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Introduction

Consider X1, . . . ,Xn i.i.d. and real-valued r.v. with distribution
function F and density f . The most classical and natural estimator
of F is the edf:

Fn(t) =
1

n

n∑
i=1

I]−∞,t](Xi )

 unbiased, strongly uniformly consistent, but ... discontinuous

Alternative estimators (Servien, 09):

Kernel distribution estimator :
Kn(t) = 1

nhn

∫ t
−∞

∑n
i=1 k( x−Xi

hn
) dx with k a classical density

kernel

Other estimators : local smoothing (Lejeune and Sarda, 92),
level-crossing (Huang and Brill, 04), splines (Berlinet, 81), ...

All integrated density estimators ...
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Polygonal estimators

Families G
(j ,p)
n : j = 1 known support [a, b], j = 2 unknown

support and p a known parameter in [0, 1].

a X1
* X2

* Xn−1
* Xn

*
b

0

1

n

2

n

n − 1

n

11

c

c

c

c

c

c
Fn(t)
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Definition (known support [a, b])

G
(1,p)
n (t) =

(1− p)(t − a)

n(X ∗1 − a)
I[a,X∗

1 [(t) +
(
1− p(b − t)

n(b − X ∗n )

)
I[X∗

n ,b](t)

+
n−1∑
k=1

t + (k − p)X ∗k+1 − (k + 1− p)X ∗k
n(X ∗k+1 − X ∗k )

I[X∗
k ,X

∗
k+1[(t)

Definition (unknown support)

G
(2,p)
n (t) = G

(1,p)
n (t)I[X∗

1 ,X∗
n ](t)

+ max
(
0,

t − (2− p)X ∗1 + (1− p)X ∗2
n(X ∗2 − X ∗1 )

)
I]−∞,X∗

1 [(t)

+ min(1,
t + (n − 1− p)X ∗n − (n − p)X ∗n−1

n(X ∗n − X ∗n−1)

)
I[X∗

n ,+∞[(t)
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First properties

G
(j ,p)
n are continuous cdf and their piecewise derivatives are

densities.

G
(j ,p)
n (X ∗k ) = k−p

n and G
(j ,p)
n (X ∗k+1)− G

(j ,p)
n (X ∗k ) = 1

n .

G
(j ,p)
n (t) = Fn(t) for t = X ∗k + p(X ∗k+1 − X ∗k ).

G
(1,p)
n (a) = Fn(a) = 0 and G

(1,p)
n (b) = Fn(b) = 1.

G
(2,p)
n (t) ≡ 0 for t ≤ (2− p)X ∗1 − (1− p)X ∗2 ≤ X ∗1 and

G
(2,p)
n (t) ≡ 1 for t ≥ (1 + p)X ∗n − pX ∗n−1 ≥ X ∗n but[
(2− p)X ∗1 − (1− p)X ∗2 , (1 + p)X ∗n − pX ∗n−1

]
6⊂ [a, b].
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Only one reference (?) about polygonal estimators (Read, 72).

G
(1,0)
n (t) =

t

nX ∗1
I[0,X∗

1 [(t) + I[X∗
n ,1](t)

+
n−1∑
k=1

t + kX ∗k+1 − (k + 1)X ∗k
n(X ∗k+1 − X ∗k )

I[X∗
k ,X

∗
k+1[(t)

It is shown that, for n sufficiently large, the expected squared error

of G
(1,0)
n is no larger than Fn. Also, a variant of G

(1,0)
n dominates

nFn+1
n+2 in terms of integrated risk but the result is not proven.
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In all the following and, without loss of generality, [a, b] ≡ [0, 1]

Lemma

For the families of estimators G
(1,p)
n , we get

G
(1,p)
n (t)− Fn(t) =

(1− p)t

nX ∗1
I[0,X∗

1 [(t)− p(1− t)

n(1− X ∗n )
I[X∗

n ,1](t)

+
n−1∑
k=1

t − pX ∗k+1 − (1− p)X ∗k
n(X ∗k+1 − X ∗k )

I[X∗
k ,X

∗
k+1[(t);

 
∥∥∥Fn − G

(j ,p)
n

∥∥∥
∞

= max
(p
n ,

1−p
n

)
, 0 ≤ p ≤ 1, j = 1, 2.
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For the families of estimators G
(2,p)
n , we get

G
(2,p)
n (t)− Fn(t)

=
t + (1− p)X ∗2 − (2− p)X ∗1

n(X ∗2 − X ∗1 )
I[(2−p)X∗

1 −(1−p)X∗
2 ,X∗

1 [(t)

+
t − (1 + p)X ∗n + pX ∗n−1

n(X ∗n − X ∗n−1)
I[X∗

n ,(1+p)X∗
n −pX∗

n−1](t)

+
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Exponential inequalities

Proposition

If F is continuous and increasing over [0,1], we obtain

(a) For j = 1, 2 and ε > 1
2n(1−a0) with 0 < a0 < 1,

P
( ∥∥∥∥G (j , 1

2
)

n − F

∥∥∥∥
∞
≥ ε
)
≤ 2 exp(−2a2

0nε
2), n ≥ 1.

(b) More generally,

P
( ∥∥∥G (j ,p)

n − F
∥∥∥
∞
≥ ε
)
≤ 2 exp(−2a2

0nε
2), 0 < a0 < 1,

for ε > max(p,1−p)
n(1−a0) , n ≥ 1.
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Proof. The result is derived from∥∥∥G (j ,p)
n − F

∥∥∥
∞
≤ max(p, 1− p)

n
+ ‖Fn − F‖∞

and the exponential inequality (Massart, 90)

P
(
‖Fn − F‖∞ ≥ ε

)
≤ 2 exp

(
− 2nε2

)
with the choice ε > max(p,1−p)

n(1−a0) , n ≥ 1, 0 < a0 < 1.
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Proposition

Under same conditions as before, we get

(a) for p = 1
2 , j = 1, 2:

P
( ∥∥∥∥G (j , 1

2
)

n − F

∥∥∥∥
∞
≥ ε
)
≤ 2 exp(−2nε2), 0 < ε <

1

4n
, n ≥ 1;

(b) and more generally,

P
( ∥∥∥G (j ,p)

n − F
∥∥∥
∞
≥ ε
)
≤ 2 exp(−2nε2),

0 < ε < max
( p

2n ,
1−p
2n

)
, n ≥ 1.

Proof. The result is derived again from the choice of ε and

P
( ∥∥∥G (j ,p)

n − F
∥∥∥
∞
≥ ε
)
≤ 2 exp

(
− 2n

(
ε−max(

p

n
,

1− p

n
)
)2)

.
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Study of the MISE

The MISE is calculated from E
∫∞
−∞

(
G

(j ,p)
n (t)− F (t)

)2
dt

= E

∫ ∞
−∞

(
Fn(t)− F (t)

)2
dt + E

∫ ∞
−∞

(
G

(j ,p)
n (t)− Fn(t)

)2
dt

+2E

∫ ∞
−∞

(
G

(j ,p)
n (t)−Fn(t)

)(
Fn(t)−F (t)

)
dt, j = 1, 2, p ∈ [0, 1].

Lemma

(a) For m ∈ N∗,
∫ 1

0

(
G

(1,p)
n (t)− Fn(t)

)m
dt

=

(
(1− p)m − (−1)mpm

)(
pX ∗1 + (1− p)X ∗n

)
+ (−1)mpm

(m + 1)nm
.
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 for m even and p = 1
2 , the result is (2n)−m

m+1 !
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Study of the MISE
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−∞

(
G

(j ,p)
n (t)− F (t)

)2
dt

= E

∫ ∞
−∞

(
Fn(t)− F (t)

)2
dt + E

∫ ∞
−∞

(
G

(j ,p)
n (t)− Fn(t)

)2
dt

+2E
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−∞

(
G
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n (t)−Fn(t)

)(
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(1,p)
n (t)− Fn(t)

)m
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=

(
(1− p)m − (−1)mpm

)(
pX ∗1 + (1− p)X ∗n

)
+ (−1)mpm

(m + 1)nm
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(b) A similar but more complicated expression is obtained for
j = 2 involving X ∗2 and X ∗n−1 too.
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Assumption (A1)

(i) F admits the density f supposed to be compactly supported
on [0,1]

(ii) f is continuous on [0,1] and inf
x∈[0,1]

f (x) ≥ c0 for some positive

constant c0;

(iii) f is a Lipschitz function: there exists a positive constant c1

such that for all (x , y) ∈]0, 1[2, |f (x)− f (y)| ≤ c1 |x − y | .
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Lemma

If the conditions A1-(i)(ii) hold then, for all integers r ≥ 0 and
m ≥ 1, not depending on n, we get

(a) E
(

inf
i=1,...,n+r

Xi

)m
=

am
nm

+O
( 1

nm+1

)
, am > 0;

(b) E
(

1− sup
i=1,...,n+r

Xi

)m
=

bm
nm

+O
( 1

nm+1

)
, bm > 0.

(c) E
(
X ∗2 − X ∗1

)
=

d1

n
+O

( 1

n2

)
, d1 > 0, and

E
(
X ∗2 − X ∗1

)m
= O

( 1

nm

)
,

(d) E
(
X ∗n − X ∗n−1

)
=

e1

n
+O

( 1

n2

)
, e1 > 0, and

E
(
X ∗n − X ∗n−1

)m
= O

( 1

nm

)
.
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Proposition

Under the conditions A1-(i)(ii), we have for all p ∈ [0, 1]

(a) E
∫ 1

0

(
G

(1,p)
n (t)− Fn(t)

)2
dt

=
(1− 2p)

(
pE (X ∗1 )− (1− p)E (1− X ∗n )

)
+ 1− 3p + 3p2

3n2

=
1− 3p + 3p2

3n2
+O

( 1

n3

)
;

(b) E
∫∞
−∞

(
G

(2,p)
n (t)− Fn(t)

)2
dt

=
p3E (X ∗n − X ∗n−1) +

(
(1− p)3 + p3

)
3n2

+
(1− p)3E (X ∗2 − X ∗1 ) + E (X ∗n − X ∗1 )

(
(1− p)3 + p3

)
3n2

=
1− 3p + 3p2

3n2
+O

( 1

n3

)
.
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Now, the most difficult task is the double product. We get

Proposition

Under Assumption A1, we get for j = 1, 2 and p ∈ [0, 1]:

2E

∫ 1

0

(
G

(j ,p)
n (t)− Fn(t)

)(
Fn(t)− F (t)

)
dt = − 1

3n2
+O

( 1

n3

)
.

Sketch of Proof 1/3, j = 1.

I
(1,p)
1 = 2E

∫ 1
0

(
G

(1,p)
n (t)− Fn(t)

)
Fn(t)dt is quite easy to derive

as Fn is piecewise constant. We obtain

I
(1,p)
1 = −E

( n−1∑
k=1

(2p − 1)k(X ∗k+1 − X ∗k )

n2

)
− p(1− E (X ∗n ))

n

=
(1− 2p)(1− E (X1))

n
− (1− p)b1

n2
+O(

1

n3
)
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Sketch of Proof 2/3, j = 1.

I
(1,p)
2 = 2E

∫ 1
0

(
Fn(t)− G

(1,p)
n (t)

)
F (t) dt is the most technical

term.

I
(1,p)
2 = E

(−2(1− p)(X ∗1 )2
(
f (0) + X ∗1 R1,0

)
3n

+
p(1− X ∗n )

(
3F (X ∗n ) + (1− X ∗n )(f (X ∗n ) + (1− X ∗n )R1,n)

)
3n

+
(2p − 1)

n

n−1∑
k=1

(X ∗k+1 − X ∗k )F (X ∗k )

+
(3p − 2)

3n

n−1∑
k=1

(X ∗k+1 − X ∗k )2
(
f (X ∗k ) + (X ∗k+1 − X ∗k )R1,k

))
with |R1,k | ≤ c1θk < c1, k = 0, . . . , n, 0 < θk < 1.
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Sketch of Proof 3/3, j = 1.
From the binomial theorem and the joint density of (X ∗k ,X

∗
k+1):

f(X∗
k ,X

∗
k+1)(x , y) = n!F k−1(x)f (x)f (y)(1−F (y))n−k−1

(k−1)!(n−k−1)! with y > x , we get

Proposition

If h is measurable and integrable on [0, 1]2, then
n−1∑
k=1

E
(
h(X ∗k ,X

∗
k+1)

)
= n(n − 1)

∫ 1

0

∫ y

0
h(x , y)f (x)f (y)

(
1− F (y) + F (x)

)n−2
dx dy .

and after some calculations (...), one arrives at

I
(1,p)
2 = −(1− 2p)(1− E (X1))

n
+

b1(1− p)

n2
− 1

3n2
+O(

1

n3
).
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Theorem

Under Assumption 1, we get for j = 1, 2 and all p ∈ [0, 1]:

E
∫∞
−∞

(
G

(j ,p)
n (t)− F (t)

)2
dt

=
1

n

∫ 1

0
F (t)

(
1− F (t)

)
dt − p(1− p)

n2
+O

( 1

n3

)
.

G
(1,p)
n and G

(2,p)
n are asymptotically equivalent.

For all p ∈]0, 1[, the families G
(j ,p)
n , j = 1, 2 are more efficient

than Fn.

Choices p = 0 or p = 1 are more problematic since the term
p(1−p)

n2 vanishes in these cases.

The better efficiency is achieved for p = 1
2 where

p(1−p)
n2 = 1

4n2 .
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The nonparametric kernel distribution estimator is defined as
follows

Kn(t) =
1

nhn

n∑
i=1

L
( t − Xi

hn

)
, t ∈ R

where hn is the bandwidth and L(t) =
∫ t
−∞ k(x)dx . Here k is the

usual kernel used in density estimation, chosen as a known
continuous density on R, symmetric about 0.

Theoretical properties of this estimator are well known: see
Swanepoel and Van Graan, 05 or Servien, 09 for a rich literature
review.
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Weighted MISE: E
∫∞
−∞

(
Kn(t)− F (t)

)2
f (t)dt established by

Swanepoel, 88 with optimal choice of k.

Unweighted MISE derived in Jones, 90 when F has two
continuous derivatives f and f ′:

E
∫∞
−∞

(
Kn(t)− F (t)

)2
dt

=

∫∞
−∞ F (t)(1− F (t))dt

n
− 2hn

n

∫ ∞
−∞

tk(t)L(t) dt

+
h4
n

4
(

∫ ∞
−∞

t2k(t) dt)2

∫ ∞
−∞

(
f ′(t)

)2
dt + o

(
h4
n

)
+ o
(hn
n

)
.
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For f only Lipschitz and compactly supported on [0,1], we obtain

E
∫ 1

0

(
Kn(t)− F (t)

)2
dt =∫ 1

0 F (t)(1− F (t))dt

n
− 2hn

n

∫ ∞
−∞

tk(t)L(t) dt +O
(
h4
n

)
+ o
(hn
n

)
.

Similar expression as for G
(j ,p)
n with presence of the MISE of

Fn

Bandwidth to calibrate: hn of order n−
1
3 gives a O(n−4/3)

while the improvement is only O(n−2) for G
(j ,p)
n , p ∈]0, 1[.

Practical choice of hn?

Sarda, 93: leave-one-out cross-validation method
Bowman, Hall, Prvan 98: modified cross-validation method
Altman and Leger, 95 or Polansky and Baker, 00: plug-in
bandwidth choice
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Multi-stage procedure of Polansky and Baker, 00:

hn minimizing the MISE given by

hopt =
( 2

∫
tk(t)L(t)dt

n(
∫
t2k(t) dt)2

∫
(f ′(t))2 dt

) 1
3

Nonparametric kernel estimation of
∫

(f ′(t))2 dt involves a
bandwidth h1n with h1,opt depending on

∫
(f (2)(t))2 dt

Nonparametric kernel estimation of
∫

(f (2)(t))2 dt involves a
bandwidth h2n with h2,opt depending on

∫
(f (3)(t))2 dt and so
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Numerical computation of Fn, Kn (Gaussian kernel k, hn

chosen with 2-stage Polansky and Baker procedure), G
(j ,p)
n ,

j = 1, 2 with p = 1
2 but also p = 0 or 1

Set of 15 Gaussian mixtures defined in Marron and Wand, 92
+ 1 additional from Janssen, Marron, Veraverbeke, and Sarle,
95

of easy implementation,
describing a broad class of potential problems (skewness,
multimodality, and heavy kurtosis)
parameters chosen such that min

`=1,...,16
(µ` − 3σ`) = −3 and

max
`=1,...,16

(µ` + 3σ`) = 3

N = 500 samples of sizes n = 20, 50 and 100 are generated
and a Monte Carlo approximation is operated for each sample
to estimate the ISE

M̂ISE, is obtained by averaging the results over the N
replicates
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Results

For all tested distributions and all n in {20, 50, 100}, G (1, 1
2

)
n

and G
(2, 1

2
)

n outperform Fn

G
(1, 1

2
)

n with a = −3 and b = 3 always slightly better than

G
(2, 1

2
)

n

G
(j ,0)
n and G

(j ,1)
n , j = 1, 2 have irregular behaviour: better or

worse than Fn depending on n and the simulated distribution.
Nevertheless, their estimated MISE are always greater than

G
(j , 1

2
)

n

G
(1, 1

2
)

n outperforms both Kn and Fn for 6/16 tested
distributions (from only n = 50 for 2 of them)
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Number Name Distribution function:
k∑̀
=0

ω`N (µ`, σ
2
` )

3 Strongly skewed
7∑̀
=0

1
8N (3(( 2

3 )` − 1), ( 2
3 )2`)

4 Kurtotic unimodal 2
3N (0, 1) + 1

3N (0, ( 1
10 )2)

5 Outlier 1
10N (0, 1) + 9

10N (0, ( 1
10 )2)

14 Smooth comb
5∑̀
=0

25−`

63 N ( 65−96(1/2)`

21 , (32/63)2

22` )

15 Discrete comb
2∑̀
=0

2
7N ( 12`−15

7 , ( 2
7 )2) +

10∑̀
=8

1
21N ( 2`

7 , (
1

21 )2)

16 Distant bimodal 1
2N (−5

2 , (
1
6 )2) + 1

2N ( 5
2 , (

1
6 )2)

Table: Selected distribution functions used in the simulation study:
#1-#15 are from MW 92, #16 from JMVS95
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