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Abstract

We study, in the semiclassical limit, the singularly perturbed nonlinear
Schrödinger equations

L~
A,V u = f(|u|2)u in RN (0.1)

where N ≥ 3, L~
A,V is the Schrödinger operator with a magnetic field

having source in a C1 vector potential A and a scalar continuous (electric)

∗The first author is partially supported by GNAMPA-INDAM Project 2015 Analisi vari-
azionale di modelli fisici non lineari.
†This work has been carried out in the framework of the project NONLOCAL (ANR-14-

CE25-0013), funded by the French National Research Agency (ANR).
‡The third author is partially supported by JSPS Grants-in-Aid for Scientific Research (B)

(25287025) and Waseda University Grant for Special Research Projects 2015B-189.

1



potential V defined by

L~
A,V = −~2∆− 2~

i
A · ∇+ |A|2 − ~

i
divA + V (x). (0.2)

Here f is a nonlinear term which satisfies the so-called Berestycki-Lions
conditions. We assume that there exists a bounded domain Ω ⊂ RN such
that

m0 ≡ inf
x∈Ω

V (x) < inf
x∈∂Ω

V (x)

and we set K = {x ∈ Ω | V (x) = m0}. For ~ > 0 small we prove the
existence of at least cupl(K) + 1 geometrically distinct, complex-valued
solutions to (0.1) whose modula concentrate around K as ~→ 0.

1 Introduction

In the present work we study, in a semiclassical regime, a nonlinear magnetic
Schrödinger equation, which arises in many fields of physics, in particular con-
densed matter physics and nonlinear optics. More precisely, we are looking for
stationary states to the evolution equation

i~
∂ψ

∂t
= L~

A,Wψ − f(|ψ|2)ψ in R+ × RN , (1.1)

where i2 = −1 and L~
A,W is the Schrödinger operator with a magnetic field

B having source in a C1 vector potential A and a continuous scalar (electric)
potential W defined by

L~
A,W =

(
~
i
∇−A

)2

+W (x) = −~2∆− 2~
i
A ·∇+ |A|2− ~

i
divA+W (x). (1.2)

Mathematically the transition from Quantum mechanics to Classical mechanics
is described letting to zero the Planck constant (~→ 0) and the solutions, which
exist for small value of ~, are usually referred semiclassical bound states. For
the physical background, we refer to [37].

The ansatz that the solution ψ(x, t) to (1.1) is a standing wave of the form

ψ(t, x) = e−iE~−1tu(x),

with E ∈ R and u : RN → C, leads us to solve the complex-valued semilinear
elliptic equation

L~
A,Wu = Eu+ f(|u|2)u in RN . (1.3)

In the work we consider an electric potential W (x) which is bounded from below
on RN , and we choose E such that V (x) = W (x)−E is strictly positive. Hence
equation (1.3) becomes

L~
A,V u = f(|u|2)u in RN (1.4)

where V is a strictly positive potential.
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Concerning the zero external magnetic case, there is an extensive literature
starting from the paper by Floer and Weinstein [26] (see for instance [2, 3, 18,
19, 23, 24, 31, 32, 33, 34, 10, 11, 12, 17]).

To our knowledge, the first paper, in which equation (1.4) is considered, is
due to Esteban and Lions [25]. The authors proved the existence of standing
wave solutions to (1.4) for ~ > 0 fixed and N = 3, by a constrained minimization
for a constant electric potential and a cubic nonlinearity. Concentration and
compactness arguments are applied to solve such minimization problems for
special classes of magnetic fields.

Successively, in [29] Kurata proved the existence of least energy solutions to
(1.4) for any fixed ~ > 0, under some assumptions linking the magnetic field
B and the electric potential V . He also studied the concentration phenomena
of a family of least solutions of (1.4) in the semiclassical limit, showing that
concentration of the modula of such solutions occurs at global minima of the
electric potential V . For periodic scalar and vector potentials, we refer to the
paper by Arioli and Szulkin [4].

A first multiplicity result of semiclassical solutions to (1.4), when f(t) =
|t|(p−1)/2, 1 < p < (N + 2)/(N − 2) for N > 2 and 1 < p < +∞ if N = 2,
as ~ → 0, has been proved by the first author in [15]. Since the nonlinearity
satisfies the Nehari monotonicity condition, the problem can be reduced to the
search of critical points of a functional constrained to a Nehari manifold and
the number of complex-valued solutions to (1.4) can be related to the topology
of (global) sublevel of the functional by standard deformation theorems for
Hilbert manifold without boundary. Finally by means of an entrance map and
a barycenter map, this number is estimated by the topological richness of the
set of global minima of the electric potential V .

The existence of complex-valued solutions of the magnetic Schrödinger equa-
tions in R3, whose modula concentrate at local minima of V , has been derived
in [21] using a penalization argument (see also [20]) for a cubic nonlinearity.
See also [1] for an extention of the results of [20, 21]. Successively, in [16] the
existence of multi-peaks solutions for nonlinear Schrödinger equations with an
external magnetic field is proved for a more general nonlinearity which satis-
fies the Berestycki-Lions conditions, using a variational approach developed in
[10] for the zero external magnetic case. Recently, the existence of semiclassi-
cal cylindrically symmetric solutions, whose moduli concentrate around circles
driven by the magnetic and electric fields, has been established in [9], assuming
that A and V are cylindrically symmetric potentials.

In this paper we are interested to find a multiplicity result to (1.4) for a
large class of magnetic potentials A and under nearly optimal assumptions on
the nonlinearity.

Throughout the paper, we assume that N ≥ 3 and

(A1) A : RN → RN is a C1 function such that, for some positive constants C, γ

|JA(x)| ≤ Ceγ|x|, ∀x ∈ RN
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where JA denotes the Jacobian matrix of A at x;

(V1) V ∈ C(RN ,R) and infx∈RN V (x) = V > 0;

(V2) There is a bounded domain Ω ⊂ RN such that

m0 = inf
x∈Ω

V (x) < inf
x∈∂Ω

V (x).

On the nonlinearity we require that

(f1) f : [0,+∞)→ R is continuous;

(f2) f(0) = limξ→0+ f(ξ) = 0;

(f3) there exists some 1 < p < N+2
N−2 , such that limξ→∞ f(ξ2)/ξp−1 = 0;

(f4) There exists ξ0 > 0 such that

F (|ξ0|2) > m0ξ
2
0 where F (ξ) =

∫ ξ

0

f(τ) dτ.

We remark that, under our assumptions of f , the search of solutions to (1.4)
cannot be reduced to the study of the critical points of a functional restricted to
a Nehari manifold. We obtain multiplicity results of complex-valued solutions to
(1.4) by means of a new variational approach developed in the recent paper [17]
for the scalar nonlinear Schrödinger equation corresponding to A = 0. Precisely,
we seek for critical points of the indefinite Euler functional associated to problem
(1.4) in a suitable neighborhood of expected solutions, suggested by a complex-
valued limiting problem. In order to apply critical point theory, one of the main
problem in this approach is the presence of the boundary. However we recognize
that this neighborhood is positively invariant for a pseudo gradient flow and we
derive a deformation theorem. In this way we relate the number of complex-
valued solutions to the relative category of two sublevels of the functional in
the neighborhood of expected solutions. Finally this relative category will be
estimated by means of the cuplength of the local minima set K of V . To this
aim, we need to construct two maps between topological pairs, which involve a
barycenter map and a Pohozaev type function. We remark that the presence of
the magnetic field produces several additional difficulties, due to the fact that the
space Hε,V,A(RN ,C), where the Euler functional associated to (1.4) is naturally
defined, can not be embedded into H1(RN ,C) where the limiting problem (as
~ → 0) is set up (see [25]). In order to perform our variational arguments, we
crucially use of the diamagnetic inequality which, in particular allows to prove
that the least energy level of the complex-valued limiting problem coincides with
the least energy level of a real-valued problem (see Section 2). This fact enables
to construct a barycenter map and a Pohozaev type map, which act only on the
modula of the complex-valued functions.

Our main result is the following:
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Theorem 1.1. Suppose N ≥ 3 and that (A1), (V1)–(V2) and (f1)–(f4) hold.
Assume in addition that supx∈RN V (x) <∞. Then letting K = {x ∈ Ω; V (x) =
m0}, for sufficiently small ε > 0, (1.4) has at least cupl(K) + 1 geometrically
distinct, complex-valued solutions viε, i = 1, . . . , cupl(K) + 1, whose modula
concentrate as ε → 0 in K, where cupl(K) denotes the cup-length defined with
Alexander-Spanier cohomology with coefficients in the field F.

We say that two complex-valued solutions to (1.4) are geometrically dis-
tinct if their S1-orbits are different. Our theorem covers the relevant physical
case of constant magnetic fields B which leads to vector potentials A, having
a polynomial growth on RN . For instance, if B is the constant magnetic field
(0, 0, b), then a suitable vector field is given by A(x) = b

2 (−x2, x1, 0). In physical
literature the potential A corresponds to the so-called Lorentz gauge (see [25]).

Remark 1.2. If K = SN−1, the N − 1 dimensional sphere in RN , then
cupl(K) + 1 = cat(K) = 2. If K = TN is the N -dimensional torus, then
cupl(K) + 1 = cat(K) = N + 1. However in general cupl(K) + 1 ≤ cat(K).

Remark 1.3. When we say that the solutions viε, i = 1, . . . , cupl(K) + 1 of
Theorem 1.1 concentrate when ε→ 0 in K, we mean that there exists a maximum
point xiε of |viε| such that limε→0 dist(x

i
ε,K) = 0 and that, for any such xiε,

|wiε| = |viε(ε(·+xiε))| converges, up to a subsequence, uniformly to a least energy
solution of

−∆U +m0U = f(U), U > 0, U ∈ H1(RN ,R).

We also have

|viε(x)| ≤ Cexp(− c
ε
|x− xiε|) for some c, C > 0.

Remark 1.4. In addition to condition (V 1) the boundedness of V from above
is assumed in Theorem 1.1. Arguing as in [10, 12, 16] we could prove Theorem
1.1 without this additional assumption. However, for the sake of simplicity, we
assume here the boundedness of V .

2 The variational framework Hε,V,A

Let ~ = ε, v(x) = u(εx), Aε(x) = A(εx) and Vε(x) = V (εx). Then equation
(1.4) is equivalent to(

1

i
∇−Aε(x)

)2

v + Vε(x)v − f(|v|2)v = 0, x ∈ RN . (2.1)

LetHε,V,A(RN ,C) be the Hilbert space defined by the completion of C∞0 (RN ,C)
under the scalar product

〈u, v〉ε,V,A = Re

∫
RN

(
1

i
∇u−Aε(x)u

)(
1

i
∇v −Aε(x)v

)
+ Vε(x)uv dx. (2.2)
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We denote by ‖ · ‖ε,V,A the associated norm and in the special case V = 1, we
set ‖ · ‖ε := ‖ · ‖ε,1,A. Also let Hε denote the space Hε,1,A(RN ,C).

In what follows we use the notations:

‖u‖H1 =

(∫
RN
|∇u|2 + u2 dx

)1/2

,

‖u‖r =

(∫
RN
|u|r dx

)1/r

for r ∈ [1,∞).

It is well known that, in general, there is no relationship between the spaces
Hε and H1(RN ,C), namely Hε 6⊂ H1(RN ,C) nor H1(RN ,C) 6⊂ Hε (see [25]).

We now recall the following diamagnetic inequality : for every u ∈ Hε,∣∣∣∣(∇i −Aε
)
u

∣∣∣∣ ≥ |∇|u‖, a.e. in RN . (2.3)

See [25] for a proof. As a consequence of (2.3), |u| ∈ H1(RN ,R) for any u ∈ Hε.
We also have for any r ∈ [2, 2N

N−2 ] there exists Cr > 0 independent of ε such
that

‖u‖r ≤ Cr‖u‖ε for all u ∈ Hε. (2.4)

We also note that for any compact set K ⊂ RN there exists a CK > 0 indepen-
dent of ε ∈ (0, 1] such that

‖u‖H1(K) ≤ CK‖u‖ε for all u ∈ Hε. (2.5)

See [16, Corollary 2.2]. Thus convergence inHε implies convergence inH1
loc(RN ,C).

We can also derive the following lemma.

Lemma 2.1. For each ε > 0,

Hε → H1(RN ,R); u 7→ |u|

is a continuous map.

Proof. It suffices to show for any strongly convergent sequence un → u in Hε

that |un| → |u| strongly in H1(RN ,R). Suppose that (un) ⊂ Hε converges
to u ∈ Hε strongly in Hε. We infer, by (2.4) that (un) strongly converges to
u in L2(RN ,C) and in particular |un| → |u| in L2(RN ,R). Now from (2.3) we
deduce that (|un|) is bounded inH1(RN ,R) and weakly converges inH1(RN ,R),
up to subsequences. Moreover since strong convergence in Hε implies strong
convergence in H1

loc(RN ), (|∇|un|(x)|) converges to |∇|u|(x)|, a.e in RN . Using
again (2.3), we derive, by Lebesgue’s Theorem, that ‖|un|‖H1(RN ,R) converges
to ‖|u|‖H1(RN ,R) and the conclusion of lemma holds.

Another continuity property of u 7→ |u|; Hε → H1(RN ) will be given in
Lemma 2.3 below.
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Finally we consider the functional Iε defined on Hε by

Iε(u) =
1

2

∫
RN

∣∣∣∣(1

i
∇−Aε(x)

)
u

∣∣∣∣2 dx+
1

2

∫
RN

Vε(x)|u|2 dx− 1

2

∫
RN

F (|u|2) dx,

where F (s) =
∫ s

0
f(t) dt. Without loss of generality, we may assume that f(ξ) =

0 for all ξ ≤ 0. It is standard that the functional is C1 and its critical points
are solutions of (2.1).

We notice that the group S1 of unit complex numbers acts on Hε by scalar
multiplication (γ, u) 7→ γu. This action is unitary, that is,

〈γu, γv〉ε,V,A = 〈u, v〉ε,V,A ∀γ ∈ S1, u, v ∈ Hε.

Since the functional Iε is S1-invariant, that is,

Iε(γu) = Iε(u) ∀u ∈ Hε, γ ∈ S1

then, if u ∈ Hε is a critical point of Iε, every point γu in the S1-orbit of u is
a critical point of Iε. We say that two critical points of Iε are geometrically
distinct if their S1-orbits are different. We shall apply S1-equivariant Lusternik-
Schnirelmann theory to obtain a lower bound for the number of critical S1-orbits
of Iε.

2.1 Scalar and Complex-valued Limit problems

Let us consider for a > 0 the scalar limiting equation of (2.1)

−∆u+ au = f(|u|2)u, u ∈ H1(RN ,R). (2.6)

(2.6) can be obtained as follows: let x = y + p/ε in (2.1) and take a (formal)
limit as ε→ 0, then we have

(
1

i
∇−A(p))2v + V (p)v = f(|v|2)v in RN .

Setting u(x) = e−iA(p)xv(x) and considering real-valued solutions, we obtain
(2.6) with a = V (p). Solutions to (2.6) correspond to critical points of the
functional La : H1(RN ,R)→ R defined by

La(u) =
1

2

∫
RN

(
|∇u|2 + a|u|2

)
dy − 1

2

∫
RN

F (|u|2)dy. (2.7)

We denote by E(a) the least energy level for (2.6). That is,

E(a) = inf{La(u); u ∈ H1(RN ,R) \ {0}, L′a(u) = 0}.

In [7] it is proved that there exists a least energy solution of (2.6), for any a > 0,
if (f1)–(f4) are satisfied (here we consider (f4) with m0 = a). Also it is showed
that each solution u of (2.6) satisfies the Pohozaev’s identity

N − 2

2

∫
RN
|∇u|2dx+N

∫
RN

a
u2

2
− 1

2
F (|u|2)dx = 0. (2.8)
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From this we immediately deduce that, for any solution ω of (2.6),

1

N

∫
RN
|∇ω|2dy = La(ω). (2.9)

We also consider the complex-valued equation, for a > 0,

−∆u+ au = f(|u|2)u, u ∈ H1(RN ,C). (2.10)

In turn solutions of (2.10) correspond to critical points of the functional LC
a :

H1(RN ,C)→ R, defined by

LC
a (v) =

1

2

∫
RN

(
|∇v|2 + a|v|2

)
dy − 1

2

∫
RN

F (|v|2)dy. (2.11)

We denote by EC(a) the least energy level for (2.10), that is

EC(a) = inf{LC
a (u); u 6= 0, LC

a

′
(u) = 0}.

In [36] the Pohozaev’s identity (2.8) is established for complex-valued solutions
of (2.10) and thus the equivalent of (2.9) holds for such solutions.

In [16, Lemma 2.3], it has been proved that the least energy levels of (2.6)
and (2.10) coincide and that any least energy solution U of (2.10) has the form
eiτω where ω is a positive least energy solution of (2.6) and τ ∈ R.

Now we introduce the notation

Ω(I) = {y ∈ Ω; V (y)−m0 ∈ I}

for an interval I ⊂ [0, infx∈∂Ω V (x)−m0). We choose a small ν0 > 0 such that

(i) 0 < ν0 < infx∈∂Ω V (x)−m0;

(ii) F (|ξ0|2) > 1
2 (m0 + ν0)ξ2

0 ;

(iii) Ω([0, ν0]) ⊂ Kd, where K = {x ∈ Ω | V (x) = m0} and d > 0 is a constant
for which Lemma 5.4 (Section 5) holds.

From [7] we note that, under our choice of ν0 > 0, E(a) is attained for
a ∈ [m0,m0 + ν0]. Clearly a 7→ E(a); [m0,m0 + ν0] → R is continuous and
strictly increasing. Choosing ν0 > 0 smaller if necessary, we may assume

E(m0 + ν0) < 2E(m0).

We choose `0 ∈ (E(m0 + ν0), 2E(m0)) and we set

SC
a,`0 = {U ∈ H1(RN ,C)\{0}; (LC

a )′(U) = 0, LC
a (U) ≤ `0, |U(0)| = max

x∈RN
|U(x)|}.

We also define
Ŝν0,`0 =

⋃
a∈[m0,m0+ν0]

SC
a,`0 .
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Following the proof of [10, Proposition 1], we can show that the set Ŝν0,`0 is
compact in H1(RN ,C) and that its elements have a uniform exponential decay.
Namely that there exist C, c > 0 such that

|U(x)|+ |∇U(x)| ≤ C exp(−c|x|) for all U ∈ Ŝl0,ν0 . (2.12)

By [16, Lemma 2.3], each element of SC
m0,E(m0) is of the form eiτω where τ ∈ R

and ω is a real least energy solution of (2.6). Thus

P0(ω) = 1,

where P0 is defined as

P0(u) =

(
N
∫
RN

1
2F (|u|2)− m0

2 |u|
2 dx

N−2
2 ‖∇|u|‖

2
2

) 1
2

. (2.13)

We note that P0(ω(xs )) = s and

Lemma 2.2. Suppose that u ∈ H1(RN ,C) satisifes P0(u) ∈ (0,
√

N
N−2 ). Then

Lm0(|u|) ≥ g(P0(u))E(m0),

where

g(t) =
1

2
(NtN−2 − (N − 2)tN ). (2.14)

Proof. By the scaling property

Lm0
(|u(

x

s
)|) =

sN−2

2
‖∇|u|‖22 + sN

(
m0

2
‖u‖22 −

1

2

∫
RN

F (|u|2) dx

)
and the characterization of E(m0)

E(m0) = inf{Lm0
(u); u ∈ H1(RN ,R) \ {0}, P0(u) = 1},

we can deduce the conclusion of Lemma 2.2. See [30] and [17, Lemma 2.1].

We claim that, as ` → E(m0) and ν → 0, Ŝν,` shrinks to SC
m0,E(m0) in

H1(RN ,C). More precisely we have

lim
ν→0,`→E(m0)

sup
Ũ∈Ŝν,`

inf
U∈SC

m0,E(m0)

||U − Ũ ||H1 = 0. (2.15)

In fact, suppose νn > 0, `n > E(m0) and Un ∈ Ŝνn,`n satisfy νn → 0 and

`n → E(m0), then by the compactness of Ŝν,` for each ν ≥ 0, ` ≥ E(m0), Un
converges to some U ∈ SC

m0,E(m0) in H1(RN ,C). Thus (2.15) holds.

As a consequence of (2.15) for `0 close to E(m0) and ν0 > 0 small, we have

P0(U) ∈
(1

2
,

√
N

N − 1

)
for all U ∈ Ŝν0,`0 . (2.16)
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We fix such `0 and ν0 and we write Ŝ = Ŝν0,`0 .

In what follows, we try to find our critical points in the following bounded
subsets of Hε:

Sε(r) = {eiA(εp)(x−p)U(x− p) + ϕ(x); εp ∈ Ω, U ∈ Ŝ, ‖ϕ‖ε < r}

for a r > 0.

2.2 A Pohozaev map in Sε(r)

First we give an equi-continuity result of u 7→ |u|; Hε → H1(RN ,R).

Lemma 2.3. For any r > 0 there exists r∗∗ > 0 such that for small ε > 0

‖|u(x)| − |U(x− p)|‖H1 < r (2.17)

for any u(x) = eiA(εp)(x−p)U(x − p) + ϕ(x) ∈ Sε(r∗∗) with εp ∈ Ω, U ∈ Ŝ,
‖ϕ‖ε < r∗∗.

Proof. It suffices to show

‖|un(x)| − |Un(x− pn)|‖2 → 0, (2.18)

‖∇|un(x)| − ∇|Un(x− pn)|‖2 → 0 (2.19)

for un = eiA(εnpn)(x−pn)Un(x − pn) + ϕn(x) ∈ Sεn(rn) with εn → 0, rn → 0,

εnpn ∈ Ω, Un ∈ Ŝ and
‖ϕn‖εn < rn → 0. (2.20)

Since Ŝ is compact in H1(RN ,C), we may assume that Un → U0 ∈ Ŝ and
εnpn → p0 ∈ Ω as n→∞. We proceed in several steps.

Step 1: (2.18) holds.

By (2.4) and (2.20),

‖un(x)− eiA(εnpn)(x−pn)Un(x− pn)‖2 = ‖ϕn‖2 ≤ ‖ϕn‖εn → 0.

Since u 7→ |u|; L2(RN ,C)→ L2(RN ,R) is continuous, we have

‖|un(x)| − |Un(x− pn)|‖2 = ‖|un(x)| − |eiA(εnpn)(x−pn)Un(x− pn)|‖2 → 0.

Step 2: ‖eiA(εnpn)(x−pn)(Un(x− pn)− U0(x− pn)) + ϕn(x)‖εn → 0.

Observe that

‖
(

1

i
∇−A(εnx)

)
(eiA(εnpn)(x−pn)(Un(x− pn)− U0(x− pn)))‖2

= ‖
(

1

i
∇−A(εnx+ εnpn)

)
(eiA(εnpn)x(Un(x)− U0(x)))‖2

= ‖A(εnpn)eiA(εnpn)x(Un − U0) +
1

i
eiA(εnpn)x(∇Un −∇U0)

−A(εnx+ εnpn)eiA(εnpn)x(Un − U0)‖2

= ‖(A(εnpn)−A(εnx+ εnpn))(Un − U0) +
1

i
(∇Un −∇U0)‖2 → 0 as n→∞.
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Here we have use the fact that Un → U0 in H1(RN ,C) and that the elements

in Ŝ have a uniform exponential decay. Clearly also

‖eiA(εnpn)(x−pn)(Un(x− pn)− U0(x− pn))‖2 = ‖Un − U0‖2 → 0.

By (2.20), we have the conclusion of Step 2.

Step 3: |eiA(εnpn)(x)Un(x) + ϕn(x+ pn)| → |U0(x)| in H1
loc(RN ,R).

In particular, after taking a subsequence

∇|eiA(εnpn)(x)Un(x) + ϕn(x+ pn)| → ∇|U0(x)| a.e. in RN .

Using notation

‖v‖2εn,1,A(·+εnpn) = ‖(1

i
∇−A(εnx+ εnpn))v‖22 + ‖v‖22,

we have by Step 2

‖eiA(εnpn)x(Un(x)− U0(x)) + ϕn(x+ pn)‖εn,1,A(·+εnpn)

= ‖eiA(εnpn)(x−pn)(Un(x− pn)− U0(x− pn)) + ϕn(x)‖εn
→ 0 as n→∞. (2.21)

As in (2.4), we get

eiA(εnpn)x(Un(x)− U0(x)) + ϕn(x+ pn)→ 0 in H1
loc(RN ,C),

from which the conclusion of Step 3 follows.

Step 4: (2.19) holds.

By (2.21),

‖
(

1

i
∇−A(εnx+ εnpn)

)
(eiA(εnpn)x(Un(x)− U0(x)) + ϕn(x+ pn))‖2 → 0.

Thus
(

1
i∇−A(εnx+ εnpn)

)
(eiA(εnpn)xUn(x) + ϕn(x+ pn)) converges to(

1
i∇−A(p0)

)
(eiA(p0)xU0(x)) in L2(R,C). Therefore, there exists a h(x) ∈

L2(RN ) such that∣∣∣∣(1

i
∇−A(εnx+ εnpn)

)
(eiA(εnpn)xUn(x) + ϕn(x+ pn))

∣∣∣∣ ≤ h(x).

By the diamagnetic inequality, we have∣∣∣∇|eiA(εnpn)xUn(x) + ϕn(x+ pn))| − ∇|U0(x)|
∣∣∣

≤
∣∣∣∣(1

i
∇−A(εnx+ εnpn)

)
(eiA(εnpn)xUn(x) + ϕn(x+ pn))

∣∣∣∣+ |∇U0(x)|

≤ h(x) + |∇U0(x)| ∈ L2(RN ).

11



Therefore, by Lebesgue theorem, it follows from Step 3 that

‖∇|un(x+ pn)| − ∇|U0(x)|‖2 = ‖∇|eiA(εnpn)xUn(x) + ϕn(x+ pn))| − ∇|U0(x)|‖2
→ 0.

which is nothing but (2.19).

For a later use we have the following

Corollary 2.4. There exists r0 > 0 such that for ε > 0 small, P0 : Sε(r0)→ R
is continuous and

P0(u) ∈
(

0,

√
N

N − 1

)
for all u ∈ Sε(r0). (2.22)

Proof. Since ‖|u|−|U |‖H1 → 0 implies
∫
RN F (|u|2) dx→

∫
RN F (|U |2) dx, ‖u‖22 →

‖U‖22 and ‖∇|u|‖22 → ‖∇|U |‖22, by Lemma 2.3 there exists r0 > 0 such that (2.16)
holds for ε > 0 small. The continuity of P0 : Sε(r0) → R follows from Lemma
2.1.

Remark 2.5. We remark that there does not exist a constant C > 0 with the
following property:

‖∇|u+ ϕ| − ∇|u|‖2 ≤ C(‖∇|ϕ|‖2 + ‖ϕ‖2) for all u, ϕ ∈ Hε.

Thus Lemma 2.3 is not a direct consequence from the diamagenetic inequality.
To see such an inequality does not hold, for n ∈ N we set u, ϕn ∈ H1(R,C) by

u(x) =


1 if |x| ≤ 1,

2− |x| if |x| ∈ (1, 2],

0 otherwise,

ϕn(x) =


e2πinx if |x| ≤ 1,

2− |x| if |x| ∈ (1, 2],

0 otherwise.

Then, we have

‖∇|u+ ϕn| − ∇|u|‖L2(R) →∞, sup
n∈N

(‖∇|ϕn|‖L2(R) + ‖ϕn‖L2(R)) <∞.

We can easily extend this example to general dimension N .

2.3 A barycenter map in Sε(r)

Following [12, 13] we introduce a center of mass in Sε(r).

Lemma 2.6. There exist r0, R0, ε0 > 0, such that for any ε ∈ (0, ε0) there
exists a function Υε : Sε(r0)→ RN such that

|Υε(u)− p| ≤ 2R0

for all u(x) = eiA(εp)(x−p)U(x−p)+ϕ(x) ∈ Sε(r0) with p ∈ RN , εp ∈ Ω, U ∈ Ŝ,
‖ϕ‖ε ≤ r0. Moreover, Υε has the following properties

12



(i) Υε is shift equivariant, that is,

Υε(u(x− y)) = Υε(u(x)) + y for all u ∈ Sε(r0) and y ∈ RN .

(ii) Υε is S1-invariant, that is,

Υε(e
iτu) = Υε(u) for all u ∈ Sε(r0) and eiτ ∈ S1.

(iii) Υε : Sε(r0) ⊂ Hε → RN is a continuous function. Moreover, Υε is
a locally Lipschitz continuous function of |u| in the following sense: Υε

satisfies Υε(u) = Υε(|u|) for all u ∈ Sε(r0) and there exist constants C1,
C2 > 0 such that

|Υε(u)−Υε(v)| ≤ C1‖|u|−|v|‖H1 for all u, v ∈ Sε(r0) with ‖|u|−|v|‖H1 ≤ C2.
(2.23)

Proof. We set r∗ = minU∈Ŝ ‖|U |‖H1 > 0 and choose R0 > 1 such that for U ∈ Ŝ

‖ |U | ‖H1(|x|≤R0) >
3

4
r∗ and ‖ |U | ‖H1(|x|≥R0) <

1

8
r∗.

This is possible by the uniform exponential decay (2.12). For u ∈ H1(RN ,C)
and q ∈ RN , we define

d(q, u) = ψ

(
inf
Ũ∈Ŝ
‖|u(x)| − |Ũ(x− q)|‖H1(|x−q|≤R0)

)
,

where ψ ∈ C∞0 (R,R) is such that

ψ(r) =

{
1 r ∈ [0, 1

4r∗],

0 r ∈ [ 1
2r∗,∞),

ψ(r) ∈ [0, 1] for all r ∈ [0,∞).

Now by Lemma 2.3, there exists r∗∗ ∈ (0, 1
8r∗] such that for ε > 0 small

‖ |u(x)| − |U(x− p)| ‖H1 <
1

8
r∗ (2.24)

for u(x) = eiA(εp)(x−p)U(x− p) + ϕ(x) ∈ Sε(r∗∗). We set

Υε(u) =

∫
RN

q d(q, u) dq∫
RN

d(q, u) dq

for u ∈ Sε(r∗∗).

We shall show that Υε has the desired property.
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Let u ∈ Sε(r∗∗) and write u(x) = eiA(εp)(x−p)U(x − p) + ϕ(x) (p ∈ RN ,

εp ∈ Ω, U ∈ Ŝ, ‖ϕ‖ε ≤ r∗∗).
Taking into account that ‖|ϕ|‖H1 ≤ ‖ϕ‖ε, we have that for |q − p| ≥ 2R0

and Ũ ∈ Ŝ, we have

‖|u(x)| − |Ũ(x− q)|‖H1(|x−q|≤R0)

≥ ‖|Ũ(x− q)|‖H1(|x−q|≤R0) − ‖|u(x)|‖H1(|x−q|≤R0)

≥ ‖|Ũ(x− q)|‖H1(|x−q|≤R0) − ‖|U(x− p)|‖H1(|x−q|≤R0) − ‖|u(x)| − |U(x− p)|‖H1

≥ ‖|Ũ(x− q)|‖H1(|x−q|≤R0) − ‖|U(x− p)|‖H1(|x−p|≥R0) −
1

8
r∗

>
3

4
r∗ −

1

8
r∗ −

1

8
r∗ =

1

2
r∗.

Thus d(q, u) = 0 for |q − p| ≥ 2R0. We can also see that, for small r > 0

d(q, u) = 1 for |q − p| < r.

Thus B(p, r) ⊂ supp d(·, u) ⊂ B(p, 2R0). Therefore Υε(u) is well-defined and
we have

Υε(u) ∈ B(p, 2R0) for u ∈ Sε(r∗∗).
It is clear from the definition that Υε(u) = Υε(|u|) for all u ∈ Sε(r∗∗). Its
shift equivariance, S1-invariance and locally Lipschitz continuity (2.23) can be
checked easily. Thus continuity of Υε : Sε(r∗∗) → RN , where the topology of
Sε(r∗∗) is induced from Hε, follows from Lemma 2.1.

Using this lemma we have

Lemma 2.7. There exist δ1 > 0, r1 ∈ (0, r0) and ν1 ∈ (0, ν0) such that for
ε > 0 small

Iε(u) ≥ E(m0) + δ1

for all u ∈ Sε(r1) with εΥε(u) ∈ Ω([ν1, ν0]).

Proof. We set M = infU∈Ŝ ‖U‖
2
2, M = supU∈Ŝ ‖U‖

2
2. It follows from the com-

pactness of Ŝ that 0 < M ≤ M < ∞. For later use in (2.28) below, we choose
ν1 ∈ (0, ν0) such that

E(m0 + ν1)− 1

2
(ν0 − ν1)M > E(m0). (2.25)

First we claim that for some δ1 > 0

inf
U∈Ŝ

LC
m0+ν1(U) ≥ E(m0) + 3δ1. (2.26)

Indeed, on one hand, if U ∈ SC
a,`0

with a ∈ [m0,m0 + ν1], we have

LC
m0+ν1(U) = LC

a (U) +
1

2
(m0 + ν1 − a)‖U‖22

≥ E(a) +
1

2
(m0 + ν1 − a)M
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and thus
inf

U∈
⋃
a∈[m0,m0+ν1] S

C
a,`0

LC
m0+ν1(U) > E(m0). (2.27)

On the other hand, if U ∈ SC
a,`0

with a ∈ [m0 + ν1,m0 + ν0],

LC
m0+ν1(U) = LC

a (U) +
1

2
(m0 + ν1 − a)‖U‖22

≥ E(a)− 1

2
(ν0 − ν1)M

≥ E(m0 + ν1)− 1

2
(ν0 − ν1)M

and using (2.25), it follows that

inf
U∈

⋃
a∈[m0+ν1,m0+ν0] S

C
a,`0

LC
m0+ν1(U) > E(m0). (2.28)

Choosing δ1 > 0 small enough, (2.26) follows from (2.27) and (2.28).

Now observe that, since elements in Ŝ have uniform exponential decays,

|Iε(eiA(εp)(x−p)U(x− p))− LC
V (εp)(U)| → 0 as ε→ 0

uniformly in U ∈ Ŝ, εp ∈ Ω. Thus, by (2.26), for U ∈ Ŝ, εp ∈ Ω([ν1, ν0])

Iε(e
iA(εp)(x−p)U(x− p)) = LC

V (εp)(U) + o(1) ≥ LC
m0+ν1(U) + o(1)

≥ E(m0) + 2δ1 for ε > 0 small. (2.29)

If we suppose that u(x) = eiA(εp)(x−p)U(x−p)+ϕ(x) ∈ Sε(r0) satisfies εΥε(u) ∈
Ω([ν1, ν0]), then by Lemma 2.6, εp belongs to a 2εR0-neighborhood of Ω([ν1, ν0]).
Thus by (2.29) it follows that

Iε(e
iA(εp)(x−p)U(x− p)) ≥ E(m0) +

3

2
δ1 for ε > 0 small.

Finally we observe that I ′ε is bounded on bounded sets uniformly in ε ∈ (0, 1] and

that by the compactness of Ŝ, {eiA(εp)(x−p)U(x−p); U ∈ Ŝ, εp ∈ Ω} is bounded
in Hε. Thus choosing r1 ∈ (0, r0) small, if u(x) = eiA(εp)(x−p)U(x− p) +ϕ(x) ∈
Sε(r1), we have

Iε(e
iA(εp)(x−p)U(x−p)) +ϕ(x)) ≥ Iε(eiA(εp)(x−p)U(x−p))− 1

2
δ1 ≥ E(m0) + δ1.

Thus, the conclusion of lemma holds.
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3 A penalization on the modulus

For technical reasons, we introduce a penalized functional Jε following [10].
Without restriction we can assume that ∂Ω is smooth and for h > 0 we set

Ωh = {x ∈ RN \ Ω; dist (x, ∂Ω) < h} ∪ Ω.

We choose a small h0 > 0 such that

V (x) > m0 for all x ∈ Ω2h0 \ Ω.

Let

Qε(u) =
(
ε−2‖u‖2L2(RN\(Ω2h0

/ε)) − 1
) p+1

2

+

and
Jε(u) = Iε(u) +Qε(u).

Observe that Jε is S1-invariant and we say that two critical points of Jε are
geometrically distinct if their S1-orbits are different. In Proposition 3.2 we prove
that a S1 critical orbit of Jε is also a S1 critical orbit of Iε for ε small enough.
Note that the penalization term Qε forces the concentration of the modula to
occur on Ω. A motivation to introduce Jε is that it satisfies a useful estimate
from below given in Lemma 3.4.

Now we define

ρ̂ε(u) = inf{‖u− eiA(εp)(x−p)U(x− p)‖ε; p ∈ RN , εp ∈ Ω, U ∈ Ŝ} : Sε(r0)→ R.

In the following proposition we derive a crucial uniform estimate of ‖J ′ε‖(Hε)∗
in an annular neighborhood of a set of expected solutions.

Proposition 3.1. There exists r2 ∈ (0, r1) with the following property: for any
0 < ρ1 < ρ0 ≤ r2, there exists δ2 = δ2(ρ0, ρ1) > 0 such that for ε > 0 small

‖J ′ε(u)‖(Hε)∗ ≥ δ2

for all u ∈ Sε(r2) with Jε(u) ≤ E(m0 + ν1) and (ρ̂ε(u), εΥε(u)) ∈ ([0, ρ0] ×
Ω([0, ν0])) \ ([0, ρ1]× Ω([0, ν1])).

Proof. By (f1)–(f3), for any a > 0 there exists Ca > 0 such that

|f(ξ2)| ≤ a+ Ca|ξ|p−1 for all ξ ∈ R. (3.1)

We fix a a0 ∈ (0, 1
2V ) and compute

I ′ε(u)u =

∫
RN
|(1

i
∇−A(εx))u|2 dx+

∫
RN

V (εx)|u|2 dx−
∫
RN

f(|u|2)|u|2 dx

≥
∫
RN
|(1

i
∇−A(εx))u|2 dx+ V ‖u‖22 − a0‖u‖22 − Ca0‖u‖

p+1
p+1

≥
∫
RN
|(1

i
∇−A(εx))u|2 dx+

1

2
V ‖u‖22 − Ca0‖u‖

p+1
p+1.
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Now choosing r2 > 0 small enough there exists c > 0 such that∫
RN
|(1

i
∇−A(εx))u|2 dx+

1

2
V ‖u‖22−2pCa0‖u‖

p+1
p+1 ≥ c‖u‖2ε for all ‖u‖ε ≤ 2r2.

(3.2)
(For a technical reason, especially to get (3.23) later, we add “2p” in front of
Ca0 .) In particular, we have

I ′ε(u)u ≥ c‖u‖2ε for all ‖u‖ε ≤ 2r2. (3.3)

Now we set

nε =

[
h0

ε

]
− 1

and for each i = 1, 2, · · · , nε we fix a function ϕε,i ∈ C∞0 (Ω) such that

ϕε,i(x) =

{
1 if x ∈ Ωε,i,

0 if x 6∈ Ωε,i+1,

ϕε,i(x) ∈ [0, 1], |ϕ′ε,i(x)| ≤ 2 for all x ∈ Ω.

Here we denote for ε > 0 and h ∈ (0, 2h0/ε]

Ωε,h = (Ωεh)/ε

= {x ∈ RN \ (Ω/ε); dist (x, (∂Ω)/ε) < h} ∪ (Ω/ε).

Now suppose that a sequence (uε) ⊂ Sε(r2) satisfies for 0 < ρ1 < ρ0 < r2

Jε(uε) ≤ E(m0 + ν1), (3.4)

ρ̂ε(uε) ∈ [0, ρ0], (3.5)

εΥε(uε) ∈ Ω([0, ν0]), (3.6)

‖J ′ε(uε)‖(Hε)∗ → 0. (3.7)

We shall prove, in several steps, that for ε > 0 small

ρ̂ε(uε) ∈ [0, ρ1] and εΥε(uε) ∈ Ω([0, ν1]), (3.8)

from which the conclusion of Proposition 3.1 follows.

Step 1: There exists a iε ∈ {1, 2, · · · , nε} such that

‖uε‖2Hε(Ωε,iε+1\Ωε,iε ) ≤
4r2

2

nε
. (3.9)

Here we use notation:

‖u‖2Hε(K) =

∫
K

∣∣∣∣(1

i
∇−Aε

)
u

∣∣∣∣2 + |u|2 dx

for u ∈ Hε and K ⊂ RN .
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Indeed we can write uε = eiA(εpε)(x−pε)Uε(x− pε) +ϕε(x) with ‖ϕε‖ε ≤ r2 and

by (3.6) and the uniform exponential decay of Ŝ, we have

‖uε‖Hε(RN\(Ω/ε)) ≤ ‖e
iA(εpε)(x−pε)Uε(x−pε)‖Hε(RN\(Ω/ε))+‖ϕε‖Hε(RN\(Ω/ε)) ≤ 2r2

for ε > 0 small. Thus

nε∑
i=1

‖uε‖2Hε(Ωε,i+1\Ωε,i) ≤ ‖uε‖
2
Hε(Ωε,h0/ε\(Ω/ε))

≤ 4r2
2

and there exists iε ∈ {1, 2, · · · , nε} satisfying (3.9).

Step 2: For the iε obtained in Step 1, we set

u(1)
ε (x) = ϕε,iε(x)uε(x) and u(2)

ε (x) = uε(x)− u(1)
ε (x).

Then we have, as ε→ 0,

Iε(u
(1)
ε ) = Jε(uε) + o(1), (3.10)

‖I ′ε(u(1)
ε )‖(Hε)∗ → 0, (3.11)

‖u(2)
ε ‖ε → 0, (3.12)

Qε(u
(2)
ε )→ 0. (3.13)

Observe that
Iε(uε) = Iε(u

(1)
ε ) + Iε(u

(2)
ε ) + o(1). (3.14)

Indeed, by (3.9)

Iε(uε)− (Iε(u
(1)
ε ) + Iε(u

(2)
ε ))

= Re

∫
Ωε,iε+1\Ωε,iε

(
1

i
∇−A(εx))(ϕε,iεuε)

(
1

i
∇−A(εx)

)
((1− ϕε,iε)uε)

+V (εx)ϕε,iε(1− ϕε,iε)|uε|2 dx

−1

2

∫
Ωε,iε+1\Ωε,iε

F (|uε|2)− F (|u(1)
ε |2)− F (|u(2)

ε |2) dx

→ 0 as ε→ 0.

Thus
Jε(uε) = Iε(u

(1)
ε ) + Iε(u

(2)
ε ) +Qε(u

(2)
ε ) + o(1). (3.15)

We can also see that

‖I ′ε(uε)− I ′ε(u(1)
ε )− I ′ε(u(2)

ε )‖(Hε)∗ → 0 as ε→ 0. (3.16)

In a similar way, it follows from (3.7) that, since ‖u(2)
ε ‖ε is bounded, that

I ′ε(u
(2)
ε )u(2)

ε +Q′ε(u
(2)
ε )u(2)

ε = J ′ε(uε)u
(2)
ε + o(1) = o(1). (3.17)
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We note that ‖u(2)
ε ‖ε ≤ 2r2 and (p+ 1)Qε(u) ≤ Q′ε(u)u for all u ∈ Hε. Thus by

(3.3)
c‖u(2)

ε ‖2ε + (p+ 1)Qε(u
(2)
ε )→ 0 as ε→ 0,

which implies (3.12) and (3.13). Now (3.12) implies that Iε(u
(2)
ε )→ 0 and thus

(3.10) follows from (3.15).

Finally we show (3.11). We choose a function ϕ̃ ∈ C∞0 (RN ) such that

ϕ̃(x) =

{
1 for x ∈ Ωh0 ,

0 for x ∈ RN \ Ω2h0
.

Then we have, for all w ∈ Hε,

I ′ε(u
(1)
ε )w = I ′ε(u

(1)
ε )(ϕ̃(εx)w)

= I ′ε(uε)(ϕ̃(εx)w)− (I ′ε(uε)− I ′ε(u(1)
ε ))(ϕ̃(εx)w)

= J ′ε(uε)(ϕ̃(εx)w)− (I ′ε(uε)− I ′ε(u(1)
ε ))(ϕ̃(εx)w)

and it follows that

|I ′ε(u(1)
ε )w| ≤ ‖J ′ε(uε)‖(Hε)∗‖ϕ̃(εx)w‖ε + ‖I ′ε(uε)− I ′ε(u(1)

ε )‖(Hε)∗‖ϕ̃(εx)w‖ε.

We note that by (3.12) and (3.16), ‖I ′ε(uε)− I ′ε(u
(1)
ε )‖(Hε)∗ → 0. Therefore, by

(3.7), ‖I ′ε(u
(1)
ε )‖(Hε)∗ → 0, that is (3.11) holds true.

Step 3: After extracting a subsequence — still we denoted by ε —, there exist
a sequence (p̃ε) ⊂ RN and Ũ ∈ Ŝ such that

εp̃ε → p̃0 for some p̃0 ∈ Ω([0, ν1]), (3.18)

‖u(1)
ε − eiA(εp̃ε)(x−p̃ε)Ũ(x− p̃ε)‖ε → 0, (3.19)

Iε(u
(1)
ε )→ LV (p̃0)(Ũ) as ε→ 0. (3.20)

Let qε = Υε(uε). We may assume that

e−iA(εqε)(x+qε)u(1)
ε (x+ qε) ⇀ U(x) weakly in H1(RN ) (3.21)

for some U ∈ H1(RN ) \ {0} and also that εqε → q0 ∈ Ω. In fact, noting

Aε(x) is uniformly bounded on suppu
(1)
ε ⊂ Ωε,nε+1 ⊂ Ωh0

/ε, boundedness of

‖u(1)
ε ‖ε implies boundedness of ‖u(1)

ε ‖H1 . Thus, e−iA(εqε)(x+qε)u
(1)
ε (x + qε) is

also bounded in H1(RN ). Taking a subsequence if necessary, we have (3.21).
From the definition of Υε and (3.11), it follows that (LC

V (q0))
′(U) = 0 and

U 6= 0. In particular, U(x) decays exponentially as |x| → ∞. Setting

wε(x) = u(1)
ε (x+ qε)− eiA(εqε) xU(x),

we have wε is bounded inH1(RN ) and e−iA(εqε)(x+qε)wε ⇀ 0 weakly inH1(RN )
and thus wε ⇀ 0 weakly in H1(RN ). We shall prove that ‖wε(x − qε)‖ε → 0.
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We have from the exponential decay of U(x) that

I ′ε(u
(1)
ε )wε(x− qε)

= I ′ε(e
iA(εqε)(x−qε)U(x− qε) + wε(x− qε))wε(x− qε)

= Re

∫
RN

(
1

i
∇−A(εx+ εqε)

)
(eiA(εqε) xU + wε)

(
1

i
∇−A(εx+ εqε)

)
wε dx

+Re

∫
RN

V (εx+ εqε)(e
iA(εqε) xU + wε)wε dx

−Re

∫
RN

f(|eiA(εqε)xU + wε|2)(eiA(εqε)xU + wε)wε dx

=

∫
RN
|
(

1

i
∇−A(εx+ εqε)

)
wε|2 + V (εx+ εqε)|wε|2 dx

+Re

∫
RN

(
1

i
∇−A(εx+ εqε)

)
(eiA(εqε)xU)

(
1

i
∇−A(εx+ εqε)

)
wε dx

+Re

∫
RN

V (εx+ εqε)e
iA(εqε)xUwε dx

−Re

∫
RN

f(|eiA(εqε)xU + wε|2)(eiA(εqε)xU + wε)wε dx

=

∫
RN
|
(

1

i
∇−A(εx+ εqε)

)
wε|2 + V (εx+ εqε)|wε|2 dx

+Re

∫
RN

(
1

i
∇−A(εqε)

)
(eiA(εqε)xU)

(
1

i
∇−A(εqε)

)
wε dx

+Re

∫
RN

V (εqε)e
iA(εqε)xUwε dx+ o(1)

−Re

∫
RN

f(|eiA(εqε)xU + wε|2)(eiA(εqε)xU + wε)wε dx

=

∫
RN
|
(

1

i
∇−A(εx+ εqε)

)
wε|2 + V (εx+ εqε)|wε|2 dx

+(LC
V (εqε)

)′(U)(e−iA(εqε)xwε) + Re

∫
RN

f(|U |2)Ue−iA(εqε)xwε dx

−Re

∫
RN

f(|eiA(εqε)xU + wε|2)(eiA(εqε)xU + wε)wε dx+ o(1)

=

∫
RN
|
(

1

i
∇−A(εx+ εqε)

)
wε|2 + V (εx+ εqε)w

2
ε dx

+(LC
V (εqε)

)′(U)(e−iA(εqε)xwε) + (I)− (II) + o(1). (3.22)

Since (LC
V (εqε)

)′(U)→ (LC
V (p0))

′(U) = 0, we have

(LC
V (εqε)

)
′
(U)(e−iA(εqε)xwε)→ 0.
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Now, by (3.1),

|(I)|+ |(II)| ≤
∫
RN

(a0(|U |+ |eiA(εqε)xU + wε|) + Ca0(|U |p + |eiA(εqε)xU + wε|p))|wε| dx

≤
∫
RN

a0|wε|2 + 2pCa0 |wε|p+1 + (2a0|U |+ (1 + 2p)Ca0 |U |p)|wε| dx

≤
∫
RN

a0|wε|2 + 2pCa0 |wε|p+1 dx+ o(1).

Here we used the fact that wε ⇀ 0 weakly in H1(RN ). Thus, by (3.22) and
(3.11), we have∫
RN
|
(

1

i
∇−A(εx+ εqε)

)
wε|2+V ‖wε‖22 ≤ a0‖wε(x−qε)‖2ε+2pCa0‖wε‖

p+1
p+1+o(1)

from which we deduce, using (3.2), that

‖wε(x− qε)‖ε → 0. (3.23)

At this point we have obtained (3.19), (3.20) where p̃ε, p̃0 and Ũ are replaced
with qε, q0 and U . Since

Iε(uε) = Iε(u
(1)
ε ) + o(1) = Jε(uε) + o(1) ≤ E(m0 + ν1) + o(1) (3.24)

implies
E(V (q0)) ≤ LV (q0)(U) ≤ E(m0 + ν1),

we have p̃0 = q0 ∈ Ω([0, ν1]) and U belongs to SV (p̃0) ⊂ Ŝ after a suitable shift,

that is, U(x) := Ũ(x+ y0) ∈ Ŝ for some y0 ∈ RN . Setting p̃ε = qε + y0, we get
(3.18)–(3.20).

Step 4: Conclusion

In Steps 1–3, we have shown that a sequence (un) ⊂ Sε(r2) with (3.4)–(3.7)

satisfies, up to a subsequence, and for some U ∈ Ŝ (3.19)–(3.20) with p̃ε =
Υε(uε) + y0. This implies that

εΥε(uε)→ p̃0 ∈ Ω([0, ν1]),

‖uε(x)− eiA(εp̃ε) (x−p̃ε)U(x− p̃ε)‖ε → 0.

In particular since ρ̂ε(uε)→ 0 as ε→ 0, we have ρ̂ε(uε) ∈ [0, ρ1] and (3.8) holds.
This ends the proof of the Proposition.

Proposition 3.2. There exists ε0 > 0 such that for ε ∈ (0, ε0] if uε ∈ Sε(r2)
satisfies

J ′ε(uε) = 0, (3.25)

Jε(uε) ≤ E(m0 + ν1), (3.26)

εΥε(uε) ∈ Ω([0, ν0]), (3.27)
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then
Qε(uε) = 0 and I ′ε(uε) = 0. (3.28)

That is, uε is a solution of (2.1).

Proof. Suppose that uε satisfies (3.25)–(3.27). Since uε satisfies (3.25) we have(
1

i
∇−Aε

)2

uε +
(
Vε + (p+ 1)(ε−2‖uε‖2L2(RN\(Ω2h0

/ε)) − 1)
p−1
2

+

×ε−2χRN\(Ω2h0
/ε)(x)

)
uε = f(|uε|2)uε, (3.29)

where χRN\(Ω2h0
/ε))(x) is the characteristic function of the set RN \ (Ω2h0

/ε).

Clearly uε satisfies (3.4)–(3.7) and thus, by the proof of Proposition 3.1, we
have

‖uε‖Hε(RN\(Ωh0/ε)) ≤ ‖u
(2)
ε ‖ε → 0 as ε→ 0.

From Moser’s iteration scheme, it follows that

‖uε‖L∞(RN\(Ω 3
2
h0
/ε)) → 0 as ε→ 0

and using a comparison principle, we deduce that for some c, c′ > 0

|uε(x)| ≤ c′ exp(−cdist (x,Ω 3
2h0

/ε)).

In particular then

‖uε‖L2(RN\(Ω2h0
/ε)) < ε for ε > 0 small

and we have (3.28).

To find critical points of Jε, we need the following.

Proposition 3.3. For any fixed ε > 0, the Palais-Smale condition holds for Jε
in {u ∈ Sε(r2); εΥε(u) ∈ Ω([0, ν0])}. That is, if a sequence (uj) ⊂ Hε satisfies
for some c > 0

uj ∈ Sε(r2),

εΥε(uj) ∈ Ω([0, ν0]),

‖J ′ε(uj)‖(Hε)∗ → 0,

Jε(uj)→ c as j →∞,

then (uj) has a strongly convergent subsequence in Hε.
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Proof. Since Sε(r2) is bounded in Hε, after extracting a subsequence if neces-
sary, we may assume uj ⇀ u0 weakly in Hε for some u0 ∈ Hε. We will show
that uj → u0 strongly in Hε. Denoting BR = {x ∈ RN ; |x| < R}, it suffices to
show that

lim
R→∞

lim
j→∞

‖uj‖2Hε(RN\BR) = 0. (3.30)

To show (3.30) we first we note that, since ε > 0 is fixed, ‖uj‖Hε(RN\BL) < 2r2

for a large L > 1. In particular, for any n ∈ N

n∑
i=1

‖uj‖2Hε(Di) < 4r2
2,

where Di = BL+i \BL+i−1.
Thus, for any j ∈ N, there exists ij ∈ {1, 2, · · · , n} such that

‖uj‖2Hε(Dij ) <
4r2

2

n
.

Now we choose ζi ∈ C1(R,R) such that ζi(r) = 1 for r ≤ L + i − 1, ζi(r) = 0
for r ≥ L+ i and ζ ′i(r) ∈ [−2, 0] for all r > 0. We set

ũj(x) = (1− ζij (|x|))uj(x).

We have, for a constant C > 0 independent of n, j

J ′ε(uj)ũj = I ′ε(uj)ũj +Q′ε(uj)ũj ,

I ′ε(uj)ũj = I ′ε(ũj)ũj + Re

∫
Dij

(
1

i
∇−A(εx)

)
(ζijuj)

(
1

i
∇−A(εx)

)
((1− ζij )uj) dx

+

∫
Dij

V (εx)ζij (1− ζij )|uj |2 + [f(|(1− ζij )uj |2)(1− ζij )− f(|uj |2)](1− ζij )|uj |2 dx

≥ I ′ε(ũj)ũj −
C

n
, (3.31)

Q′ε(uj)ũj = (p+ 1)
(
ε−2‖uj‖2L2(RN\(Ω2h0

/ε)) − 1
) p−1

2

+

×ε−2

∫
RN\(Ω2h0

/ε))

(1− ζij )|uj |2 dx ≥ 0. (3.32)

Since J ′ε(uj)ũj → 0, it follows from (3.31)–(3.32) that

I ′ε(ũj)ũj ≤
C

n
+ o(1) as j →∞.

Now recording that ‖ũj‖ε < 2r2 we have by (3.3) for some C > 0

‖ũj‖2ε ≤
C

n
+ o(1).
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Thus, from the definition of ũj , we deduce that

‖uj‖2Hε(RN\BL+n) ≤
C

n
+ o(1).

That is, (3.30) holds and (uj) strongly converges.

The following lemma will be useful to compute the relative category.

Lemma 3.4. There exists C0 > 0 independent of ε > 0 such that

Jε(u) ≥ Lm0
(|u|)− C0ε

2 for all u ∈ Sε(r1). (3.33)

Proof.

Jε(u) ≥ Lm0
(|u|) +

1

2

∫
RN

(V (εx)−m0)|u|2 dx+Qε(u)

≥ Lm0
(|u|)− 1

2
(m0 − V )‖u‖2L2(RN\(Ω/ε)) +Qε(u).

We distinguish the two cases: (a) ‖u‖2L2(RN\(Ω/ε)) ≤ 2ε2, (b) ‖u‖2L2(RN\(Ω/ε)) ≥
2ε2.

If case (a) occurs, we have

Jε(u) ≥ Lm0
(|u|)− (m0 − V )ε2

and (3.33) holds. If case (b) takes place, we have

Qε(u) ≥
(

1

2
ε−2‖u‖2L2(RN\(Ω/ε))

) p+1
2

≥ 1

2
ε−2‖u‖2L2(RN\(Ω/ε))

and thus

Jε(u) ≥ Lm0(|u|) +
1

2
(ε−2 − (m0 − V ))‖u‖2L2(RN\(Ω/ε))

≥ Lm0(|u|) for ε > 0 small.

Therefore (3.33) also holds.

4 A S1-invariant neighborhood of expected so-
lutions

In order to find critical points of the penalized functional Jε, we need to find a S1-
invariant neighborhood Nε,δ of expected solutions, which is positively invariant
under a S1-equivariant pseudo-gradient flow.
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We fix 0 < ρ1 < ρ0 < r2 and we then choose δ1, δ2 > 0 according to Lemma
2.7 and Proposition 3.1. We set for δ ∈ (0,min{ δ24 (ρ0 − ρ1), δ1}),

Nε,δ = {u ∈ Sε(ρ0); εΥε(u) ∈ Ω([0, ν0]), Jε(u) ≤ E(m0)+δ− δ2
2

(ρ̂ε(u)−ρ1)+}.

We notice that Nε,δ is S1-invariant, namely if u ∈ Nε,δ then γu ∈ Nε,δ for any
γ ∈ S1. We shall try to find S1-orbits of critical points of Jε in Nε,δ. In this
aim first note that

(a) u ∈ Sε(ρ0) and εΥε(u) ∈ Ω([ν1, ν0]) imply, by Lemma 2.7, that

Jε(u) ≥ Iε(u) ≥ E(m0) + δ1 > E(m0) + δ. (4.1)

In particular,
εΥε(u) ∈ Ω([0, ν1)) for u ∈ Nε,δ.

(b) For u ∈ Nε,δ, if ρ̂ε(u) = ρ0, i.e., u ∈ ∂Sε(ρ0), then by the choice of δ

Jε(u) ≤ E(m0) + δ − δ2
2

(ρ0 − ρ1) < E(m0)− δ. (4.2)

4.1 A S1-equivariant deformation theorem

Now we consider a deformation flow defined by{
dη
dτ = −φ(η) V(η)

‖V(η)‖H1
,

η(0, u) = u,
(4.3)

where V(u) : {u ∈ Hε; J
′
ε(u) 6= 0} → Hε is a locally Lipschitz continuous

S1-equivariant, pseudo-gradient vector field satisfying

‖V(u)‖ε ≤ ‖J ′ε(u)‖(Hε)∗ , J ′ε(u)V(u) ≥ 1

2
‖J ′ε(u)‖2(Hε)∗

and φ(u) : Hε → [0, 1] is a locally Lipschitz continuous function. We require
that φ(u) satisfies φ(u) = 0 if Jε(u) 6∈ [E(m0)− δ, E(m0) + δ].

Arguing as in [17, Proposition 4.1] (see also [8, Theorem 1.8]), we can derive
the following deformation theorem in a neighborhood of expected solutions Nε,δ.
Proposition 4.1. For any c ∈ (E(m0)−δ, E(m0)+δ) and for any S1-invariant
neighborhood O of Kc ≡ {u ∈ Nε,δ; J ′ε(u) = 0, Jε(u) = c} (O = ∅ if Kc = ∅),
there exist d > 0 and a S1-equivariant deformation η(τ, u) : [0, 1]× (Nε,δ \O)→
Nε,δ such that

(i) η(0, u) = u for all u.

(ii) η(τ, u) = u for all τ ∈ [0, 1] if Jε(u) 6∈ [E(m0)− δ, E(m0) + δ].

(iii) Jε(η(τ, u)) is a non-increasing function of τ for all u.

(iv) Jε(η(1, u)) ≤ c− d for all u ∈ Nε,δ \O satisfying Jε(u) ≤ c+ d.
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4.2 Two maps between topological pairs

Now for c ∈ R, we set

N c
ε,δ = {u ∈ Nε,δ; Jε(u) ≤ c}.

For δ̂ > 0 small, using relative S1-equivariant category, we shall estimate the

change of topology between NE(m0)+δ̂
ε,δ and NE(m0)−δ̂

ε,δ .

We recall that K = {x ∈ Ω;V (x) = m0}. For s0 ∈ (0, 1) small we introduce
two maps:

Φ̃ε : ([1− s0, 1 + s0]×K, {1± s0} ×K)→ (NE(m0)+δ̂
ε,δ ,NE(m0)−δ̂

ε,δ );

Ψ̃ε : (NE(m0)+δ̂
ε,δ ,NE(m0)−δ̂

ε,δ )→
([1− s0, 1 + s0]× Ω([0, ν1]), ([1− s0, 1 + s0] \ {1})× Ω([0, ν1])).

Here we use notation from algebraic topology: f : (A,B) → (A′, B′) means
B ⊂ A, B′ ⊂ A′, f : A→ A′ is continuous and f(B) ⊂ B′.

Definition of Φ̃ε:
Fix a least energy solution U0 ∈ Ŝ of −∆u+m0u = f(u) and set

Φ̃ε(s, p) = eiA(p)( x−p/εs )U0

(x− p/ε
s

)
.

Let us show that Φ̃ε is well-defined for a suitable choice of s0 and δ̂ and assuming
ε > 0 small enough.

By the exponential decay of U0, we can find s0 ∈ (0, 1) small such that

‖eiA(p)(
x−p/ε
s )U0(

x− p/ε
s

)− eiA(p)(x−p/ε)U0(x− p/ε)‖ε < ρ1

for all p ∈ K, s ∈ [1 − s0, 1 + s0] and small ε > 0. Therefore, using the first
property of Lemma 2.6, that is

|Υε(u)− p| ≤ 2R0

for u(x) = eiA(εp)(x−p)U(x− p) + ϕ(x) ∈ Sε(ρ0), we get

∣∣Υε(e
iA(p)( x−p/εs )U0

(x− p/ε
s

)
)− p/ε

∣∣ ≤ 2R0.

It follows that, for p ∈ K, s ∈ [1− s0, 1 + s0]

εΥε(e
iA(p)( x−p/εs )U0

(x− p/ε
s

)
) = p+ o(1) (4.4)

and so εΥεΦ̃ε(s, p) ∈ Ω([0, ν0]) for ε > 0 small enough.
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Since U0 is a least energy solution, we note that |U0| satisfies the Pohozaev
identity (2.7) and thus P0(|U0|) = 1 and P0(|U0(xs )|) = s. Also we have, by
Lemma 2.2, for p ∈ K and s ∈ [1− s0, 1 + s0]

Jε(e
iA(p)( x−p/εs )U0(

x− p/ε
s

)) = Lm0(|U0(
x− p/ε

s
)|) + o(1)

= g(P0(U0(
x− p/ε

s
)))E(m0) + o(1)

= g(s)E(m0) + o(1),

where g : [0,∞) → R is defined in (2.14). Note that g satisfies g(t) ≤ 1 for all

t > 0 and that g(t) = 1 holds if and only if t = 1. Thus choosing δ̂ > 0 small so

that g(1± s0)E(m0) < E(m0)− δ̂, we have Φ̃ε({1± s0} ×K) ⊂ NE(m0)−δ̂
ε,δ and

thus Φ̃ε is well-defined.

Definition of Ψ̃ε:
We introduce the continuous function P̃0 : Sε(r0)→ R by

P̃0(u) =


1 + s0 if P0(u) ≥ 1 + s0,

1− s0 if P0(u) ≤ 1− s0,

P0(u) otherwise,

where P0 is given in (2.13) and we define our operator Ψ̃ε by

Ψ̃ε(u) = (P̃0(u), εΥε(u)) for u ∈ NE(m0)+δ̂
ε,δ .

Let us show that Ψ̃ε is well-defined for ε > 0 small enough. By definition

Ψ̃ε(NE(m0)+δ̂
ε,δ ) ⊂ [1− s0, 1 + s0]× Ω([0, ν1]). Now if u ∈ NE(m0)−δ̂

ε,δ we have by
Lemma 3.4,

Lm0
(|u|) ≤ Jε(u) + C0ε

2 ≤ E(m0)− δ̂ + C0ε
2.

Thus, for ε > 0 small enough,

Lm0(|u|) < E(m0). (4.5)

At this point we recall, see [30] for a proof, that E(m0) can be characterized as

E(m0) = inf{Lm0
(u); u 6= 0, P0(u) = 1}. (4.6)

Thus (4.5) implies that P0(u) 6= 1 and Ψ̃ε is well-defined.

Now setting Φε(s, p) := S1Φ̃ε(s, p) for each (s, p) ∈ [1 − s0, 1 + s0] × K, it
results that Φε is well-defined as a map

Φε : ([1− s0, 1 + s0]×K, {1± s0} ×K)→ (NE(m0)+δ̂
ε,δ /S1,NE(m0)−δ̂

ε,δ /S1).
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Similarly settingΨε(S1u) := Ψ̃ε(u) for any u ∈ NE(m0)+δ̂
ε,δ , we see that Ψε is

well-defined as a map

Ψε : (NE(m0)+δ̂
ε,δ /S1,NE(m0)−δ̂

ε,δ /S1)→
([1− s0, 1 + s0]× Ω([0, ν1]), ([1− s0, 1 + s0] \ {1})× Ω([0, ν1])).

Finally we derive the following topological lemma.

Proposition 4.2.

Ψε ◦ Φε : ([1− s0, 1 + s0]×K, {1± s0} ×K)

→ ([1− s0, 1 + s0]× Ω([0, ν1]), ([1− s0, 1 + s0] \ {1})× Ω([0, ν1]))

is homotopic to the embedding j(s, p) = (s, p). That is, there exists a continuous
map

η : [0, 1]× [1− s0, 1 + s0]×K → [1− s0, 1 + s0]× Ω([0, ν1])

such that

η(0, s, p) = (Ψε ◦ Φε)(s, p),

η(1, s, p) = (s, p) for all (s, p) ∈ [1− s0, 1 + s0]×K,
η(t, s, p) ∈ ([1− s0, 1 + s0] \ {1})× Ω([0, ν1])

for all t ∈ [0, 1] and (s, p) ∈ {1± s0} ×K.

Proof. By the definitions of Φε and Ψε, we have

(Ψε ◦ Φε)(s, p) =
(
P̃0(εiA(p)( x−p/εs )U0(

x− p/ε
s

)), εΥε(e
iA(p)( x−p/εs )U0(

x− p/ε
s

))
)

=
(
s, εΥε(e

iA(p)( x−p/εs )U0(
x− p/ε

s
))
)
.

We set

η(t, s, p) =
(
s, (1− t)εΥε(e

iA(p)( x−p/εs )U0(
x− p/ε

s
)) + tp

)
.

Recalling (4.4), we see that for ε > 0 small η(t, s, p) has the desired properties
and Ψε ◦ Φε is homotopic to the embedding j.

5 Proof of Theorem 1.1

In order to prove our theorem, we shall need some topological tools that we now
present for the reader convenience. Following [6], see also [27, 28], we define
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Definition 5.1. Let B ⊂ A and B′ ⊂ A′ be topological spaces and f : (A,B)→
(A′, B′) be a continuous map, that is f : A→ A′ is continuous and f(B) ⊂ B′.
The category cat(f) of f is the least integer k ≥ 0 such that there exist open
sets A0, A1, · · · , Ak with the following properties:

(a) A = A0 ∪A1 ∪ · · · ∪Ak.

(b) B ⊂ A0 and there exists a map h0 : [0, 1]×A0 → A′ such that

h0(0, x) = f(x) for all x ∈ A0,

h0(1, x) ∈ B′ for all x ∈ A0,

h0(t, x) = f(x) for all x ∈ B and t ∈ [0, 1].

(c) For i = 1, 2, · · · , k, f |Ai : Ai → A′ is homotopic to a constant map.

We also introduce the cup-length of f : (A,B) → (A′, B′). Let H∗ denote
Alexander-Spanier cohomology with coefficients in the field F. We recall that
the cup product ^ turns H∗(A) into a ring with unit 1A, and it turns H∗(A,B)
into a module over H∗(A). A continuous map f : (A,B) → (A′, B′) induces
a homomorphism f∗ : H∗(A′) → H∗(A) of rings as well as a homomorphism
f∗ : H∗(A′, B′)→ H∗(A,B) of abelian groups. We also use notation:

H̃n(A′) =

{
0 for n = 0,

Hn(A′) for n > 0.

For more details on algebraic topology we refer to [35].

Definition 5.2. For f : (A,B) → (A′, B′) the cup-length, cupl(f) is defined
as follows; when f∗ : H∗(A′, B′) → H∗(A,B) is not a trivial map, cupl(f) is
defined as the maximal integer k ≥ 0 such that there exist elements α1, · · · ,
αk ∈ H̃∗(A′) and β ∈ H∗(A′, B′) with

f∗(α1 ^ · · ·^ αk ^ β) = f∗(α1) ^ · · ·^ f∗(αk) ^ f∗(β)

6= 0 in H∗(A,B).

When f∗ = 0 : H∗(A′, B′)→ H∗(A,B), we define cupl(f) = −1.

We note that cupl(f) = 0 if f∗ 6= 0 : H∗(A′, B′)→ H∗(A,B) and H̃∗(A′) =
0.

Finally we recall

Definition 5.3. For a set (A,B), we define the relative category cat(A,B) and
the relative cup-length cupl(A,B) by

cat(A,B) = cat(id(A,B) : (A,B)→ (A,B)),

cupl(A,B) = cupl(id(A,B) : (A,B)→ (A,B)).

We also set
cat(A) = cat(A, ∅), cupl(A) = cupl(A, ∅).
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The following lemma which is due to Bartsch [5] (see [17] for a proof) is
one of the keys of our proof and we make use of the continuity property of
Alexander-Spanier cohomology.

Lemma 5.4. Let K ⊂ RN be a compact set. For a d-neighborhood Kd = {x ∈
RN ; dist (x,K) ≤ d} and I = [0, 1], ∂I = {0, 1}, we consider the inclusion

j : (I ×K, ∂I ×K)→ (I ×Kd, ∂I ×Kd)

defined by j(s, x) = (s, x). Then for d > 0 small,

cupl(j) ≥ cupl(K).

Now we have all the ingredients to give the

Proof of Theorem 1.1. Using Proposition 4.1, we can apply S1-invariant L.S.
theory and derive that for ε > 0 small the number of critical S1-orbits of Jε in

NE(m0)+δ̂
ε,δ \NE(m0)−δ̂

ε,δ is at least S1-cat(NE(m0)+δ̂
ε,δ ,NE(m0)−δ̂

ε,δ ) (see [27, Theorem
4.2] and [14, Theorem 1.1]).

Since S1 acts freely on Hε \ {0}, that is γu 6= u for all u ∈ Hε \ {0}, γ ∈ S1,
γ 6= 1, we have

S1 − cat(NE(m0)+δ̂
ε,δ ,NE(m0)−δ̂

ε,δ ) = cat(NE(m0)+δ̂
ε,δ /S1,NE(m0)−δ̂

ε,δ /S1).

Finally, using Lemma 5.4, we can argue as in the proof of Theorem 1.1 in [17]
and we deduce that

cat(NE(m0)+δ̂
ε,δ /S1,NE(m0)−δ̂

ε,δ /S1) ≥ cupl(K) + 1.

Thus we conclude that Jε has at least cupl(K)+1 critical S1 orbits inNE(m0)+δ̂
ε,δ \

NE(m0)−δ̂
ε,δ . Recalling Proposition 3.2, this completes the proof.

Proof of Remark 1.3. From the proof of Proposition 3.1 we know that for any
ν0 > 0 small enough the critical points ujε, j = 1, . . . , cupl(K) + 1 satisfy

||ujε(x)− eiA(xj)(x−xj)U j(x− xjε)||ε → 0

where εxjε = εΥε(u
j
ε) + o(1) → xj0 ∈ Ω([0, ν0]) and U i ∈ Ŝ. Thus wjε(x) =

ujε(x + xjε) converges to eiA(xj)(xj)U j ∈ Ŝ. Now observing that these results
holds for any ν0 > 0 and any `0 > E(m0 +ν0) we deduce, considering sequences
νn0 → 0, `n0 → E(m0) and making a diagonal process, that it is possible to
assume that each wjε converges to a least energy solution of

−∆U +m0U = f(U), U > 0, U ∈ H1(RN ,C).

Clearly also

|ujε(x)| ≤ Cexp(−c|x− xjε|), for some c, C > 0

and this ends the proof.
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