say that y is below the diagonal of D if d(y, vB) ≤ d(y, vT ). We
will say that y is on the left of D if d(y, vL) ≤ d(y, vR).

Assume now that X is not super-reflexive. Fix N ∈ N and θ ∈ (0, 1). James’

criterion insures the existence of (xi)
2N
i=1 in SX and (x∗i )

2N
i=1 in SX∗ such that

x∗n(xi) = θ, i ≥ n and x∗n(xi) = 0, i < n.

Note that it follows from the above that
(i) For any subset I of {1, .., 2N},

‖
∑
i∈I

xi‖ ≥ θ|I|.

(ii) for any sub-interval I of {1, .., 2N} and any (ai)i∈I ⊂ {0, 1},

‖
2N∑
i=1

aixi‖ ≥
θ

2

∑
i∈I

ai.

Let now f : DN → X defined by f(a) =
∑2N

i=1 aixi. We will show that this is a
C-embedding, with C being a universal constant. Notice, that we have just replaced

the canonical basis of `2
N

1 by the sequence (xi)
2N
i=1.

So fix u and v in DN .
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Case 1. If there exists a geodesic path joining B = (0, 0, .., 0) and T = (1, 1, .., 1)
and passing through u and v, then ‖f(u)− f(v)‖ = ‖

∑
i∈I xi‖ for some subset I of

{1, .., 2N} such that |I| = d(u, v). So we have that

θd(u, v) ≤ ‖f(u)− f(v)‖ ≤ d(u, v).

Case 2. Otherwise, there is a sub-diamond D of DN (say of level k) such that (for
instance) u is on the left of D and v is on the right of D. Let I be the sub-interval
of size 2N−k corresponding to D in our previous description. Write I = I0 ∪ I1 as
above. We denote again vT , vB, vL and vR the top, bottom, left and right vertices
of D.

Case 2.1. Assume that u and v are below (for instance) the diagonal of D. Then
d(u, v) = d(u, vB) + d(v, vB). Moreover u = 0 on I0 and v = 0 on I1. So we have

‖f(u)− f(v)‖ =‖
∑
i∈I1

uixi −
∑
i∈I0

vixi‖ ≤ ‖
∑
i∈I1

uixi‖+ ‖
∑
i∈I0

vixi‖

≤
∑
i∈I1

ui +
∑
i∈I0

vi = d(u, vB) + d(v, vB) = d(u, v).

On the other hand,

‖f(u)− f(v)‖ ≥ θ

2
max(

∑
i∈I1

ui,
∑
i∈I0

vi) ≥
θ

4
d(u, v).

Case 2.2. Assume (for instance) that u is above and v below the diagonal of D.
Then 2k−1 ≤ d(u, v) ≤ 2k. We also have that

‖f(u)− f(v)‖ ≤ 2k ≤ 2d(u, v)

and, since u is above the diagonal of D, u = 1 on I1 and

‖f(u)− f(v)‖ ≥ θ

2

∑
i∈I1

|ui| = θ2k−2 ≥ θ

4
d(u, v).

�
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[37] A. Pe lczyński, Projections in certain Banach spaces, Studia Math., 19, (1960), 209–228.
[38] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math., 20, (1975),

326–350.
[39] M. Ribe, Existence of separable uniformly homeomorphic non isomorphic Banach spaces, Israel

J. Math., 48, (1984), 139–147.
[40] M. Ribe, On uniformly homeomorphic normed spaces, Ark. Mat, 16, (1978), 1–9.
[41] G. Schechtman, personnal communication.
[42] A. Szankowski, An example of a universal Banach space, Israel J. Math., 11, (1972), 292–296.

Université de Franche-Comté, Laboratoire de Mathématiques UMR 6623, 16 route
de Gray, 25030 Besançon Cedex, FRANCE.
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