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Motivation

Problem: Given some information set Ft−1, it is often of interest

to regress yt on the components of x t .

Solution: yt − E (yt | Ft−1) = β′yx ,t {x t − E (x t | Ft−1)}+ ηt ,

with the dynamic conditional beta (DCB) βyx ,t = Σ−1
xx ,tΣxy ,t .

Practical implementation: An ARCH-type model for the

conditional variance

 Σxx ,t Σxy ,t

Σyx ,t Σyy ,t

 of

εt =

 x t − E (x t | Ft−1)

yt − E (yt | Ft−1)

 is needed.

A Cholesky GARCH model directly specifies the DCB.
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Notation

Let εt = (ε1t , . . . , εmt )
′ be a vector of m ≥ 2 log-returns

satisfying

εt = Σ
1/2
t (ϑ0)ηt ,

where (ηt ) is iid (0, In),

Σt = Σt (ϑ0) = Σ(εt−1, εt−2, . . . ;ϑ0) > 0,

and ϑ0 is a d × 1 vector.
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DCC of Engle

Σt = DtRtDt =
(
ρijt
√
σiitσjjt

)
,

where Dt = diag(σ
1/2
11t , . . . , σ

1/2
mmt ) contains the volatilities of the

individual returns, and Rt = (ρijt ) the conditional correlations.

The time series model needs to incorporate the complicated

constraints of a correlation matrix. One often takes

Rt = (diag Qt )
−1/2Qt (diag Qt )

−1/2 where

Qt = (1− θ1 − θ2)S + θ1ut−1u′t−1 + θ2Qt−1,

with ut = (u1t . . . umt )
′, uit = εit/

√
σiit , θ1 + θ2 < 1.
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Engle (2016) DCB

Assuming x t

yt

 | Ft−1 ∼ N


 µx t

µyt

 ,

 Σxx ,t Σxy ,t

Σyx ,t Σyy ,t


we have

yt | x t ∼ N
(
µyt + Σyx ,tΣ

−1
xx ,t (x t − µx t ),Σyy ,t − Σyx ,t Σ

−1
xx ,t Σxy ,t

)
⇒ βyx ,t = Σ−1

xx ,tΣxy ,t can be obtained by first estimating a DCC

GARCH model.
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Drawbacks of DCC-based DCB

1) The stationarity and ergodicity conditions of the DCC are

not weel known1.

2) The correlation constraints are complicated.

3) The asymptotic properties of the QMLE are unknown.

4) The effects of the DCC parameters on βt are hardly

interpretable.

We now introduce a class of Cholesky GARCH (CHAR) models

that avoids all these drawbacks.
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Cholesky Decomposition of Σ = Var (ε)

Letting v1 := ε1, we have

ε2 = `21v1 + v2 = β21ε1 + v2,

where β21 = `21 is the beta in the regression of ε2 on ε1, and v2

is orthogonal to ε1. Recursively, we have

εi =
i−1∑
j=1

`ijvj + vi =
i−1∑
j=1

βijεj + vi , for i = 2, . . . ,m,

where vi is uncorrelated to v1, . . . , vi−1, and thus uncorrelated

to ε1, . . . , εi−1.
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Cholesky Decomposition of Σ = Var (ε)

In matrix form,

ε = Lv and Bε = v ,

where L and B = L−1 are lower unitriangular and G := var(v)

is triangular. We obtain the Cholesky decomposition

Σ = LGL′

(see Pourahmadi, 1999).
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Example: Σ = LGL′, m = 3

L =


1 0 0

l21 1 0

l31 l32 1

 , B =


1 0 0

−β21 1 0

−β31 −β32 1

 , G =


g1 0 0

0 g2 0

0 0 g3

 ,

Σ =


g1 l21g1 l31g1

l21g1 l221g1 + g2 l21l31g1 + l32g2

l31g1 l21l31g1 + l32g2 l231g1 + l232g2 + g3

 .
Remark: In Σ = DRD the constraints on the elements of R are

ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13ρ23 ≤ 1.

In Σ = LGL′ there is no constraint on the `ij ’s.
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Sequential construction of Σt = LtGtL′t
Let the factors v t = G1/2

t ηt , ηt iid (0, Im) (vit =
√

gitηit ).

Taking Σ
1/2
t = LtG

1/2
t , we have εt = Σ

1/2
t ηt = Ltv t .

Step 1: v1t = ε1t

g1,t = Var (v1t | Ft−1)

Step 2: ε2t = l21,tv1t + v2t

v2t = ε2t − l21,tv1t

g2,t = Var (v2t | Ft−1)

Step 3: ε3t = l31,tv1t + l32,tv2t + v3t

v3t = ε3t − l31,tv1t − l32,tv2t

g3,t = Var (v3t | Ft−1)
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Alternative construction of Σ−1
t = B′tG

−1
t Bt

εt = Ltv t and therefore Btεt = v t , where the subdiagonal

elements of the lower unitriangular matrix Bt = L−1
t are −βij,t

Step 1: v1t = ε1t

g1,t = Var (v1t | Ft−1)

Step 2: ε2t = β21,tε1t + v2t

v2t = ε2t − β21,tε1t

g2,t = Var (v2t | Ft−1)

Step 3: ε3t = β31,tε1t + β32,tε2t + v3t

v3t = ε3t − β31,tε1t − β32,tε2t

g3,t = Var (v3t | Ft−1)
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The order of the series

Replace εt = (ε1t , ε2t , ε3t )
′ by ε∗t = (ε2t , ε1t , ε3t )

′ (the position of

the last component is imposed by the problem)
Step 1∗: v∗1t = ε2t , g∗1,t = Var (v∗1t | Ft−1)

Step 2∗: ε1t = β12,tε2t + v∗2t (v∗2t 6= v2t )

g∗2,t = Var (v∗2t | Ft−1)

Step 3∗: ε3t = β32,tε2t + β31,tε1t + v∗3t (v∗3t = v3t )

g3,t = Var (v3t | Ft−1)

In particular, β12,t = β21,t
g1t

β2
21,t g1t +g2t

: for most parametric

specifications, the order matters.
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The order of the series (matrix form)

Σ−1 =


g−1

1 + β2
21g−1

2 + β2
31,tg

−1
3,t −β21g−1

2 + β31,tβ32,tg−1
3,t −β31,tg−1

3,t

−β21g−1
2 + β31,tβ32,tg−1

3,t β2
32,tg

−1
3,t + g−1

2 −β32,tg−1
3,t

−β31,tg−1
3,t −β32,tg−1

3,t g−1
3,t

 .
ε∗t = ∆εt , ∆Σ∗−1∆ =

β2
31,tg

−1
3,t + g∗−1

2 −β12g∗−1
2 + β31,tβ32,tg−1

3,t −β31,tg−1
3,t

−β12g∗−1
2 + β31,tβ32,tg−1

3,t g∗−1
1 + β2

12g∗−1
2 + β2

32,tg
−1
3,t −β32,tg−1

3,t

−β31g−1
3,t −β32,tg−1

3,t g−1
3,t

 .
We have ∆Σ∗−1∆ = Σ−1 when

β12 = β21g1/(β2
21g1 + g2), g∗1 = β2

21g1 + g2 and g∗2 = g1 − β2
21g2

1/(β2
21g1 + g2)

When the first parameters are time-invariant, the order does not matter.
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A general model for the factors

Assume

v t = G1/2
t ηt , (ηt ) iid (0, In),

where Gt = diag(gt ) follows a GJR-like equation

gt = ω0 +

q∑
i=1

{
A0i,+v2+

t−i + A0i,−v2−
t−i

}
+

p∑
j=1

B0jgt−j ,

with positive coefficients and

v2+
t =

({
v+

1t

}2
, · · · ,

{
v+

mt
}2
)′
, v2−

t =
({

v−1t

}2
, · · · ,

{
v−mt
}2
)′
.
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Markovian representation of the factors
Letting z t =

(
v2+′

t :(t−q+1),v
2−′
t :(t−q+1),g

′
t :(t−p+1)

)′
,

ht =
(
ω′0Υ

+′

t ,0′m(q−1),ω
′
0Υ
−′
t ,0′(q−1)m,ω

′
0,0
′
(p−1)m

)′
, with

Υ+
t = diag

(
η2+

t

)
Υ−t = diag

(
η2−

t

)
and obvious notations, we

rewrite the model as

z t = ht + H tz t−1,

where, in the case p = q = 1,

H t =


Υ+

t A01,+ Υ+
t A01,− Υ+

t B01

Υ−t A01,+ Υ−t A01,− Υ−t B01

A01,+ A01,− B01

 .
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Stationarity of the factors

In view of

z t = ht + H tz t−1,

there exists a stationary and ergodic sequence (v t ) satisfying

v t = G1/2ηt if and only if

γ0 = inf
t≥1

1
t

E(log ‖H tH t−1 . . .H1‖) < 0.
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Stationarity of βt := −vech0Bt

If (v t ) is stationary and ergodic (γ0 < 0), and

det

{
Im0 −

s∑
i=1

C0iz i

}
6= 0 for all |z| ≤ 1,

then

βt = c0

(
v t−1, . . . ,v t−r ,g

1/2
t−1, . . . ,g

1/2
t−r

)
+

s∑
j=1

C0jβt−j .

defines a stationary and ergodic sequence (and thus the

existence of a stationary CHAR model).
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Existence of moments

If in addition

E‖η1‖2k1 <∞ and %(EH⊗k1
1 ) < 1,

for some integer k1 > 0, and

‖c0(x)− c0(y)‖ ≤ K ‖x − y‖a

for some constants K > 0 and a ∈ (0,1], then the CHAR

model satisfies E ‖ε1‖2k1 <∞.
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A simpler parameterization

A tractable submodel is

git = ω0i+γ0i+

(
ε+
1,t−1

)2
+γ0i−

(
ε−1,t−1

)2
+

i∑
k=2

α
(k)
0i v2

k ,t−1+b0igi,t−1

with positivity coefficients, and

βij,t = $0ij + ς0ij+ε
+
1,t−1 + ς0ij−ε

−
1,t−1 +

i∑
k=2

τ
(k)
0ij vk ,t−1 + c0ijβij,t−1

without positivity constraints. Notice the triangular structure and

note that the asymmetry is introduced via the first (observed)

factor only.
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Stationarity for the previous specification

There exists a strictly stationary, non anticipative and ergodic

solution to the CHAR model when

1) E log

{
ω01 + γ01+

(
η+

1,t−1

)2
+ γ01−

(
η−1,t−1

)2
+ b01

}
< 0,

2) E log
{
α

(i)
0i η

2
it + b0i

}
< 0 for i = 2, . . . ,m,

3) |c0ij | < 1 for all (i , j).

Moreover, the stationary solution satisfies E‖ε1‖2s0 <∞,

E‖g1‖s0 <∞, E‖v1‖s0 <∞, E‖β1‖s0 <∞ and E‖Σ1‖s0 <∞

for some s0 > 0.
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Invertibility of the CHAR

Under the stationarity conditions

gt = g(ηu,u < t), βt = β(ηu,u < t).

For practical use, we need (uniform) invertibility:

gt (ϑ) = g(ϑ; εu,u < t), βt (ϑ) = β(ϑ; εu,u < t)

with some abuse of notation.
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Invertibility of the CHAR

For practical use, we need uniform invertibility:

βt (ϑ) = β(ϑ; εu,u < t).

More precisely, we need

sup
ϑ∈Θ

∥∥∥βt (ϑ)− β̃t (ϑ)
∥∥∥ ≤ Kρt ,

where β̃t (ϑ) = β(ϑ; εt−1, . . . , ε1, ε̃0, ε̃−1, . . . ) for fixed initial

values ε̃0, ε̃−1, . . . , and βt (ϑ0) = βt .
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Invertibility conditions for the "triangular" model
In vector form, the model

ṽkt (ϑ) = εkt −
k−1∑
j=1

β̃kj,t (ϑ)εjt ,

β̃ij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij ṽk ,t−1(ϑ) + cij β̃ij,t−1(ϑ),

with ωijt = $ij + ςij+ε
+
1t + ςij−ε

−
1t , writes

β̃t (ϑ) =w t−1 + T B̃t−1(ϑ)εt−1 + Cβ̃t−1(ϑ)

=w t−1 + Tεt−1 +
{

C − (ε′t−1 ⊗ T )D0
m

}
β̃t−1(ϑ)

:=w∗t−1 + St−1β̃t−1(ϑ).
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Invertibility conditions for the "triangular" model

By the Cauchy rule, the triangular model

β̃t (ϑ) = w∗t−1 + St−1β̃t−1(ϑ).

is uniformly invertible under the conditions

E log+ sup
ϑ∈Θ
‖w1 + Tε1‖ <∞,

γS := lim sup
n→∞

1
n

log sup
ϑ∈Θ

∥∥∥∥∥
n∏

i=1

St−i

∥∥∥∥∥ < 0.
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Full QMLE of the general CHAR

A QMLE of the CHAR parameter ϑ0 is

ϑ̂n = arg min
ϑ∈Θ

Õn(ϑ), Õn(ϑ) = n−1
n∑

t=1

q̃t (ϑ),

where Σ̃t (ϑ) = Σ (εt−1, . . . , ε1, ε̃0, ε̃−1, . . . ;ϑ) and

q̃t (ϑ) = ε′t B̃
′
t (ϑ)G̃

−1
t (ϑ)B̃t (ϑ)εt +

m∑
i=1

log g̃it (ϑ).

• Does not require matrix inversion.

• CAN under general regularity conditions.
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Regularity conditions for the triangular model
Let ωit = ωi + γi+

(
ε+
1t

)2
+ γi−

(
ε−1t

)2
. The regularity conditions

for CAN of the QMLE of the triangular model

git (ϑ) = ωi,t−1 +
i∑

k=2

α
(k)
i v2

k ,t−1(ϑ) + bigi,t−1(ϑ)

βij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij vk ,t−1(ϑ) + cijβij,t−1(ϑ)

are
B1 |c0ij | < 1 and other stationarity conditions.
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Regularity conditions for the triangular model
Let ωit = ωi + γi+

(
ε+
1t

)2
+ γi−

(
ε−1t

)2
. The regularity conditions

for CAN of the QMLE of the triangular model

git (ϑ) = ωi,t−1 +
i∑

k=2

α
(k)
i v2

k ,t−1(ϑ) + bigi,t−1(ϑ)

βij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij vk ,t−1(ϑ) + cijβij,t−1(ϑ)

are
B2 For i = 2, . . . ,m, the distribution of η2

it conditionally on

{ηjt , j 6= i} is non-degenerate. The support of η1t contains at

least two positive points and two negative points.
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Regularity conditions for the triangular model
Let ωit = ωi + γi+

(
ε+
1t

)2
+ γi−

(
ε−1t

)2
. The regularity conditions

for CAN of the QMLE of the triangular model

git (ϑ) = ωi,t−1 +
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k=2

α
(k)
i v2

k ,t−1(ϑ) + bigi,t−1(ϑ)

βij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij vk ,t−1(ϑ) + cijβij,t−1(ϑ)

are
B3 Positivity conditions: γi+, γi−, α

(k)
i ≥ 0 for all ϑ, ω0i > 0,

|b0i | < 1 and |c0ij | < 1.
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Regularity conditions for the triangular model
Let ωit = ωi + γi+

(
ε+
1t

)2
+ γi−

(
ε−1t

)2
. The regularity conditions

for CAN of the QMLE of the triangular model

git (ϑ) = ωi,t−1 +
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α
(k)
i v2

k ,t−1(ϑ) + bigi,t−1(ϑ)

βij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij vk ,t−1(ϑ) + cijβij,t−1(ϑ)

are
B4 Identifiability conditions: (γ0i+, γ0i−, α

(2)
0i , . . . , α

(i)
0i ) 6= 0 and

(ς0ij+, ς0ij−, τ
(2)
0ij , . . . , τ

(i)
0ij ) 6= 0.
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Regularity conditions for the triangular model
Let ωit = ωi + γi+

(
ε+
1t

)2
+ γi−

(
ε−1t

)2
. The regularity conditions

for CAN of the QMLE of the triangular model

git (ϑ) = ωi,t−1 +
i∑

k=2

α
(k)
i v2

k ,t−1(ϑ) + bigi,t−1(ϑ)

βij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij vk ,t−1(ϑ) + cijβij,t−1(ϑ)

are
B5 Uniform invertibility condition.
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Regularity conditions for the triangular model
Let ωit = ωi + γi+

(
ε+
1t

)2
+ γi−

(
ε−1t

)2
. The regularity conditions

for CAN of the QMLE of the triangular model

git (ϑ) = ωi,t−1 +
i∑

k=2

α
(k)
i v2

k ,t−1(ϑ) + bigi,t−1(ϑ)

βij,t (ϑ) = ωij,t−1 +
i∑

k=2

τ
(k)
ij vk ,t−1(ϑ) + cijβij,t−1(ϑ)

are
B6 Moments conditions (larger than 6) on

‖εt‖ , sup
ϑ∈V (ϑ0)

‖βt (ϑ)‖ , sup
ϑ∈V (ϑ0)

∥∥∥∥∂βt (ϑ)

∂ϑ′

∥∥∥∥ .
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Equation-by-Equation (EbE) estimator

Consider the triangular model. In a first step, the parameter

ϑ
(1)
0 = (ω01, γ01+, γ01−,b01) is estimated by

ϑ̂
(1)

n = arg min
ϑ(1)∈Θ(1)

n∑
t=1

q̃1t (ϑ
(1)),

where

q̃1t (ϑ
(1)) =

ε21t

g̃1t (ϑ
(1))

+ log g̃1t (ϑ
(1)),

and g̃1t (ϑ
(1)) = ω1 + γ1+

(
ε+
1t

)2
+ γ1−

(
ε−1t

)2
+ b1g̃1,t−1(ϑ(1)).
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EbE second step

Let ϑ(2)
0 = (ϕ

(2)
0 ,θ

(2)
0 ), where β̃21,t = β̃21,t (ϕ

(2)
0 ) and g̃2t = g̃2t (θ

(2)
0 ).

Independently or in parallel to ϑ(1)
0 , one can estimate ϑ(2)

0 by

ϑ̂
(2)

n = arg min
ϑ(2)∈Θ(2)

n∑
t=1

q̃2t (ϑ
(2)),

where, for t = 1, . . . ,n,

q̃2t (ϑ
(2)) =

ṽ2
2t (ϕ

(2))

g̃2t (ϑ
(2))

+ log g̃2t (ϑ
(2)),

g̃2t (ϑ
(2)) = ω2,t−1 + α

(2)
2 ṽ2

2,t−1(ϕ(2)) + b2g̃2,t−1(ϕ(2)),

ṽ2t (ϕ
(2)) = ε2t − β̃21,t (ϕ

(2))ε1t ,

β̃21,t (ϕ
(2)) = ω21,t−1 + τ

(2)
21 ṽ2,t−1(ϕ(2)) + c21β̃21,t−1(ϕ(2)).
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EbE remaining steps

For i ≥ 3, β̃ij,t depends on ϕ(+i)
0 =

(
ϕ

(i)
0 ,ϕ

(−i)
0

)
, where ϕ(−i)

0 has

been estimated in the previous steps. The volatility g̃2t depends on

ϑ
(+i)
0 = (θ

(i)
0 ,ϕ

(+i)
0 ), and ϑ(i)

0 = (θ
(i)
0 ,ϕ

(i)
0 ) can be estimated by

ϑ̂
(i)
n = arg min

ϑ(i)∈Θ(i)

n∑
t=1

q̃it (ϑ
(i), ϕ̂(−i)

n ), q̃it (ϑ
(+i)) =

ṽ2
it (ϕ(+i))

g̃it (ϑ
(+i))

+ log g̃it (ϑ
(+i)),

g̃it (ϑ
(+i)) = ωi,t−1 +

i∑
k=2

α
(k)
i ṽ2

k,t−1(ϕ(+k)) + bi g̃i,t−1(ϑ(+i)),

ṽkt (ϕ
(+k)) = εkt −

k−1∑
j=1

β̃kj,t (ϕ
(+k))εjt ,

β̃ij,t (ϕ
(+i)) = ωij,t−1 +

i∑
k=2

τ
(k)
ij ṽk,t−1(ϕ(+k)) + cij β̃ij,t−1(ϕ(+i)),
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QML vs. EbE

1) If m = 2, the one-step full QMLE and the two-step EbEE

are exactly the same.

2) For m ≥ 3, the two estimators are generally different.

3) The QML and EbE estimators are CAN under similar

assumptions CAN of the EbEE .

4) The EbEE is simpler, but is not always less efficient than

the full QMLE.

We illustrate the last point on a simplistic example.
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Example

Consider a static model with git = 1 for i ∈ {1,2,3}.

ε1t = v1t

ε2t = l21v1t + v2t

ε3t = l31︸︷︷︸
0

v1t + l32v2t + v3t = l32v2t + v3t

In terms of β’s:

ε2t = β21ε1t + v2t

ε3t = −β21β32︸ ︷︷ ︸
β31

ε1t + β32ε2t + v3t

→ ϑ = (β21, β32)
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Example

Assume for instance that the variable v2t is independent of the

vector (v1t , v3t )
′ and that this vector is distributed as the product

ηu, where the random variable η and the vector u are

independent, e.g., u ∼ N (0, I2) and η ∼
√

(ν − 2)/νStν , ν > 4.

QMLE:
√

n
(
ϑ̂n − ϑ0

)
L→ N

0,

 1+β2
32Eη4

(1+β2
32)2 0

0 Eη4

 .

EbEE:
√

n
(
β̂21 − β0,21

)
=

n−1/2 ∑n
t=1 η2t ε1t

n−1
∑n

t=1 ε
2
1t

L→ N (0,1) .
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Illustration

β32

ν (degree of freedom)
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Figure: Ratio between the asymptotic variance of the QML estimator

of β21 and its EbE counterpart as a function of the degree of freedom

ν and β32.
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Illustration
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Data Generating process

εt = Σ
1/2
t (ϑ0)ηt ,

Σt = LtGtL′t ,

gi,t = 0.1 + 0.1v2
i,t−1 + 0.8gi,t−1,

βij,t = 0.1 + 0.2vi,t−1 + 0.8βij,t−1,

where (ηt ) is iid N (0, Im), t = 1, . . . ,n.
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Results for m = 5,η ∼ N (0, Im), 1000 replications

FULL QML EbE

BIAS RMSE-STD 5% CP 95% CP BIAS RMSE-STD 5% CP 95% CP

n=1000

ω 0.0202 0.0158 4.444 91.695 0.0190 0.0100 4.070 92.251

α 0.0037 0.0024 4.018 91.111 0.0036 -0.0004 3.659 91.696

β -0.0245 0.0178 7.834 94.007 -0.0230 0.0092 7.379 94.347

$ 0.0008 0.0011 5.769 91.538 0.0007 0.0001 4.604 92.559

τ 0.0012 0.0011 7.306 93.939 0.0011 -0.0001 6.208 94.779

c -0.0017 0.0022 8.115 93.805 -0.0016 0.0003 7.009 94.913

ALL 0.0000 0.0050 6.520 92.820 0.0000 0.0021 5.639 93.644

n=2000

ω 0.0098 0.0014 3.824 92.745 0.0087 0.0000 3.305 93.138

α 0.0019 0.0014 4.412 92.966 0.0017 -0.0004 3.766 93.410

β -0.0119 0.0034 6.642 94.804 -0.0104 -0.0006 6.130 95.460

$ 0.0002 -0.0009 6.483 91.324 0.0002 -0.0003 4.550 93.410

τ 0.0003 0.0001 7.145 93.493 0.0004 -0.0002 5.690 94.812

c -0.0005 -0.0014 8.039 94.069 -0.0004 -0.0006 6.266 95.690

ALL 0.0000 0.0002 6.468 93.143 0.0000 -0.0004 5.135 94.426

gi,t = ωi + αi v
2
i,t−1 + βi gi,t−1 and βij,t = $ij + τij vi,t−1 + cijβij,t−1
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Results for m = 5,ηi ∼ t(0,1,7), 1000 replications

FULL QML EbE

BIAS RMSE-STD 5% CP 95% CP BIAS RMSE-STD 5% CP 95% CP

n=1000

ω 0.0236 0.0153 4.468 89.811 0.0225 0.0050 4.227 90.284

α 0.0056 0.0015 2.931 89.362 0.0057 -0.0066 2.860 90.074

β -0.0309 0.0181 9.409 92.719 -0.0293 -0.0013 8.980 93.270

$ 0.0010 -0.0002 5.922 91.052 0.0010 -0.0014 4.532 92.650

τ 0.0014 -0.0013 7.080 94.173 0.0012 -0.0016 5.910 95.152

c -0.0019 0.0005 8.818 93.995 -0.0018 -0.0024 7.308 95.226

ALL -0.0001 0.0037 6.717 92.259 -0.0001 -0.0015 5.730 93.298

n=2000

ω 0.0062 0.0018 3.624 92.584 0.0093 0.0005 3.141 91.734

α 0.0009 0.0007 3.490 91.678 0.0020 -0.0017 2.748 91.189

β -0.0079 0.0025 7.282 94.899 -0.0120 -0.0006 7.546 94.984

$ 0.0002 0.0001 8.188 90.336 0.0003 -0.0004 4.308 94.079

τ 0.0002 0.0002 7.953 92.953 0.0005 -0.0006 4.984 95.507

c -0.0004 0.0001 9.463 91.695 -0.0007 -0.0008 5.965 95.725

ALL -0.0001 0.0006 7.289 92.125 0.0000 -0.0006 4.883 94.281

gi,t = ωi + αi v
2
i,t−1 + βi gi,t−1 and βij,t = $ij + τij vi,t−1 + cijβij,t−1
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Results for m = 10, n = 4000 and 1000 replications

Summary statistics on the 165 parameters

Mean biais -0.000873171

Mean (rmse-Mean STD) 0.00155948

Mean Coverage Prob 5% 5.042389091

Mean Coverage Prob 95% 93.6329697
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Asset Pricing for Industry Portfolios

We consider the 12 industry portfolios used by Engle (2016),

examined in the context of the Fama French 3 factor model.

The three factors are: MKT (Market factor = excess log-returns

of the SP500), SMB (small minus big size factor) and HML (high

minus low value factor)

Data are from Ken French’s web site and cover the period

1994-2016.

We follow Patton and Verardo (2012) in building hedged

portfolios to offset some unwanted exposures to predetermined

factors.
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Competing models

Let εt = (x′t , yt )
′ with xt = (MKTt ,SMBt ,HMLt )

′ and yt = rkt .

Hedging strategy:

Et−1(rkt | x t ) = βk,MKT ,tMKTt + βk,SMB,tSMBt + βk,HML,tHMLt .

Competing models:

1) CCC-GARCH(1,1)

2) DCC-GARCH(1,1)

3) CHAR with constant betas

4) CHAR with time varying betas βij,t = $ij + τijvi,t−1vj,t−1 + cijβij,t−1
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Buseq: Business Equipment – Computers, Software,
and Electronic Equipment
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Buseq: One-step ahead forecasts
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Zk,t+1|t = βk,MKT ,t+1|t MKTt+1 + βk,SMB,t+1|t SMBt+1 + βk,HML,t+1|t HMLt+1,

TEk,t+1 = rk,t+1 − Zk,t+1|t
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Robust (HAC) t-statistic of the regression of the
tracking errors on a constant

C-CHAR CHAR CCC DCC

BusEq -1.025 -0.442 0.133 -0.889

Chems 0.683 0.150 1.187 0.252

Durbl -0.059 -0.402 -0.123 -0.720

Enrgy -1.191 -1.865 -0.528 -1.665

Hlth 1.664 1.123 1.777 1.325

Manuf -0.101 -0.269 0.064 -0.197

Money -0.699 -0.648 -0.837 -0.541

NoDur 2.731 2.180 2.961 2.343

Other -0.193 -0.436 -0.394 -0.415

Shops 1.746 1.947 2.447 1.768

Telcm 1.392 1.604 2.247 1.858

Utils 1.053 0.858 1.549 1.010

Note: Robust (HAC) t-statistics for the null hypothe-

sis that the coefficient in the regression of TEk,t+1

on a constant is zero. Values in bold are greater (in

absolute value) than the critical value at the 5% sig-

nificance level.



Dynamic Cholesky decomposition CHAR models QML vs. EbE Simulation Application

Results of the MCS test – MSE loss function

C-CHAR CHAR CCC DCC

BusEq X

Chems X

Durbl X

Enrgy X X

Hlth X X

Manuf X

Money X X

NoDur X

Other X

Shops X

Telcm X

Utils X

Models included in the MCS in the beta hedging exercise.

Models highlighted with the symbol X are contained in the

model confidence set using a MSE loss function. The sig-

nificance level for the MCS is set to 20%, and 10,000 boot-

strap samples (with a block length of 5 observations).
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Transaction costs : ∆βCHAR
∆βDCC−DCB

MKT SMB HML

BusEq 0.356 0.380 0.341

Chems 0.310 0.263 0.376

Durbl 0.419 0.464 0.693

Enrgy 0.373 0.337 0.456

Hlth 0.461 0.667 0.397

Manuf 0.442 0.402 0.430

Money 0.390 0.397 0.366

NoDur 0.414 0.383 0.296

Other 0.273 0.343 0.335

Shops 0.344 0.297 0.395

Telcm 0.334 0.414 0.640

Utils 0.465 0.408 0.431

∆βk,j
=
∑1,678

t=2 |βk,j,t+1|t − βk,j,t|t−1|.
For each column, the figures correspond to the

ratio between the value of ∆βk,j
obtained for

the CHAR and the DCC-DCB models.
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Conclusion
Compare to other multivariate GARCH (in particular BEKK and

DCC), the Cholesky-GARCH models introduced here have

several advantages.

1) Precise stationarity and moment conditions exist.

2) The parameters are directly interpretable in terms of DCB.

3) There is no complicated correlation constraint.

4) The estimation can be done without matrix invertion.

5) The asymptotic theory of the QMLE is available.

6) EbE estimation is possible for triangular models.

7) The model works nicely in practice, in particuilar for beta

hedging.

Thanks for your attention!



Dynamic Cholesky decomposition CHAR models QML vs. EbE Simulation Application

Conclusion
Compare to other multivariate GARCH (in particular BEKK and

DCC), the Cholesky-GARCH models introduced here have

several advantages.

1) Precise stationarity and moment conditions exist.

2) The parameters are directly interpretable in terms of DCB.

3) There is no complicated correlation constraint.

4) The estimation can be done without matrix invertion.

5) The asymptotic theory of the QMLE is available.

6) EbE estimation is possible for triangular models.

7) The model works nicely in practice, in particuilar for beta

hedging.

Thanks for your attention!



Dynamic Cholesky decomposition CHAR models QML vs. EbE Simulation Application

CAN of the EbE estimator

Theorem (CAN of the EbEE)

Under B1-B5 the EbEE ϑ̂n =

(
ϑ̂

(1)′

n , . . . , ϑ̂
(m)′

n

)′
satisfies

ϑ̂n → ϑ0, almost surely as n→∞.

Under the additional assumption B6, as n→∞,

√
n
(
ϑ̂

(i)
n − ϑ

(i)
0

)
L→ N

{
0,Σ(i) :=

(
J(i)
)−1

I (i)
(

J(i)
)−1

}
for i = 1 and i = 2.

J(i)
n =

∂2Õ(i)
n (ϑ̂

(+i)
n )

∂ϑ(i)∂ϑ(i)′
, I(i)

n =
1

n

n∑
t=1

∂q̃it (ϑ̂
(+i)
n )

∂ϑ(i)

∂q̃it (ϑ̂
(+i)
n )

∂ϑ(i)′
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CAN of the EbE estimator

β32,t = $032 + . . . + τ
(2)
032v2,t−1 + c032β32,t−1, where v2,t−1 = ε2,t−1 − β21,t−1ε1,t−1.

Theorem (CAN of the EbEE)
Denoting by Σ

(+i)
ϕ− (or by Σ

(+(i−1))
ϕ+ ) the bottom-right sub-matrix of

Σ(+i) (or of Σ(+(i−1))) corresponding to the asymptotic variance of
ϕ̂(−i)

n (which is equal to ϕ̂(+(i−1))
n ), and using the convention

Σ(+2) = Σ(2), for i = 3, . . . ,m we also have

√
n
(
ϑ̂

(+i)
n − ϑ

(+i)
0

) L→ N
(

0,Σ(+i)
)

with

Σ(+i) =

 Σ
(i)
ϑ

−
(

J(i)
)−1

K (i)Σ
(+(i−1))

ϕ+

−
(

J(i)′
)−1

K (i)′Σ(+(i−1))

ϕ+ Σ
(+(i−1))

ϕ+



where Σ
(i)
ϑ

=
(

J(i)
)−1

{
I(i) + K (i)Σ

(+(i−1))

ϕ+ K (i)′
}(

J(i)
)−1

and K (i)
n =

∂2Õ(i)
n (ϑ̂

(+i)
n )

∂ϑ(i)∂ϕ(−i)′

Return
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