Lissages polygonaux de la fonction de répartition empirique

Delphine Blanke (UAPV) - Denis Bosq (Paris 6)

Besançon, 23 novembre 2017

Outline

Polygonal estimators

- Definition
- First properties
- Exponential inequalities

2 Study of the MISE

- Study of the MISE 1/3
- Study of the MISE 2/3
- Study of the MISE 3/3

3 Simulations

- The kernel distribution estimator
- Numerical framework
- Results

Introduction

Consider X_1, \ldots, X_n i.i.d. and real-valued r.v. with distribution function F and density f. The most classical and natural estimator of F is the edf:

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{]-\infty,t]}(X_i)$$

→ unbiased, strongly uniformly consistent, but ... discontinuous Alternative estimators (Servien, 09):

- Kernel distribution estimator :
 - $K_n(t) = \frac{1}{nh_n} \int_{-\infty}^t \sum_{i=1}^n k(\frac{x-X_i}{h_n}) \, dx$ with k a classical density kernel
- Other estimators : local smoothing (Lejeune and Sarda, 92), level-crossing (Huang and Brill, 04), splines (Berlinet, 81), ...
- All integrated density estimators ...

Introduction

Consider X_1, \ldots, X_n i.i.d. and real-valued r.v. with distribution function F and density f. The most classical and natural estimator of F is the edf:

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{]-\infty,t]}(X_i)$$

→ unbiased, strongly uniformly consistent, but ... discontinuous Alternative estimators (Servien, 09):

- Kernel distribution estimator : $K_n(t) = \frac{1}{nh_n} \int_{-\infty}^t \sum_{i=1}^n k(\frac{x-X_i}{h_n}) dx$ with k a classical density kernel
- Other estimators : local smoothing (Lejeune and Sarda, 92), level-crossing (Huang and Brill, 04), splines (Berlinet, 81), ...
- All integrated density estimators ...

Introduction

Consider X_1, \ldots, X_n i.i.d. and real-valued r.v. with distribution function F and density f. The most classical and natural estimator of F is the edf:

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{]-\infty,t]}(X_i)$$

→ unbiased, strongly uniformly consistent, but ... discontinuous Alternative estimators (Servien, 09):

- Kernel distribution estimator : $K_n(t) = \frac{1}{nh_n} \int_{-\infty}^t \sum_{i=1}^n k(\frac{x-X_i}{h_n}) \, \mathrm{d}x \text{ with } k \text{ a classical density}$ kernel
- Other estimators : local smoothing (Lejeune and Sarda, 92), level-crossing (Huang and Brill, 04), splines (Berlinet, 81), ...
- All integrated density estimators ...

Definition First properties Exponential inequalities

Polygonal estimators Defin Study of the MISE Simulations Expo

Definition First properties Exponential inequalities

Polygonal estimators

Families $G_n^{(j,p)}$: j = 1 known support [a, b], j = 2 unknown support and p a known parameter in [0, 1].

Definition First properties Exponential inequalities

Definition (known support [a, b])

$$G_n^{(1,p)}(t) = \frac{(1-p)(t-a)}{n(X_1^*-a)} \mathbb{I}_{[a,X_1^*[}(t) + \left(1 - \frac{p(b-t)}{n(b-X_n^*)}\right) \mathbb{I}_{[X_n^*,b]}(t) \\ + \sum_{k=1}^{n-1} \frac{t + (k-p)X_{k+1}^* - (k+1-p)X_k^*}{n(X_{k+1}^*-X_k^*)} \mathbb{I}_{[X_k^*,X_{k+1}^*[}(t)$$

Definition (unknown support)

$$G_n^{(2,p)}(t) = G_n^{(1,p)}(t) \mathbb{I}_{[X_1^*,X_n^*]}(t) + \max\left(0, \frac{t - (2-p)X_1^* + (1-p)X_2^*}{n(X_2^* - X_1^*)}\right) \mathbb{I}_{]-\infty,X_1^*[}(t) + \min\left(1, \frac{t + (n-1-p)X_n^* - (n-p)X_{n-1}^*}{n(X_n^* - X_{n-1}^*)}\right) \mathbb{I}_{[X_n^*,+\infty[}(t)$$

Definition First properties Exponential inequalities

Definition (known support [a, b])

$$\begin{split} G_n^{(1,p)}(t) &= \frac{(1-p)(t-a)}{n(X_1^*-a)} \mathbb{I}_{[a,X_1^*[}(t) + \big(1-\frac{p(b-t)}{n(b-X_n^*)}\big) \mathbb{I}_{[X_n^*,b]}(t) \\ &+ \sum_{k=1}^{n-1} \frac{t+(k-p)X_{k+1}^* - (k+1-p)X_k^*}{n(X_{k+1}^*-X_k^*)} \mathbb{I}_{[X_k^*,X_{k+1}^*[}(t) \end{split}$$

Definition (unknown support)

$$\begin{split} G_n^{(2,p)}(t) &= G_n^{(1,p)}(t) \mathbb{I}_{[X_1^*,X_n^*]}(t) \\ &+ \max\big(0,\frac{t-(2-p)X_1^*+(1-p)X_2^*}{n(X_2^*-X_1^*)}\big) \mathbb{I}_{]-\infty,X_1^*[}(t) \\ &+ \min(1,\frac{t+(n-1-p)X_n^*-(n-p)X_{n-1}^*}{n(X_n^*-X_{n-1}^*)}\big) \mathbb{I}_{[X_n^*,+\infty[}(t) \end{split}$$

First properties

- G_n^(j,p) are continuous cdf and their piecewise derivatives are densities.
- $G_n^{(j,p)}(X_k^*) = \frac{k-p}{n}$ and $G_n^{(j,p)}(X_{k+1}^*) G_n^{(j,p)}(X_k^*) = \frac{1}{n}$.
- $G_n^{(j,p)}(t) = F_n(t)$ for $t = X_k^* + p(X_{k+1}^* X_k^*)$.
- $G_n^{(1,p)}(a) = F_n(a) = 0$ and $G_n^{(1,p)}(b) = F_n(b) = 1$.
- $G_n^{(2,p)}(t) \equiv 0$ for $t \leq (2-p)X_1^* (1-p)X_2^* \leq X_1^*$ and $G_n^{(2,p)}(t) \equiv 1$ for $t \geq (1+p)X_n^* - pX_{n-1}^* \geq X_n^*$ but $\left[(2-p)X_1^* - (1-p)X_2^*, (1+p)X_n^* - pX_{n-1}^* \right] \not\subset [a, b].$

First properties

G_n^(j,p) are continuous cdf and their piecewise derivatives are densities.

•
$$G_n^{(j,p)}(X_k^*) = \frac{k-p}{n}$$
 and $G_n^{(j,p)}(X_{k+1}^*) - G_n^{(j,p)}(X_k^*) = \frac{1}{n}$

•
$$G_n^{(j,p)}(t) = F_n(t)$$
 for $t = X_k^* + p(X_{k+1}^* - X_k^*)$.

•
$$G_n^{(1,p)}(a) = F_n(a) = 0$$
 and $G_n^{(1,p)}(b) = F_n(b) = 1$.

• $G_n^{(2,p)}(t) \equiv 0$ for $t \leq (2-p)X_1^* - (1-p)X_2^* \leq X_1^*$ and $G_n^{(2,p)}(t) \equiv 1$ for $t \geq (1+p)X_n^* - pX_{n-1}^* \geq X_n^*$ but $\left[(2-p)X_1^* - (1-p)X_2^*, (1+p)X_n^* - pX_{n-1}^* \right] \not\subset [a, b].$

First properties

G_n^(j,p) are continuous cdf and their piecewise derivatives are densities.

•
$$G_n^{(j,p)}(X_k^*) = \frac{k-p}{n}$$
 and $G_n^{(j,p)}(X_{k+1}^*) - G_n^{(j,p)}(X_k^*) = \frac{1}{n}$.

•
$$G_n^{(j,p)}(t) = F_n(t)$$
 for $t = X_k^* + p(X_{k+1}^* - X_k^*)$.

- $G_n^{(1,p)}(a) = F_n(a) = 0$ and $G_n^{(1,p)}(b) = F_n(b) = 1$.
- $G_n^{(2,p)}(t) \equiv 0$ for $t \leq (2-p)X_1^* (1-p)X_2^* \leq X_1^*$ and $G_n^{(2,p)}(t) \equiv 1$ for $t \geq (1+p)X_n^* - pX_{n-1}^* \geq X_n^*$ but $\left[(2-p)X_1^* - (1-p)X_2^*, (1+p)X_n^* - pX_{n-1}^*\right] \not\subset [a,b].$

First properties

G_n^(j,p) are continuous cdf and their piecewise derivatives are densities.

•
$$G_n^{(j,p)}(X_k^*) = \frac{k-p}{n}$$
 and $G_n^{(j,p)}(X_{k+1}^*) - G_n^{(j,p)}(X_k^*) = \frac{1}{n}$.

•
$$G_n^{(j,p)}(t) = F_n(t)$$
 for $t = X_k^* + p(X_{k+1}^* - X_k^*)$.

•
$$G_n^{(1,p)}(a) = F_n(a) = 0$$
 and $G_n^{(1,p)}(b) = F_n(b) = 1$.

• $G_n^{(2,p)}(t) \equiv 0$ for $t \leq (2-p)X_1^* - (1-p)X_2^* \leq X_1^*$ and $G_n^{(2,p)}(t) \equiv 1$ for $t \geq (1+p)X_n^* - pX_{n-1}^* \geq X_n^*$ but $\left[(2-p)X_1^* - (1-p)X_2^*, (1+p)X_n^* - pX_{n-1}^*\right] \not\subset [a, b].$

First properties

G_n^(j,p) are continuous cdf and their piecewise derivatives are densities.

•
$$G_n^{(j,p)}(X_k^*) = \frac{k-p}{n}$$
 and $G_n^{(j,p)}(X_{k+1}^*) - G_n^{(j,p)}(X_k^*) = \frac{1}{n}$

•
$$G_n^{(j,p)}(t) = F_n(t)$$
 for $t = X_k^* + p(X_{k+1}^* - X_k^*)$.

•
$$G_n^{(1,p)}(a) = F_n(a) = 0$$
 and $G_n^{(1,p)}(b) = F_n(b) = 1$.

•
$$G_n^{(2,p)}(t) \equiv 0$$
 for $t \leq (2-p)X_1^* - (1-p)X_2^* \leq X_1^*$ and
 $G_n^{(2,p)}(t) \equiv 1$ for $t \geq (1+p)X_n^* - pX_{n-1}^* \geq X_n^*$ but
 $\left[(2-p)X_1^* - (1-p)X_2^*, (1+p)X_n^* - pX_{n-1}^* \right] \not\subset [a, b].$

Polygonal estimators	Definition
Study of the MISE	First properties
Simulations	Exponential inequalities

Only one reference (?) about polygonal estimators (Read, 72).

$$egin{aligned} G_n^{(1,0)}(t) &= rac{t}{nX_1^*} \mathbb{I}_{[0,X_1^*[}(t) + \mathbb{I}_{[X_n^*,1]}(t) \ &+ \sum_{k=1}^{n-1} rac{t+kX_{k+1}^* - (k+1)X_k^*}{n(X_{k+1}^* - X_k^*)} \mathbb{I}_{[X_k^*,X_{k+1}^*[}(t) \end{aligned}$$

It is shown that, for *n* sufficiently large, the expected squared error of $G_n^{(1,0)}$ is no larger than F_n . Also, a variant of $G_n^{(1,0)}$ dominates $\frac{nF_n+1}{n+2}$ in terms of integrated risk but the result is not proven.

In all the following and, without loss of generality, $[a, b] \equiv [0, 1]$

Lemma

For the families of estimators $G_n^{(1,p)}$, we get

$$G_n^{(1,p)}(t) - F_n(t) = \frac{(1-p)t}{nX_1^*} \mathbb{I}_{[0,X_1^*[}(t) - \frac{p(1-t)}{n(1-X_n^*)} \mathbb{I}_{[X_n^*,1]}(t) + \sum_{k=1}^{n-1} \frac{t-pX_{k+1}^* - (1-p)X_k^*}{n(X_{k+1}^* - X_k^*)} \mathbb{I}_{[X_k^*,X_{k+1}^*[}(t);$$

Lemma

For the families of estimators $G_n^{(2,p)}$, we get

$$\begin{split} G_n^{(2,p)}(t) &- F_n(t) \\ &= \frac{t + (1-p)X_2^* - (2-p)X_1^*}{n(X_2^* - X_1^*)} \mathbb{I}_{[(2-p)X_1^* - (1-p)X_2^*, X_1^*[}(t) \\ &+ \frac{t - (1+p)X_n^* + pX_{n-1}^*}{n(X_n^* - X_{n-1}^*)} \mathbb{I}_{[X_n^*, (1+p)X_n^* - pX_{n-1}^*]}(t) \\ &+ \sum_{k=1}^{n-1} \frac{t - pX_{k+1}^* - (1-p)X_k^*}{n(X_{k+1}^* - X_k^*)} \mathbb{I}_{[X_k^*, X_{k+1}^*[}(t). \end{split}$$

Lemma

For the families of estimators $G_n^{(2,p)}$, we get

$$\begin{split} G_n^{(2,p)}(t) &- F_n(t) \\ &= \frac{t + (1-p)X_2^* - (2-p)X_1^*}{n(X_2^* - X_1^*)} \mathbb{I}_{[(2-p)X_1^* - (1-p)X_2^*, X_1^*[}(t) \\ &+ \frac{t - (1+p)X_n^* + pX_{n-1}^*}{n(X_n^* - X_{n-1}^*)} \mathbb{I}_{[X_n^*, (1+p)X_n^* - pX_{n-1}^*]}(t) \\ &+ \sum_{k=1}^{n-1} \frac{t - pX_{k+1}^* - (1-p)X_k^*}{n(X_{k+1}^* - X_k^*)} \mathbb{I}_{[X_k^*, X_{k+1}^*[}(t). \end{split}$$

$$\longrightarrow \left\| F_n - G_n^{(j,p)} \right\|_{\infty} = \max\left(\frac{p}{n}, \frac{1-p}{n}\right), \ 0 \le p \le 1, \ j = 1, 2.$$

Definition First properties Exponential inequalities

Exponential inequalities

Proposition

If F is continuous and increasing over [0,1], we obtain (a) For i = 1, 2 and $c > -\frac{1}{2}$ with 0 < 2c < 1

(a) For j = 1, 2 and $\varepsilon > \frac{1}{2n(1-a_0)}$ with $0 < a_0 < 1$,

$$\mathbb{P}\big(\left\|G_n^{(j,\frac{1}{2})} - F\right\|_{\infty} \ge \varepsilon\big) \le 2\exp(-2a_0^2n\varepsilon^2), \ n \ge 1.$$

 $(b)\ \mbox{More generally,}$

$$\mathbb{P}\left(\left\|G_n^{(j,p)} - F\right\|_{\infty} \ge \varepsilon\right) \le 2\exp(-2a_0^2n\varepsilon^2), \ 0 < a_0 < 1,$$

for
$$\varepsilon > \frac{\max(p, 1-p)}{n(1-a_0)}$$
, $n \ge 1$.

Polygonal estimators	Definition
Study of the MISE	First properties
Simulations	Exponential inequalities

Proof. The result is derived from

$$\left\|G_n^{(j,p)}-F\right\|_{\infty}\leq rac{\max(p,1-p)}{n}+\left\|F_n-F
ight\|_{\infty}$$

and the exponential inequality (Massart, 90)

$$\mathbb{P}(\left\|F_{n}-F\right\|_{\infty}\geq\varepsilon)\leq2\exp\left(-2n\varepsilon^{2}\right)$$

with the choice
$$arepsilon > rac{\max(p,1-p)}{n(1-a_0)}$$
, $n \ge 1$, $0 < a_0 < 1$.

Proposition

Under same conditions as before, we get

(a) for
$$p = \frac{1}{2}$$
, $j = 1, 2$

$$\mathbb{P}\left(\left\|G_n^{(j,\frac{1}{2})}-F\right\|_{\infty}\geq\varepsilon\right)\leq 2\exp(-2n\varepsilon^2),\ 0<\varepsilon<\frac{1}{4n},\ n\geq 1;$$

$(b) \ \mbox{and} \ \mbox{more generally,}$

$$\mathbb{P}\big(\left\|G_n^{(j,p)}-F\right\|_{\infty}\geq\varepsilon\big)\leq 2\exp(-2n\varepsilon^2),$$

$$0 < \varepsilon < \max\left(\frac{p}{2n}, \frac{1-p}{2n}\right), \ n \ge 1.$$

Proof. The result is derived again from the choice of ε and

$$\mathbb{P}\left(\left\|G_n^{(j,p)}-F\right\|_{\infty}\geq\varepsilon\right)\leq 2\exp\left(-2n\left(\varepsilon-\max(\frac{p}{n},\frac{1-p}{n})\right)^2\right).$$

Proposition

Under same conditions as before, we get

(a) for
$$p = \frac{1}{2}$$
, $j = 1, 2$:

$$\mathbb{P}\left(\left\|G_n^{(j,\frac{1}{2})}-F\right\|_{\infty}\geq\varepsilon\right)\leq 2\exp(-2n\varepsilon^2),\ 0<\varepsilon<\frac{1}{4n},\ n\geq 1;$$

$(b) \ \mbox{and} \ \mbox{more generally,}$

$$\mathbb{P}\big(\left\|G_n^{(j,p)}-F\right\|_{\infty}\geq\varepsilon\big)\leq 2\exp(-2n\varepsilon^2),$$

$$0 < \varepsilon < \max\left(\frac{p}{2n}, \frac{1-p}{2n}\right), \ n \ge 1.$$

Proof. The result is derived again from the choice of ε and

$$\mathbb{P}\big(\left\|G_n^{(j,p)}-F\right\|_{\infty}\geq\varepsilon\big)\leq 2\exp\Big(-2n\Big(\varepsilon-\max(\frac{p}{n},\frac{1-p}{n})\Big)^2\Big).$$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

The MISE is calculated from $\mathrm{E}\,\int_{-\infty}^\infty \left(G_n^{(j,p)}(t)-{\sf F}(t)
ight)^2\mathrm{d}t$

$$= \mathrm{E} \int_{-\infty}^{\infty} \left(F_n(t) - F(t) \right)^2 \mathrm{d}t + \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t) \right)^2 \mathrm{d}t \\ + 2 \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t) \right) \left(F_n(t) - F(t) \right) \mathrm{d}t, \ j = 1, 2, \ p \in [0,1].$$

Lemma (a) For $m \in \mathbb{N}^*$, $\int_0^1 \left(G_n^{(1,p)}(t) - F_n(t) \right)^m dt$ $= \frac{\left((1-p)^m - (-1)^m p^m \right) \left(p X_1^* + (1-p) X_n^* \right) + (-1)^m p^m}{(m+1)n^m}.$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

The MISE is calculated from $\mathrm{E}\,\int_{-\infty}^\infty \left(G_n^{(j,p)}(t)-{\sf F}(t)
ight)^2\mathrm{d}t$

$$= \mathrm{E} \int_{-\infty}^{\infty} \left(F_n(t) - F(t)\right)^2 \mathrm{d}t + \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t)\right)^2 \mathrm{d}t$$
$$+ 2 \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t)\right) \left(F_n(t) - F(t)\right) \mathrm{d}t, \ j = 1, 2, \ p \in [0, 1].$$

Lemma

(a) For
$$m \in \mathbb{N}^*$$
, $\int_0^1 \left(G_n^{(1,p)}(t) - F_n(t) \right)^m \mathrm{d}t$
$$= \frac{\left((1-p)^m - (-1)^m p^m \right) \left(p X_1^* + (1-p) X_n^* \right) + (-1)^m p^m}{(m+1)n^m}.$$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

The MISE is calculated from $\mathrm{E}\,\int_{-\infty}^\infty \left(G_n^{(j,p)}(t)-{\sf F}(t)
ight)^2\mathrm{d}t$

$$= \mathrm{E} \int_{-\infty}^{\infty} \left(F_n(t) - F(t)\right)^2 \mathrm{d}t + \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t)\right)^2 \mathrm{d}t$$
$$+ 2 \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t)\right) \left(F_n(t) - F(t)\right) \mathrm{d}t, \ j = 1, 2, \ p \in [0, 1].$$

Lemma

(a) For
$$m \in \mathbb{N}^*$$
, $\int_0^1 \left(G_n^{(1,p)}(t) - F_n(t) \right)^m \mathrm{d}t$
$$= \frac{\left((1-p)^m - (-1)^m p^m \right) \left(p X_1^* + (1-p) X_n^* \right) + (-1)^m p^m}{(m+1)n^m}.$$

 \rightarrow for m even and $p = \frac{1}{2}$, the result is $\frac{(2n)^{-m}}{m+1}$!

Polygonal estimators	Study of the MISE $1/3$
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

The MISE is calculated from $\mathrm{E}\,\int_{-\infty}^\infty \left(G_n^{(j,p)}(t)-{\sf F}(t)
ight)^2\mathrm{d}t$

$$= \mathrm{E} \int_{-\infty}^{\infty} \left(F_n(t) - F(t)\right)^2 \mathrm{d}t + \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t)\right)^2 \mathrm{d}t$$
$$+ 2 \mathrm{E} \int_{-\infty}^{\infty} \left(G_n^{(j,p)}(t) - F_n(t)\right) \left(F_n(t) - F(t)\right) \mathrm{d}t, \ j = 1, 2, \ p \in [0, 1].$$

Lemma

(a) For
$$m \in \mathbb{N}^*$$
, $\int_0^1 \left(G_n^{(1,p)}(t) - F_n(t) \right)^m \mathrm{d}t$
$$= \frac{\left((1-p)^m - (-1)^m p^m \right) \left(p X_1^* + (1-p) X_n^* \right) + (-1)^m p^m}{(m+1)n^m}.$$

(b) A similar but more complicated expression is obtained for j = 2 involving X_2^* and X_{n-1}^* too.

Polygonal estimators	Study of the MISE $1/3$
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Assumption (A1)

- (i) F admits the density f supposed to be compactly supported on [0,1]
- (ii) f is continuous on [0,1] and $\inf_{x \in [0,1]} f(x) \ge c_0$ for some positive constant c_0 ;
- (iii) f is a Lipschitz function: there exists a positive constant c_1 such that for all $(x, y) \in]0, 1[^2, |f(x) - f(y)| \le c_1 |x - y|$.

Polygonal estimators	Study of the MISE $1/3$
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Lemma

If the conditions A1-(i)(ii) hold then, for all integers $r \ge 0$ and $m \geq 1$, not depending on n, we get (a) $\operatorname{E}\left(\inf_{i=1}\inf_{m+r}X_{i}\right)^{m}=\frac{a_{m}}{m^{m}}+\mathcal{O}\left(\frac{1}{m^{m+1}}\right), a_{m}>0;$ (b) $E\left(1-\sup_{i=1}^{m}X_{i}\right)^{m}=\frac{b_{m}}{n^{m}}+\mathcal{O}\left(\frac{1}{n^{m+1}}\right), \ b_{m}>0.$ (c) $\mathrm{E}(X_2^* - X_1^*) = \frac{d_1}{n} + \mathcal{O}(\frac{1}{n^2}), d_1 > 0, and$ $\mathrm{E}\left(X_{2}^{*}-X_{1}^{*}\right)^{m}=\mathcal{O}\left(\frac{1}{n^{m}}\right),$ (d) $E(X_n^* - X_{n-1}^*) = \frac{e_1}{n} + O(\frac{1}{n^2}), e_1 > 0, and$ $\mathrm{E}\left(X_{n}^{*}-X_{n-1}^{*}\right)^{m}=\mathcal{O}\left(\frac{1}{n^{m}}\right).$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Proposition

Under the conditions A1-(i)(ii), we have for all $p \in [0, 1]$ (a) E $\int_{0}^{1} (G_{n}^{(1,p)}(t) - F_{n}(t))^{2} dt$ $(1-2p)(p \to (X_1^*) - (1-p) \to (1-X_n^*)) + 1 - 3p + 3p^2$ $3n^2$ $=\frac{1-3p+3p^2}{3n^2}+\mathcal{O}\bigl(\frac{1}{n^3}\bigr);$ (b) E $\int_{-\infty}^{\infty} (G_n^{(2,p)}(t) - F_n(t))^2 dt$ $p^{3} E (X_{n}^{*} - X_{n-1}^{*}) + ((1-p)^{3} + p^{3})$ $+ \frac{(1-p)^{3} \mathrm{E} \left(X_{2}^{*}-X_{1}^{*}\right) + \mathrm{E} \left(X_{n}^{*}-X_{1}^{*}\right) \left((1-p)^{3}+p^{3}\right)}{(1-p)^{3}+p^{3}}$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Proposition

Under the conditions A1-(i)(ii), we have for all $p \in [0, 1]$ (a) E $\int_{0}^{1} \left(G_{n}^{(1,p)}(t) - F_{n}(t) \right)^{2} dt$ $-\frac{(1-2p)(p \to (X_1^*) - (1-p) \to (1-X_n^*)) + 1 - 3p + 3p^2}{(1-x_1^*) + 1 - 3p + 3p^2}$ $3n^2$ $=\frac{1-3p+3p^{2}}{3n^{2}}+\mathcal{O}(\frac{1}{n^{3}});$ (b) E $\int_{-\infty}^{\infty} (G_n^{(2,p)}(t) - F_n(t))^2 dt$ $= \frac{p^{3} \mathrm{E} \left(X_{n}^{*} - X_{n-1}^{*} \right) + \left((1-p)^{3} + p^{3} \right)}{p^{3}}$ $3n^2$ $+ \frac{(1-p)^{3} \mathrm{E} \left(X_{2}^{*}-X_{1}^{*}\right) + \mathrm{E} \left(X_{n}^{*}-X_{1}^{*}\right) \left((1-p)^{3}+p^{3}\right)}{(1-p)^{3}+p^{3}}$ $3n^2$ $=\frac{1-3p+3p^2}{2r^2}+\mathcal{O}(\frac{1}{r^3}).$

Polygonal estimators	Study of the MISE $1/3$
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Now, the most difficult task is the double product. We get

Proposition

Under Assumption A1, we get for j = 1, 2 and $p \in [0, 1]$:

$$2 \operatorname{E} \int_{0}^{1} \left(G_{n}^{(j,p)}(t) - F_{n}(t) \right) \left(F_{n}(t) - F(t) \right) \mathrm{d}t = -\frac{1}{3n^{2}} + \mathcal{O}\left(\frac{1}{n^{3}} \right).$$

Sketch of Proof 1/3, j = 1. $I_1^{(1,p)} = 2 \ge \int_0^1 (G_n^{(1,p)}(t) - F_n(t)) F_n(t) dt$ is quite easy to derive as F_n is piecewise constant. We obtain

$$I_{1}^{(1,p)} = -E\left(\sum_{k=1}^{n-1} \frac{(2p-1)k(X_{k+1}^{*} - X_{k}^{*})}{n^{2}}\right) - \frac{p(1-E(X_{n}^{*}))}{n}$$
$$= \frac{(1-2p)(1-E(X_{1}))}{n} - \frac{(1-p)b_{1}}{n^{2}} + \mathcal{O}(\frac{1}{n^{3}})$$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Now, the most difficult task is the double product. We get

Proposition

Under Assumption A1, we get for j = 1, 2 and $p \in [0, 1]$:

$$2 \operatorname{E} \int_{0}^{1} \left(G_{n}^{(j,p)}(t) - F_{n}(t) \right) \left(F_{n}(t) - F(t) \right) \mathrm{d}t = -\frac{1}{3n^{2}} + \mathcal{O}\left(\frac{1}{n^{3}} \right).$$

Sketch of Proof 1/3, j = 1. $I_1^{(1,p)} = 2 \ge \int_0^1 (G_n^{(1,p)}(t) - F_n(t)) F_n(t) dt$ is quite easy to derive as F_n is piecewise constant. We obtain

$$I_{1}^{(1,p)} = -E\left(\sum_{k=1}^{n-1} \frac{(2p-1)k(X_{k+1}^{*} - X_{k}^{*})}{n^{2}}\right) - \frac{p(1-E(X_{n}^{*}))}{n}$$
$$= \frac{(1-2p)(1-E(X_{1}))}{n} - \frac{(1-p)b_{1}}{n^{2}} + \mathcal{O}(\frac{1}{n^{3}})$$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Now, the most difficult task is the double product. We get

Proposition

Under Assumption A1, we get for j = 1, 2 and $p \in [0, 1]$:

$$2 \operatorname{E} \int_{0}^{1} \left(G_{n}^{(j,p)}(t) - F_{n}(t) \right) \left(F_{n}(t) - F(t) \right) \mathrm{d}t = -\frac{1}{3n^{2}} + \mathcal{O}\left(\frac{1}{n^{3}} \right).$$

Sketch of Proof 1/3, j = 1. $I_1^{(1,p)} = 2 \ge \int_0^1 (G_n^{(1,p)}(t) - F_n(t)) F_n(t) dt$ is quite easy to derive as F_n is piecewise constant. We obtain

$$I_{1}^{(1,p)} = -E\left(\sum_{k=1}^{n-1} \frac{(2p-1)k(X_{k+1}^{*} - X_{k}^{*})}{n^{2}}\right) - \frac{p(1-E(X_{n}^{*}))}{n}$$
$$= \frac{(1-2p)(1-E(X_{1}))}{n} - \frac{(1-p)b_{1}}{n^{2}} + \mathcal{O}(\frac{1}{n^{3}})$$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

$$\begin{split} l_{2}^{(1,p)} &= \mathrm{E}\left(\frac{-2(1-p)(X_{1}^{*})^{2}(f(0)+X_{1}^{*}R_{1,0})}{3n} \\ &+ \frac{p(1-X_{n}^{*})\left(3F(X_{n}^{*})+(1-X_{n}^{*})(f(X_{n}^{*})+(1-X_{n}^{*})R_{1,n})\right)}{3n} \\ &+ \frac{(2p-1)}{n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})F(X_{k}^{*}) \\ &+ \frac{(3p-2)}{3n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})^{2}\left(f(X_{k}^{*})+(X_{k+1}^{*}-X_{k}^{*})R_{1,k}\right)\right) \end{split}$$

with $|R_{1,k}| \leq c_1 \theta_k < c_1$, $k = 0, \ldots, n$, $0 < \theta_k < 1$.

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

$$\begin{split} l_{2}^{(1,p)} &= \mathrm{E}\left(\frac{-2(1-p)(X_{1}^{*})^{2}(f(0)+X_{1}^{*}R_{1,0})}{3n} \\ &+ \frac{p(1-X_{n}^{*})(3F(X_{n}^{*})+(1-X_{n}^{*})(f(X_{n}^{*})+(1-X_{n}^{*})R_{1,n}))}{3n} \\ &+ \frac{(2p-1)}{n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})F(X_{k}^{*}) \\ &+ \frac{(3p-2)}{3n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})^{2}(f(X_{k}^{*})+(X_{k+1}^{*}-X_{k}^{*})R_{1,k})\right) \end{split}$$

with $|R_{1,k}| \leq c_1 \theta_k < c_1$, $k = 0, \ldots, n$, $0 < \theta_k < 1$.

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

$$\begin{split} I_{2}^{(1,p)} &= \mathrm{E}\left(\frac{-2(1-p)(X_{1}^{*})^{2}(f(0)+X_{1}^{*}R_{1,0})}{3n} \\ &+ \frac{p(1-X_{n}^{*})(3F(X_{n}^{*})+(1-X_{n}^{*})(f(X_{n}^{*})+(1-X_{n}^{*})R_{1,n}))}{3n} \\ &+ \frac{(2p-1)}{n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})F(X_{k}^{*}) \\ &+ \frac{(3p-2)}{3n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})^{2}(f(X_{k}^{*})+(X_{k+1}^{*}-X_{k}^{*})R_{1,k}) \end{pmatrix} \end{split}$$

with $|R_{1,k}| \le c_1 \theta_k < c_1$, $k = 0, \dots, n$, $0 < \theta_k < 1$.

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

$$\begin{split} I_{2}^{(1,p)} &= \mathrm{E}\left(\frac{-2(1-p)(X_{1}^{*})^{2}(f(0)+X_{1}^{*}R_{1,0})}{3n} \\ &+ \frac{p(1-X_{n}^{*})(3F(X_{n}^{*})+(1-X_{n}^{*})(f(X_{n}^{*})+(1-X_{n}^{*})R_{1,n}))}{3n} \\ &+ \frac{(2p-1)}{n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})F(X_{k}^{*}) \\ &+ \frac{(3p-2)}{3n}\sum_{k=1}^{n-1}(X_{k+1}^{*}-X_{k}^{*})^{2}(f(X_{k}^{*})+(X_{k+1}^{*}-X_{k}^{*})R_{1,k}) \end{pmatrix} \end{split}$$

with $|R_{1,k}| \leq c_1 \theta_k < c_1$, $k = 0, \ldots, n$, $0 < \theta_k < 1$.

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Sketch of Proof 3/3, j = 1.

From the binomial theorem and the joint density of (X_k^*, X_{k+1}^*) : $f_{(X_k^*, X_{k+1}^*)}(x, y) = \frac{n!F^{k-1}(x)f(x)f(y)(1-F(y))^{n-k-1}}{(k-1)!(n-k-1)!}$ with y > x, we get

Proposition

If h is measurable and integrable on
$$[0,1]^2$$
, then

$$\sum_{k=1}^{n-1} \mathbb{E} \left(h(X_k^*, X_{k+1}^*) \right)$$

$$= n(n-1) \int_0^1 \int_0^y h(x, y) f(x) f(y) \left(1 - F(y) + F(x) \right)^{n-2} \mathrm{d}x \, \mathrm{d}y.$$

and after some calculations (...), one arrives at
$$l_{2}^{(1,p)} = -\frac{(1-2p)(1-E(X_{1}))}{n} + \frac{b_{1}(1-p)}{n^{2}} - \frac{1}{3n^{2}} + \mathcal{O}(\frac{1}{n^{3}}).$$

Polygonal estimators	Study of the MISE 1/3
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Sketch of Proof 3/3, j = 1.

From the binomial theorem and the joint density of (X_k^*, X_{k+1}^*) : $f_{(X_k^*, X_{k+1}^*)}(x, y) = \frac{n!F^{k-1}(x)f(x)f(y)(1-F(y))^{n-k-1}}{(k-1)!(n-k-1)!}$ with y > x, we get

Proposition

If h is measurable and integrable on
$$[0,1]^2$$
, then

$$\sum_{k=1}^{n-1} \mathbb{E}\left(h(X_k^*, X_{k+1}^*)\right)$$

$$= n(n-1) \int_0^1 \int_0^y h(x, y) f(x) f(y) (1 - F(y) + F(x))^{n-2} dx dy.$$

and after some calculations (...), one arrives at
$$I_{2}^{(1,p)} = -\frac{(1-2p)(1-E(X_{1}))}{n} + \frac{b_{1}(1-p)}{n^{2}} - \frac{1}{3n^{2}} + \mathcal{O}(\frac{1}{n^{3}}).$$

Polygonal estimators	Study of the MISE $1/3$
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Theorem

Under Assumption 1, we get for j = 1, 2 and all $p \in [0, 1]$: $E \int_{-\infty}^{\infty} (G_n^{(j,p)}(t) - F(t))^2 dt$

$$=\frac{1}{n}\int_0^1 F(t)\big(1-F(t)\big)\,\mathrm{d}t-\frac{p(1-p)}{n^2}+\mathcal{O}\Big(\frac{1}{n^3}\Big).$$

- $G_n^{(1,p)}$ and $G_n^{(2,p)}$ are asymptotically equivalent.
- For all p ∈]0, 1[, the families G_n^(j,p), j = 1, 2 are more efficient than F_n.
- Choices p = 0 or p = 1 are more problematic since the term $\frac{p(1-p)}{p^2}$ vanishes in these cases.

• The better efficiency is achieved for $p = \frac{1}{2}$ where $\frac{p(1-p)}{n^2} = \frac{1}{4n^2}$.

Polygonal estimators	Study of the MISE $1/3$
Study of the MISE	Study of the MISE 2/3
Simulations	Study of the MISE 3/3

Theorem

Under Assumption 1, we get for j = 1, 2 and all $p \in [0, 1]$: $E \int_{-\infty}^{\infty} (G_n^{(j,p)}(t) - F(t))^2 dt$

$$=\frac{1}{n}\int_0^1 F(t)\big(1-F(t)\big)\,\mathrm{d}t-\frac{p(1-p)}{n^2}+\mathcal{O}\Big(\frac{1}{n^3}\Big).$$

- $G_n^{(1,p)}$ and $G_n^{(2,p)}$ are asymptotically equivalent.
- For all p ∈]0, 1[, the families G_n^(j,p), j = 1, 2 are more efficient than F_n.
- Choices p = 0 or p = 1 are more problematic since the term $\frac{p(1-p)}{n^2}$ vanishes in these cases.
- The better efficiency is achieved for $p = \frac{1}{2}$ where $\frac{p(1-p)}{n^2} = \frac{1}{4n^2}$.

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

The nonparametric kernel distribution estimator is defined as follows

$$K_n(t) = \frac{1}{nh_n} \sum_{i=1}^n L(\frac{t-X_i}{h_n}), \ t \in \mathbb{R}$$

where h_n is the bandwidth and $L(t) = \int_{-\infty}^{t} k(x) dx$. Here k is the usual kernel used in density estimation, chosen as a known continuous density on \mathbb{R} , symmetric about 0.

Theoretical properties of this estimator are well known: see Swanepoel and Van Graan, 05 or Servien, 09 for a rich literature review.

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- Weighted MISE: E $\int_{-\infty}^{\infty} (K_n(t) F(t))^2 f(t) dt$ established by Swanepoel, 88 with optimal choice of k.
- Unweighted MISE derived in Jones, 90 when F has two continuous derivatives f and f':

$$\operatorname{E} \int_{-\infty}^{\infty} \left(K_n(t) - F(t) \right)^2 \mathrm{d}t$$

$$=\frac{\int_{-\infty}^{\infty}F(t)(1-F(t))\,\mathrm{d}t}{n}-\frac{2h_n}{n}\int_{-\infty}^{\infty}tk(t)L(t)\,\mathrm{d}t$$
$$+\frac{h_n^4}{4}(\int_{-\infty}^{\infty}t^2k(t)\,\mathrm{d}t)^2\int_{-\infty}^{\infty}(f'(t))^2\,\mathrm{d}t+o(h_n^4)+o(\frac{h_n}{n}).$$

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$\frac{\int_0^1 F(t)(1-F(t)) \,\mathrm{d}t}{n} - \frac{2h_n}{n} \int_{-\infty}^\infty tk(t) L(t) \,\mathrm{d}t + \mathcal{O}(h_n^4) + o(\frac{h_n}{n}).$$

- Similar expression as for $G_n^{(j,p)}$ with presence of the MISE of F_n
- Bandwidth to calibrate: h_n of order n^{-1/3} gives a O(n^{-4/3}) while the improvement is only O(n⁻²) for G_n^(j,p), p ∈]0,1[.
- Practical choice of h_n?
 - Sarda, 93: leave-one-out cross-validation method
 - Bowman, Hall, Prvan 98: modified cross-validation method
 - Altman and Leger, 95 or Polansky and Baker, 00: plug-in bandwidth choice

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$\frac{\int_0^1 F(t)(1-F(t))\,\mathrm{d}t}{n} - \frac{2h_n}{n}\int_{-\infty}^\infty tk(t)L(t)\,\mathrm{d}t + \mathcal{O}(h_n^4) + o(\frac{h_n}{n}).$$

- Similar expression as for $G_n^{(j,p)}$ with presence of the MISE of F_n
- Bandwidth to calibrate: h_n of order $n^{-\frac{1}{3}}$ gives a $\mathcal{O}(n^{-4/3})$ while the improvement is only $\mathcal{O}(n^{-2})$ for $G_n^{(j,p)}$, $p \in]0, 1[$.
- Practical choice of h_n ?
 - Sarda, 93: leave-one-out cross-validation method
 - Bowman, Hall, Prvan 98: modified cross-validation method
 - Altman and Leger, 95 or Polansky and Baker, 00: plug-in bandwidth choice

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$\frac{\int_0^1 F(t)(1-F(t))\,\mathrm{d}t}{n} - \frac{2h_n}{n}\int_{-\infty}^\infty tk(t)L(t)\,\mathrm{d}t + \mathcal{O}(h_n^4) + o(\frac{h_n}{n}).$$

- Similar expression as for $G_n^{(j,p)}$ with presence of the MISE of F_n
- Bandwidth to calibrate: h_n of order $n^{-\frac{1}{3}}$ gives a $\mathcal{O}(n^{-4/3})$ while the improvement is only $\mathcal{O}(n^{-2})$ for $G_n^{(j,p)}$, $p \in]0, 1[$.
- Practical choice of h_n ?
 - Sarda, 93: leave-one-out cross-validation method
 - Bowman, Hall, Prvan 98: modified cross-validation method
 - Altman and Leger, 95 or Polansky and Baker, 00: plug-in bandwidth choice

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$\frac{\int_0^1 F(t)(1-F(t))\,\mathrm{d}t}{n} - \frac{2h_n}{n}\int_{-\infty}^\infty tk(t)L(t)\,\mathrm{d}t + \mathcal{O}(h_n^4) + o(\frac{h_n}{n}).$$

- Similar expression as for $G_n^{(j,p)}$ with presence of the MISE of F_n
- Bandwidth to calibrate: h_n of order $n^{-\frac{1}{3}}$ gives a $\mathcal{O}(n^{-4/3})$ while the improvement is only $\mathcal{O}(n^{-2})$ for $G_n^{(j,p)}$, $p \in]0, 1[$.
- Practical choice of h_n ?
 - Sarda, 93: leave-one-out cross-validation method
 - Bowman, Hall, Prvan 98: modified cross-validation method
 - Altman and Leger, 95 or Polansky and Baker, 00: plug-in bandwidth choice

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$h_{\rm opt} = \left(\frac{2\int tk(t)L(t)\,\mathrm{d}t}{n(\int t^2k(t)\,\mathrm{d}t)^2\int (f'(t))^2\,\mathrm{d}t}\right)^{\frac{1}{3}}$$

- Nonparametric kernel estimation of $\int (f'(t))^2 dt$ involves a bandwidth h_{1n} with $h_{1,opt}$ depending on $\int (f^{(2)}(t))^2 dt$
- Nonparametric kernel estimation of ∫(f⁽²⁾(t))² dt involves a bandwidth h_{2n} with h_{2,opt} depending on ∫(f⁽³⁾(t))² dt and so on ...
- For a two-stage procedure, $\int (f^{(3)}(t))^2 dt$ estimated with a reference distribution, namely normal with variance σ^2 , and $\hat{\sigma} = \min(S_n, \frac{\hat{q}_{0.75} \hat{q}_{0.25}}{1.349})$.

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$h_{\rm opt} = \left(\frac{2\int tk(t)L(t)\,\mathrm{d}t}{n(\int t^2k(t)\,\mathrm{d}t)^2\int (f'(t))^2\,\mathrm{d}t}\right)^{\frac{1}{3}}$$

- Nonparametric kernel estimation of $\int (f'(t))^2 dt$ involves a bandwidth h_{1n} with $h_{1,opt}$ depending on $\int (f^{(2)}(t))^2 dt$
- Nonparametric kernel estimation of ∫(f⁽²⁾(t))² dt involves a bandwidth h_{2n} with h_{2,opt} depending on ∫(f⁽³⁾(t))² dt and so on ...

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$h_{\rm opt} = \left(\frac{2\int tk(t)L(t)\,\mathrm{d}t}{n(\int t^2k(t)\,\mathrm{d}t)^2\int (f'(t))^2\,\mathrm{d}t}\right)^{\frac{1}{3}}$$

- Nonparametric kernel estimation of $\int (f'(t))^2 dt$ involves a bandwidth h_{1n} with $h_{1,opt}$ depending on $\int (f^{(2)}(t))^2 dt$
- Nonparametric kernel estimation of ∫(f⁽²⁾(t))² dt involves a bandwidth h_{2n} with h_{2,opt} depending on ∫(f⁽³⁾(t))² dt and so on ...

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

$$h_{\rm opt} = \left(\frac{2\int tk(t)L(t)\,\mathrm{d}t}{n(\int t^2k(t)\,\mathrm{d}t)^2\int (f'(t))^2\,\mathrm{d}t}\right)^{\frac{1}{3}}$$

- Nonparametric kernel estimation of $\int (f'(t))^2 dt$ involves a bandwidth h_{1n} with $h_{1,opt}$ depending on $\int (f^{(2)}(t))^2 dt$
- Nonparametric kernel estimation of $\int (f^{(2)}(t))^2 dt$ involves a bandwidth h_{2n} with $h_{2,opt}$ depending on $\int (f^{(3)}(t))^2 dt$ and so on ...
- For a two-stage procedure, $\int (f^{(3)}(t))^2 dt$ estimated with a reference distribution, namely normal with variance σ^2 , and $\hat{\sigma} = \min(S_n, \frac{\hat{q}_{0.75} \hat{q}_{0.25}}{1.349})$.

 Polygonal estimators
 The kernel distribution estimator

 Study of the MISE
 Numerical framework

 Simulations
 Results

- Numerical computation of F_n , K_n (Gaussian kernel k, h_n chosen with 2-stage Polansky and Baker procedure), $G_n^{(j,p)}$, j = 1, 2 with $p = \frac{1}{2}$ but also p = 0 or 1
- Set of 15 Gaussian mixtures defined in Marron and Wand, 92 + 1 additional from Janssen, Marron, Veraverbeke, and Sarle, 95
 - of easy implementation,
 - describing a broad class of potential problems (skewness, multimodality, and heavy kurtosis)
 - parameters chosen such that $\min_{\ell=1,\dots,16}(\mu_{\ell}-3\sigma_{\ell})=-3$ and $\max (\mu_{\ell}+3\sigma_{\ell})=3$

=1,...,16

- *N* = 500 samples of sizes *n* = 20, 50 and 100 are generated and a Monte Carlo approximation is operated for each sample to estimate the ISE
- MISE, is obtained by averaging the results over the *N* replicates

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- Numerical computation of F_n , K_n (Gaussian kernel k, h_n chosen with 2-stage Polansky and Baker procedure). $G_n^{(j,p)}$ j = 1, 2 with $p = \frac{1}{2}$ but also p = 0 or 1
- Set of 15 Gaussian mixtures defined in Marron and Wand, 92 + 1 additional from Janssen, Marron, Veraverbeke, and Sarle, 95
 - of easy implementation,
 - describing a broad class of potential problems (skewness, multimodality, and heavy kurtosis)
 - parameters chosen such that $\min_{\ell=1} \min_{16} (\mu_{\ell} 3\sigma_{\ell}) = -3$ and $\max_{\ell=1,\ldots,16} (\mu_{\ell} + 3\sigma_{\ell}) = 3$

- N = 500 samples of sizes n = 20, 50 and 100 are generated
- MISE, is obtained by averaging the results over the N

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- Numerical computation of F_n , K_n (Gaussian kernel k, h_n chosen with 2-stage Polansky and Baker procedure), $G_n^{(j,p)}$, j = 1, 2 with $p = \frac{1}{2}$ but also p = 0 or 1
- Set of 15 Gaussian mixtures defined in Marron and Wand, 92 + 1 additional from Janssen, Marron, Veraverbeke, and Sarle, 95
 - of easy implementation,
 - describing a broad class of potential problems (skewness, multimodality, and heavy kurtosis)
 - parameters chosen such that $\min_{\ell=1,...,16} (\mu_{\ell} 3\sigma_{\ell}) = -3$ and $\max_{\ell=1,...,16} (\mu_{\ell} + 3\sigma_{\ell}) = 3$
- *N* = 500 samples of sizes *n* = 20, 50 and 100 are generated and a Monte Carlo approximation is operated for each sample to estimate the ISE
- $\widehat{\text{MISE}}$, is obtained by averaging the results over the N replicates

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- Numerical computation of F_n , K_n (Gaussian kernel k, h_n chosen with 2-stage Polansky and Baker procedure), $G_n^{(j,p)}$, j = 1, 2 with $p = \frac{1}{2}$ but also p = 0 or 1
- Set of 15 Gaussian mixtures defined in Marron and Wand, 92 + 1 additional from Janssen, Marron, Veraverbeke, and Sarle, 95
 - of easy implementation,
 - describing a broad class of potential problems (skewness, multimodality, and heavy kurtosis)
 - parameters chosen such that $\min_{\ell=1,...,16} (\mu_{\ell} 3\sigma_{\ell}) = -3$ and $\max_{\ell=1,...,16} (\mu_{\ell} + 3\sigma_{\ell}) = 3$
- *N* = 500 samples of sizes *n* = 20, 50 and 100 are generated and a Monte Carlo approximation is operated for each sample to estimate the ISE
- MISE, is obtained by averaging the results over the *N* replicates

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- For all tested distributions and all *n* in {20, 50, 100}, $G_n^{(1,\frac{1}{2})}$ and $G_n^{(2,\frac{1}{2})}$ outperform F_n
- $G_n^{(1,\frac{1}{2})}$ with a = -3 and b = 3 always slightly better than $G_n^{(2,\frac{1}{2})}$
- $G_n^{(j,0)}$ and $G_n^{(j,1)}$, j = 1, 2 have irregular behaviour: better or worse than F_n depending on n and the simulated distribution. Nevertheless, their estimated MISE are always greater than $G_n^{(j,\frac{1}{2})}$
- $G_n^{(1,\frac{1}{2})}$ outperforms both K_n and F_n for 6/16 tested distributions (from only n = 50 for 2 of them)

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- For all tested distributions and all *n* in {20, 50, 100}, $G_n^{(1,\frac{1}{2})}$ and $G_n^{(2,\frac{1}{2})}$ outperform F_n
- $G_n^{(1,\frac{1}{2})}$ with a = -3 and b = 3 always slightly better than $G_n^{(2,\frac{1}{2})}$
- $G_n^{(j,0)}$ and $G_n^{(j,1)}$, j = 1, 2 have irregular behaviour: better or worse than F_n depending on n and the simulated distribution. Nevertheless, their estimated MISE are always greater than $G_n^{(j,\frac{1}{2})}$
- $G_n^{(1,\frac{1}{2})}$ outperforms both K_n and F_n for 6/16 tested distributions (from only n = 50 for 2 of them)

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- For all tested distributions and all *n* in {20, 50, 100}, $G_n^{(1,\frac{1}{2})}$ and $G_n^{(2,\frac{1}{2})}$ outperform F_n
- $G_n^{(1,\frac{1}{2})}$ with a = -3 and b = 3 always slightly better than $G_n^{(2,\frac{1}{2})}$
- $G_n^{(j,0)}$ and $G_n^{(j,1)}$, j = 1, 2 have irregular behaviour: better or worse than F_n depending on n and the simulated distribution. Nevertheless, their estimated MISE are always greater than $G_n^{(j,\frac{1}{2})}$
- G_n^(1,¹/₂) outperforms both K_n and F_n for 6/16 tested distributions (from only n = 50 for 2 of them)

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

- For all tested distributions and all *n* in {20, 50, 100}, $G_n^{(1,\frac{1}{2})}$ and $G_n^{(2,\frac{1}{2})}$ outperform F_n
- $G_n^{(1,\frac{1}{2})}$ with a = -3 and b = 3 always slightly better than $G_n^{(2,\frac{1}{2})}$
- $G_n^{(j,0)}$ and $G_n^{(j,1)}$, j = 1, 2 have irregular behaviour: better or worse than F_n depending on n and the simulated distribution. Nevertheless, their estimated MISE are always greater than $G_n^{(j,\frac{1}{2})}$
- $G_n^{(1,\frac{1}{2})}$ outperforms both K_n and F_n for 6/16 tested distributions (from only n = 50 for 2 of them)

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

Number	Name	Distribution function: $\sum_{\ell=0}^{k} \omega_{\ell} \mathcal{N}(\mu_{\ell}, \sigma_{\ell}^2)$
3	Strongly skewed	$\sum_{\ell=0}^7 rac{1}{8} \mathcal{N}(3((rac{2}{3})^\ell - 1), (rac{2}{3})^{2\ell})$
4	Kurtotic unimodal	$\frac{2}{3}\mathcal{N}(0,1) + \frac{1}{3}\mathcal{N}(0,(\frac{1}{10})^2)$
5	Outlier	$rac{1}{10}\mathcal{N}(0,1)+rac{9}{10}\mathcal{N}(0,(rac{1}{10})^2)$
14	Smooth comb	$\sum_{\ell=0}^5 rac{2^{5-\ell}}{63} \mathcal{N}ig(rac{65-96(1/2)^\ell}{21},rac{(32/63)^2}{2^{2\ell}}ig)$
15	Discrete comb	$\sum_{\ell=0}^{2} \frac{2}{7} \mathcal{N}(\frac{12\ell-15}{7}, (\frac{2}{7})^2) + \sum_{\ell=0}^{10} \frac{1}{21} \mathcal{N}(\frac{2\ell}{7}, (\frac{1}{21})^2)$
16	Distant bimodal	$\frac{1}{2} \frac{1}{2} \mathcal{N}(-\frac{5}{2}, (\frac{1}{6})^2) + \frac{1}{2} \mathcal{N}(\frac{5}{2}, (\frac{1}{6})^2)$

Table: Selected distribution functions used in the simulation study: #1-#15 are from MW 92, #16 from JMVS95

Polygonal estimators	The kernel distribution estimator
Study of the MISE	Numerical framework
Simulations	Results

MW 16

- N. Altman and C. Léger.Bandwidth selection for kernel distribution estimation J. Statist. Plann. Infer., 46(2):195–214, 1995.
- D. Bosq. Predicting smoothed Poisson process and regularity for density estimation in the context of an exponential rate. In preparation, 2017.
- A. Bowman, P. Hall, and T. Prvan. Bandwidth selection for the smoothing of distribution functions. *Biometrika*, 85(4):799–808, 1998.
- H. A. David and H. N. Nagaraja. Order statistics. Wiley Series in Probability and Statistics. Third edition, 2003.
- J. S. Marron and M. P. Wand. Exact mean integrated squared error. Ann. Statist., 20(2):712–736, 1992.
- A. M. Polansky and E. R. Baker. Multistage plug-in bandwidth selection for kernel distribution function estimates. J. Statist. Comput. Simulation, 65(1): 63–80, 2000.
- R. R. Read. The asymptotic inadmissibility of the sample distribution function. Ann. Math. Statist., 43:89–95, 1972.
- P. Sarda. Smoothing parameter selection for smooth distribution functions. J. Statist. Plann. Inference, 35(1):65–75, 1993.
- R. Servien. Estimation de la fonction de répartition : revue bibliographique. J. SFdS, 150(2):84–104, 2009.