Collect. Math. **48**, 3 (1997), 235–242 © 1997 Universitat de Barcelona

Basis in the big disk algebra and in the corresponding Hardy-space

F. LANCIEN

Université de Besancon, Équipe de Mathématiques, U.A. n. 040741, 25030 Besancon Cedex, France

Received December 12, 1994. Revised May 29, 1996

Abstract

It is well known that the disk algebra $A(\mathbb{T})$ has a basis [1] and that $H^1(\mathbb{T})$ has an unconditional basis [9]. Recently W. Lusky gave new proofs of these results using the commuting bounded approximation property ([7] and [8]).

With similar methods we prove the existence of a basis in the so called "big disk algebra" $\mathcal{A}(\mathbb{T}^N)$, the space of continuous functions on the multidimensional torus \mathbb{T}^N which are "analytic" with respect to the lexicographic order on the dual group \mathbb{Z}^N and in the space $\mathcal{H}^1(\mathbb{T}^N)$, the analog for L^1 functions on \mathbb{T}^N .

I. Introduction

We fix here some notations and recall Lusky's result. Then in Part II we prove the existence of a basis in the "big disk algebra" $\mathcal{A}(\mathbb{T}^N)$ and in the space $\mathcal{H}^1(\mathbb{T}^N)$.

For G a compact group with Haar measure μ and dual group Γ , we will denote by Γ_+ the positive part of Γ with respect to a total order on it *i.e.* $\Gamma = \Gamma_+ \cup$ $(-\Gamma_+), \ \Gamma_+ \cap (-\Gamma_+) = \{0\}$. The Fourier transform of a function f on G is $\hat{f}(\chi) = \int_G \chi(-x) f(x) d\mu(x)$ for χ in Γ . Let

 $\begin{aligned} \mathcal{A}(G) &= \left\{ f \in \mathcal{C}(G) \text{ s.t. } \hat{f}(\chi) = 0 \text{ for all } \chi \text{ in } \Gamma \setminus \Gamma_+ \right\}, \\ \mathcal{H}^1(G) &= \left\{ f \in L^1(G,\mu) \text{ s.t. } \hat{f}(\chi) = 0 \text{ for all } \chi \text{ in } \Gamma \setminus \Gamma_+ \right\}. \end{aligned}$

The groups that we will consider here are the torus $\mathbb{T} = \{z \in \mathbb{C}, |z| = 1\}$, the finite dimensional torus $\mathbb{T}^N = \{(z_1 \dots z_N), z_i \in \mathbb{T}, i = 1 \dots N\}$ and the infinite

dimensional torus $\mathbb{T}^{\mathbb{N}} = \{(z_1 \dots z_N \dots), z_i \in \mathbb{T}, i = 1, 2 \dots\}$. Their duals are respectively \mathbb{Z}, \mathbb{Z}^N and $\mathbb{Z}^{(\mathbb{N})}$ the set of sequences of integer with finitely many non zero terms.

Throughout this paper we will use operators on $\mathcal{C}(G)$, $L^1(G)$, defined by multipliers on Γ . Namely, operators verifying: $(Tf)^{\wedge}(\chi) = t(\chi)\hat{f}(\chi), \forall \chi \in \Gamma$. We will denote by capital letters the operators $T_n, S_n \dots$ and by the corresponding small letters their associated multipliers $t_n, s_n \dots$ on Γ .

On \mathbb{T} we use the standard notations:

the k^{th} partial sum of the Fourier series is $S_k f(t) = \sum_{|j| \le k} \hat{f}(j) e^{ijt}$, the n^{th} Cesaro mean is $\sigma_n f = \frac{1}{n+1} \sum_{|k| \le n} S_k f$.

For multidimensional tori, we will consider operators which are compositions of operators acting only on some of the variables. We will use the following notation. For K an operator on $L^1(\mathbb{T}^k)$, we will denote by K^{l_1,\ldots,l_k} the operator on $L^1(\mathbb{T}^N)$ or $L^1(\mathbb{T}^N)$ which acts as K on the l_1^{th},\ldots and l_k^{th} variables and fixes the other variables.

We now give Lusky's result about the existence of a basis in Banach spaces having the commuting bounded approximation property. Let first recall that a Banach space X is said to have the *commuting bounded approximation property* (in short CBAP) if there exist operators $R_n : X \to X$ such that:

- (0) R_n has finite rank,
- (1) (R_n) is bounded,
- (2) $R_n x \to x$ for all x in X,
- (3) $R_n R_m = R_{\min(n,m)}, n \neq m.$

If each R_n is a projection, (R_n) is called a *finite dimensional Schauder decomposition* (in short FDD).

It is known that the CBAP does not imply the existence of a basis or even of a FDD ([11], one can also see [3] and [13] for related results). But W. Lusky has proven ([7]) that if X has the CBAP with the sequence (R_n) satisfying moreover

(4) $R_n - R_{n-1}$ factors through $\ell_p^{m_n}$ uniformly for some p in $[1, \infty]$,

then $X \oplus \ell_p$, if $1 \le p < \infty$, or $X \oplus c_0$, if $p = \infty$, has a basis.

More precisely (4) means that there exist operators $A_n : X \to \ell_p^{m_n}, B_n : \ell_p^{m_n} \to X$ with $R_n - R_{n-1} = B_n A_n$ and $\sup_n ||A_n|| < \infty$, $\sup_n ||B_n|| < \infty$.

II. Bases in $\mathcal{A}(\mathbb{T}^N)$ and $\mathcal{H}^1(\mathbb{T}^N)$

We consider now \mathbb{T}^N the N^{th} dimensional torus, whose dual group is \mathbb{Z}^N . We take the lexicographic order on $\mathbb{Z}^N(i.e.(k_1,\ldots,k_N))$ is positive if $k_1 > 0$ or, $k_1 = 0$ and

 $k_2 > 0$, or $k_1 = k_2 = 0$ and $k_3 > 0, ...$). Then a function is said to be "analytic" for this order, if the support of its Fourier transform is included in the non negative part of \mathbb{Z}^N . For more details about Fourier analysis on groups with ordered dual we refer to chapter 8 of [12]. We consider $\mathcal{A}(\mathbb{T}^N)$, the algebra of "analytic" continuous functions on \mathbb{T}^N and $\mathcal{H}^1(\mathbb{T}^N)$ the space of "analytic" L^1 functions on \mathbb{T}^N .

Theorem 1

$$\mathcal{A}(\mathbb{T}^N)$$
 and $\mathcal{H}^1(\mathbb{T}^N)$ have a basis.

Remarks. 1) Of course, since $\mathcal{H}^1(\mathbb{T}^N)$ contains $L^1(\mathbb{T})$ as soon as $N \ge 2$, there is no hope to extend to the multidimensional case the existence of an unconditional basis in $H^1(\mathbb{T})$ (see [5]).

2) Let us remark also that $\mathcal{H}^1(\mathbb{T}^N)$ is not isomorphic to $L^1(\mathbb{T}^N)$. Indeed a complemented subspace of an L^1 space having R.N.P. is isomorphic to l^1 (see [2]). Here $H^1(\mathbb{T})$ which has R.N.P. is complemented in $\mathcal{H}^1(\mathbb{T}^N)$ (using the projection $S_0^2 \dots S_0^N$).

3) A proof similar to the proof of the fact that $A(B^N)$ is not isomorphic to A(D), given in [10], shows that $\mathcal{A}(\mathbb{T}^N)$ is not isomorphic to A(D).

Proof. We wish to explain first the strategy we will follow in the proof.

First we note that $\mathcal{A}(\mathbb{T}^N) \oplus c_0 \simeq \mathcal{A}(\mathbb{T}^N)$ and $\mathcal{H}^1(\mathbb{T}^N) \oplus \ell_1 \simeq H^1(\mathbb{T}^N)$. To see the first isomorphism one can construct a copy of c_0 in $\mathcal{A}(\mathbb{T}^N)$ by using Weierstra β ' theorem. For the second, the non equiintegrability of the ball of $\mathcal{H}^1(\mathbb{T}^N)$ gives peak functions which provide a projection onto ℓ^1 .

So we want to find operators $T_n : \mathcal{A}(\mathbb{T}^N) \mapsto \mathcal{A}(\mathbb{T}^N)$ (resp. $\mathcal{H}^1(\mathbb{T}^N) \mapsto \mathcal{H}^1(\mathbb{T}^N)$), which satisfy properties (0) - (4), in order to use Lusky's theorem. In fact the same operators are used in both cases, so we will write the argument only for $\mathcal{A}(\mathbb{T}^N)$.

Since most of these properties are easier to check on multipliers, we will work with restrictions of operators on $\mathcal{C}(\mathbb{T}^N)$ defined by multipliers. We will look for

(1) a bounded sequence of operators T_n on $\mathcal{C}(\mathbb{T}^N)$,

such that the corresponding multipliers t_n on \mathbb{Z}^N satisfy:

- (0') supp t_n is finite, for all n,
- (2') \bigcup supp $t_n = \mathbb{Z}^N$,
- (3') $t_n = 1$ on supp t_m , for m < n.

For property (4), we will use as in [7], the following idea. Once (3) holds, we have $T_n - T_{n-1} = (T_n - T_{n-1})T_{n+1}$. Since each T_n is of finite rank, it is possible to find finite dimensional subspaces E_n of $\mathcal{C}(\mathbb{T}^N)$ with $T_{n+1}A(\mathbb{T}^N) \subseteq E_n$ and $\sup_n d(E_n, \ell_{\infty}^{\dim E_n}) < \infty$. Then the following factorization holds

$$\begin{array}{cccc}
\mathcal{A}(\mathbb{T}^N) & \xrightarrow{T_n - T_{n+1}} & \mathcal{A}(\mathbb{T}^N) \\
T_{n+1} & \searrow & \swarrow & (T_n - T_{n-1})R \\
& & E_n \subseteq \mathcal{C}(\mathbb{T}^N)
\end{array}$$

provided that $(T_n - T_{n-1})R$ is uniformly bounded, where R is the Riesz projection (which itself is not bounded on $\mathcal{C}(\mathbb{T}^N)$). For this, we will choose t_n in such a way that:

(4') there exists a sequence of uniformly bounded multipliers $(b_n)_n$ on $\mathcal{C}(\mathbb{T}^N)$ with supp $b_n \subset \mathbb{Z}^N_+$ and $b_n = 1$ on supp $(t_n - t_{n-1})$ (i.e. b_n acts as the Riesz projection does on supp $(t_n - t_{n-1})$).

When such a sequence of multipliers t_n will be constructed, this by Lusky's theorem will imply that $\mathcal{A}(\mathbb{T}^N) \oplus c_0$ thus $\mathcal{A}(\mathbb{T}^N)$ has a basis. The same proof will work for $\mathcal{H}^1(\mathbb{T}^N)$ with $L^1(\mathbb{T}^N)$, $\ell_1^{\dim E_n}$, and ℓ_1 instead of $\mathcal{C}(\mathbb{T}^N)$, $\ell_1^{\dim E_n}$, and c_0 and will prove the existence of a basis on $\mathcal{H}^1(\mathbb{T}^N)$.

We now proceed to the explicit construction of the required multipliers on \mathbb{T}^N . We define them by induction on the dimension.

We recall briefly the case of the dimension 1 which is treated in [8], because this is the starting point of our inductive construction. We consider V_n the De La Vallée - Poussin operator of order 2^n , $V_n = 2\sigma_{2^{n+1}} - \sigma_{2^n}$, thus (V_n) is bounded on $\mathcal{C}(\mathbb{T})$. The corresponding multiplier is:

$$v_n(k) = 1 \quad \text{for} \quad |k| \le 2^n$$

= $\frac{2^{n+1} - |k|}{2^n} \quad \text{for} \quad 2^n \le |k| \le 2^{n+1}$
= 0 \quad \text{for} \quad |k| \ge 2^{n+1}.

It is easy to check that v_n satisfies the conditions (0'), (2') and (3'). In order to have (4') we use D_n defined by the following multiplier:

$$d_n(k) = \frac{k - 2^{n-1}}{2^{n-1}} \quad \text{for} \quad 0 \le k \le 2^{n-1}$$

= 1 for $2^{n-1} \le k \le 4.2^{n-1}$
= $\frac{5 \cdot 2^{n-1} - k}{2^{n-1}}$ for $4 \cdot 2^{n-1} \le k \le 5 \cdot 2^{n-1}$
= 0 otherwise.

Then D_n has the following properties: $D_n \mathcal{C}(\mathbb{T}) \subseteq \mathcal{A}(\mathbb{T}), (V_n - V_{n-1})D_n|_{\mathcal{A}(\mathbb{T})} = (V_n - V_{n-1})|_{\mathcal{A}(\mathbb{T})}$ and $\sup_n ||D_n|| < \infty$. This gives (4).

On \mathbb{Z}^2 , we form new multipliers by "crossbreeding" two sequences of multipliers on \mathbb{Z} . For this, we use operators that act on each variable, as described in § I. We define T_n by

$$T_n = \sum_{i=0}^n V_{n-i}^1 \left(S_{2^i}^2 - S_{2^{i-1}}^2 \right) + S_0^1 \left(V_{2^n}^2 - S_{2^n}^2 \right)$$

with the convention $S_{2^{-1}} = 0$. (In fact we decompose V_n with respect to dyadic blocks: $V_n = \sum_{i=0}^n (S_{2^i} - S_{2^{i-1}}) + V_n - S_{2^n}$, then we apply this operator in the second variable, composed on each dyadic bloc with decreasing $V'_k s$ acting on the first variable).

The multiplier associated to the operator T_n , is:

$$t_n(k_1, k_2) = v_{n-i}(k_1) \quad \text{if} \quad 2^{i-1} \le k_2 \le 2^i, \quad i = 0, 1, \dots n$$

= $v_n(k_2) \quad \text{if} \quad 2^n \le k_2 \le 2^{n+1}, \ k_1 = 0$
= 0 otherwise.

This multiplier clearly satisfies supp t_n is finite, $\bigcup \text{supp } t_n = \mathbb{Z}^2$ and $t_n = 1$ on supp t_{n-1} . Hence we have (0'), (2') and (3').

Moreover since $V_n = 2\sigma_{2^{n+1}} - \sigma_{2^n}$, the operator T_n is the difference of two operators of the form $\frac{1}{2^{n+1}} \sum_{i=0}^n \sum_{2^{i-1} < k \leq 2^{-1}} S_k^1 V_{n-i}^2$.

Since $\sup_{n} \frac{1}{2^{n}+1} \sum_{i=0} \left\| \sum_{2^{i-1} < k \leq 2^{i}} S_{k} \right\| < \infty$ and $\sup_{n} \|V_{n}\| < \infty$, we obtain that (T_{n}) is uniformly bounded, thus we have (1).

To achieve condition (4), we take B_n constructed in a way similar to T_n , with D_k^2 is place of V_k^2 :

$$B_n = \sum_{i=0}^n D_{n-i}^1 \left(S_{2^i}^2 - S_{2^{i-1}}^2 \right) + S_0^1 \left(V_{n+1}^2 - S_{2^n}^2 \right) D_n^2.$$

Then for the same reason as above for (T_n) , since $\sup_n ||D_k|| < \infty$, (B_n) is uniformly bounded. Moreover from the fact that $d_n = 1$ on $\operatorname{supp} (v_n - v_{n-1}) \cap \mathbb{Z}_+$ and $\operatorname{supp} d_n \subset \mathbb{Z}_+$, it follows that $b_n = 1$ on $\operatorname{supp} (t_n - t_{n-1}) \cap \mathbb{Z}_+^2$ and $\operatorname{supp} b_n \subset \mathbb{Z}_+^2 = \{(k,\ell) \in \mathbb{Z}^2 \ s.t. \ k \ge 0 \text{ or } (k = 0 \text{ and } \ell \ge 0)\}$.

Thus $T_n - T_{n-1}|_{\mathcal{A}(\mathbb{T}^2)} = (T_n - t_{n-1})B_n|_{\mathcal{A}(\mathbb{T}^2)}$ where $B_n : C(\mathbb{T}^2) \to \mathcal{A}(\mathbb{T}^2)$. So we have the following factorization: $T_n - T_{n-1}|_{\mathcal{A}(\mathbb{T}^2)} = (T_n - T_{n-1})B_n|_{\mathcal{A}(\mathbb{T}^2)}T_{n+1}|_{\mathcal{A}(\mathbb{T}^2)}$, which proves (4).

By Lusky's theorem we obtain that $\mathcal{A}(\mathbb{T}^2) \oplus c_0$ has a basis, thus $\mathcal{A}(\mathbb{T}^2)$ has a basis. Now, we define inductively operators on $\mathcal{C}(\mathbb{Z}^l)$ by:

$$\begin{split} T_n^1 &= V_n \\ T_n^2 &= T_n \\ &: \\ T_n^{1,2,\ldots l} &= \sum_{i=0}^n T_{n-i}^{1,\ldots l-1} \big(S_{2^i}^l - S_{2^{i-1}}^l \big) + S_0^{1,\ldots l-1} \big(V_{2^n}^l - S_{2^n}^l \big) \\ B_n^1 &= U_n \\ B_n^2 &= B_n \\ &: \\ B_n^{1,2,\ldots l} &= \sum_{i=0}^n B_{n-i}^{1,\ldots l-1} \big(S_{2^i}^l - S_{2^{i-1}}^l \big) + S_0^{1,\ldots l-1} \big(V_{2^n}^l - S_{2^n}^l \big) B_n^l \,. \end{split}$$

and

At this point it is easy to see that if $T_n^{1,2,\ldots,l-1}$ and $B_n^{1,2,\ldots,l-1}$ satisfy the required properties on \mathbb{T}^{l-1} , then $T_n^{1,2,\ldots,l}$ and $B_n^{1,2,\ldots,l}$ enjoy the same properties on \mathbb{T}^l . The arguments are exactly the same as in the proof of the two dimensional case once the one dimensional case is treated. Thus $(T_n^{1,2,\ldots,l-1})_n$ satisfies properties (0) - (4), which by Lusky's theorem proves the existence of a basis in $\mathcal{A}(\mathbb{T}^N)$. \Box

III. Bases in $\mathcal{C}_{\Lambda}(\mathbb{T}^{\mathbb{N}})$ and $L^{1}_{\Lambda}(\mathbb{T}^{\mathbb{N}})$

We now consider for the group $G = \mathbb{T}^N$ or \mathbb{T}^N , the space of continuous or L^1 functions whose Fourier transform has its support in some subset Λ of the dual group Γ , we denote them respectively $\mathcal{C}_{\Lambda}(G)$ and $L^1_{\Lambda}(G)$ (the spaces $\mathcal{A}(G)$ and $\mathcal{H}^1(G)$ correspond to the case $\Lambda = \Gamma_+$). We recall that Cohen's theorem about idempotent measures asserts that the characteristic function of a subset Λ of the dual group Γ is the Fourier transform of some measure on the group G if and only if Λ is in the coset ring of Γ (see by instance [12]). Using this result and sequences of generalized De La Vallée - Poussin multipliers one can prove the following.

Theorem 2

(a) If Λ is in the coset ring of \mathbb{Z}^N , then $\mathcal{C}_{\Lambda}(\mathbb{T}^N)$ and $L^1_{\Lambda}(\mathbb{T}^N)$ have a basis. (b) If Λ is in the coset ring of \mathbb{Z}^N , then $\mathcal{C}_{\Lambda}(\mathbb{T}^N)$ and $L^1_{\Lambda}(\mathbb{T}^N)$ have a basis.

Proof. The multipliers that we use for (a) are products of the characteristic function of the subset Λ and of the De La Vallée - Poussin multipliers on \mathbb{Z}^N .

For (b) we use the following generalizations of the De La Vallée - Poussin multipliers. For (α_n) an increasing sequence of positive integers, let denote \mathcal{V}_n the operator defined by the following multiplier on \mathbb{Z} :

$$\nu_n(k) = 1 \quad \text{for} \quad |k| \le \alpha_n$$
$$= \frac{\alpha_{n+1} - k}{\alpha_{n+1} - \alpha_n} \quad \text{for} \quad \alpha_n \le |k| \le \alpha_{n+1}$$
$$= 0 \quad \text{otherwise}$$

then \mathcal{V}_n can be seen has the difference of two Cesaro means and thus $\|\mathcal{V}_n\| \leq \frac{\alpha_{n+1}+\alpha_n}{\alpha_{n+1}-\alpha_n}$. Let also δ_n be the analog of d_n for ν_n in place of ν_n i.e. $\delta_n(k) = 1$ for k > 0 in supp $(\nu_n - \nu_{n-1})$ and supp δ_n included in \mathbb{Z}_+ , then $\|\mathcal{D}_n\| \leq \frac{\alpha_{n+1}}{\alpha_n}$.

Note that the operators V_n and D_n we considered before correspond to $\alpha_n = 2^n$, in which case $\sup_n ||V_n|| \le K$ and $\sup_n ||D_n|| \le K$. Here we will take $\alpha_n^j = (1+j^2)^n$ so that $||\mathcal{V}_n^j|| \le \frac{\alpha_{n+1}^j + \alpha_n^j}{\alpha_{n+1}^j - \alpha_n^j} = 1 + 2/j^2$. We consider R_n the operator defined by the following multiplier:

$$r_n(k_1, \dots, k_n, \dots) = \nu_n^1(k_1) \dots \nu_n^n(k_n) s_0(k_{n+1}) s_0(k_{n+2}) \dots$$

then $||R_n|| \le \prod_{j=1}^{\infty} ||\mathcal{V}_n^j|| \prod_{j=1}^{\infty} (1+2/j^2) \le K$.

As for the proof of Theorem 1, one can check that $(R_n)_n$ composed with the projection P_{Λ} (defined by the characteristic function of the subset Λ) is a sequence of operators which satisfies on $\mathcal{C}_{\Lambda}(\mathbb{T}^{\mathbb{N}})$ and $L^1_{\Lambda}(\mathbb{T}^{\mathbb{N}})$ the properties (0) - (4) of Lusky's theorem. In particular we use the multipliers δ_n for the proof of (4). \Box

References

- S.V. Bockariěv, Existence of a basis in the space of functions analytic in the disk and some properties of the Franklin system, *Math. USSR-Sb.* 24 (1974), 1–10.
- J. Bourgain, New classes of L^p spaces, Springer-Verlag Lecture Notes in Math. 889, Berlin Heildelberg New-York, 1981.
- P.G. Casazza and N.J. Kalton, Notes on approximation properties in separable Banach spaces, *Geometry of Banach spaces*, X. Muller - W. Schachermayer, Math. Soc. Lecture Notes 158, Cambridge Univ. Press, 1991.
- 4. K. Hoffman, Banach spaces of analytic functions, Prentice Hall, 1962.

- 5. J. Lindensrauss and L. Tzafriri, *Classical Banach spaces I*, Springer-Verlag, Berlin Heidelberg, New-York, 1977.
- 6. J. Lindensrauss and L. Tzafriri, *Classical Banach spaces*, Springer-Verlag, Lecture Notes in Math. **338**, Berlin Heidelberg, New-York, 1973.
- W. Lusky, On Banach spaces with the commuting bounded approximation property, *Arch. Math.* 58 (1992), 568–574.
- 8. W. Lusky, On bases of the disk algebra, manuscript.
- 9. B. Maurey, Isomorphismes entre espaces H^1 , Acta Math. 145 (1980), 79–120.
- 10. A. Pelczynski, *Banach spaces of analytic functions and absolutely summing operators*, CBMS Regional Conf. Ser. in Math. **30**, A.M.S. Providence RI, 1977.
- 11. C.J. Read, Different forms of the approximation property, to appear.
- 12. W. Rudin, Fourier analysis on groups, Tracts in Mathematics, 12, Interscience, New-York, 1967.
- 13. S.J. Szarek, A Banach space without a basis which has the bounded approximation property, *Acta Math.* **159** (1987), 81–98.