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Abstract

It is well known that the disk algebra A(T) has a basis [1] and that H1(T) has
an unconditional basis [9]. Recently W. Lusky gave new proofs of these results
using the commuting bounded approximation property ([7] and [8]).

With similar methods we prove the existence of a basis in the so called “big
disk algebra” A(TN ), the space of continuous functions on the multidimen-
sional torus T

N which are “analytic” with respect to the lexicographic order on
the dual group Z

N and in the space H1(TN ), the analog for L1 functions on
T
N .

I. Introduction

We fix here some notations and recall Lusky’s result. Then in Part II we prove the
existence of a basis in the “big disk algebra” A(TN ) and in the space H1(TN ).

For G a compact group with Haar measure µ and dual group Γ, we will denote
by Γ+ the positive part of Γ with respect to a total order on it i.e. Γ = Γ+ ∪
(−Γ+), Γ+ ∩ (−Γ+) = {0}. The Fourier transform of a function f on G is f̂(χ) =∫
G
χ(−x)f(x)dµ(x) for χ in Γ. Let

A(G) =
{
f ∈ C(G) s.t. f̂(χ) = 0 for all χ in Γ \ Γ+

}
,

H1(G) =
{
f ∈ L1(G,µ) s.t. f̂(χ) = 0 for all χ in Γ \ Γ+

}
.

The groups that we will consider here are the torus T = {z ∈ C, |z| = 1},
the finite dimensional torus T

N =
{
(z1 . . . zN ), zi ∈ T, i = 1 . . . N

}
and the infinite
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dimensional torus T
N =

{
(z1 . . . zN . . .), zi ∈ T, i = 1, 2 . . .

}
. Their duals are

respectively Z,ZN and Z
(N) the set of sequences of integer with finitely many non

zero terms.
Throughout this paper we will use operators on C(G), L1(G), defined by mul-

tipliers on Γ. Namely, operators verifying: (Tf)∧(χ) = t(χ)f̂(χ),∀χ ∈ Γ. We will
denote by capital letters the operators Tn, Sn . . . and by the corresponding small
letters their associated multipliers tn, sn . . . on Γ.

On T we use the standard notations:

the kth partial sum of the Fourier series is Skf(t) =
∑

|j|≤k f̂(j)eijt,
the nth Cesaro mean is σnf = 1

n+1

∑
|k|≤n Skf .

For multidimensional tori, we will consider operators which are compositions of
operators acting only on some of the variables. We will use the following notation.
For K an operator on L1(Tk), we will denote by Kl1,...,lk the operator on L1(TN ) or
L1(TN) which acts as K on the lth1 , . . . and lthk variables and fixes the other variables.

We now give Lusky’s result about the existence of a basis in Banach spaces
having the commuting bounded approximation property. Let first recall that a
Banach space X is said to have the commuting bounded approximation property (in
short CBAP) if there exist operators Rn : X → X such that:

(0) Rn has finite rank,
(1) (Rn) is bounded,
(2) Rnx → x for all x in X,
(3) RnRm = Rmin(n,m), n �= m.

If each Rn is a projection, (Rn) is called a finite dimensional Schauder decomposition
(in short FDD).

It is known that the CBAP does not imply the existence of a basis or even of
a FDD ([11], one can also see [3] and [13] for related results). But W. Lusky has
proven ([7]) that if X has the CBAP with the sequence (Rn) satisfying moreover

(4) Rn −Rn−1 factors through �mn
p uniformly for some p in [1,∞],

then X ⊕ �p, if 1 ≤ p < ∞, or X ⊕ c0, if p = ∞, has a basis.
More precisely (4) means that there exist operators An : X → �mn

p , Bn :
�mn
p → X with Rn −Rn−1 = BnAn and supn ‖An‖ < ∞, supn ‖Bn‖ < ∞.

II. Bases in A(TN ) and H1(TN )

We consider now T
N the N th dimensional torus, whose dual group is Z

N . We take
the lexicographic order on Z

N
(
i.e. (k1, . . . , kN ) is positive if k1 > 0 or, k1 = 0 and
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k2 > 0, or k1 = k2 = 0 and k3 > 0, . . .
)
. Then a function is said to be “analytic”

for this order, if the support of its Fourier transform is included in the non negative
part of Z

N . For more details about Fourier analysis on groups with ordered dual we
refer to chapter 8 of [12]. We consider A(TN ), the algebra of “analytic” continuous
functions on T

N and H1(TN ) the space of “analytic” L1 functions on T
N .

Theorem 1

A(TN ) and H1(TN ) have a basis .

Remarks. 1) Of course, since H1(TN ) contains L1(T) as soon as N ≥ 2, there is no
hope to extend to the multidimensional case the existence of an unconditional basis
in H1(T) (see [5]).

2) Let us remark also that H1(TN ) is not isomorphic to L1(TN ). Indeed a
complemented subspace of an L1 space having R.N.P. is isomorphic to l1 (see [2]).
Here H1(T) which has R.N.P. is complemented in H1(TN ) (using the projection
S2

0 . . . SN
0 ).

3) A proof similar to the proof of the fact that A(BN ) is not isomorphic to
A(D), given in [10], shows that A(TN ) is not isomorphic to A(D).

Proof. We wish to explain first the strategy we will follow in the proof.
First we note that A(TN ) ⊕ c0 � A(TN ) and H1(TN ) ⊕ �1 � H1(TN ). To see

the first isomorphism one can construct a copy of c0 in A(TN ) by using Weierstraβ’
theorem. For the second, the non equiintegrability of the ball of H1(TN ) gives peak
functions which provide a projection onto �1.

So we want to find operators Tn : A(TN ) �→ A(TN )
(
resp. H1(TN ) �→ H1(TN )

)
,

which satisfy properties (0)− (4), in order to use Lusky’s theorem. In fact the same
operators are used in both cases, so we will write the argument only for A(TN ).

Since most of these properties are easier to check on multipliers, we will work
with restrictions of operators on C(TN ) defined by multipliers. We will look for

(1) a bounded sequence of operators Tn on C(TN ),
such that the corresponding multipliers tn on Z

N satisfy:
(0’) supp tn is finite, for all n,
(2’)

⋃
supp tn = Z

N ,

(3’) tn = 1 on supp tm, for m < n .

For property (4), we will use as in [7], the following idea. Once (3) holds, we
have Tn − Tn−1 = (Tn − Tn−1)Tn+1. Since each Tn is of finite rank, it is possi-
ble to find finite dimensional subspaces En of C(TN ) with Tn+1A(TN ) ⊆ En and
supn d

(
En, �

dimEn∞
)
< ∞ . Then the following factorization holds
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A(TN )
Tn−Tn+1

−−−−−→ A(TN )
Tn+1 ↘ ↗

(
Tn − Tn−1

)
R

En ⊆ C(TN )

provided that (Tn − Tn−1)R is uniformly bounded, where R is the Riesz projection
(which itself is not bounded on C(TN )). For this, we will choose tn in such a way
that:

(4’) there exists a sequence of uniformly bounded multipliers (bn)n on C(TN )
with supp bn ⊂ Z

N
+ and bn = 1 on supp (tn − tn−1)

(
i.e. bn acts as the Riesz

projection does on supp (tn − tn−1)
)
.

When such a sequence of multipliers tn will be constructed, this by Lusky’s
theorem will imply that A(TN ) ⊕ c0 thus A(TN ) has a basis. The same proof will
work for H1(TN ) with L1(TN ), �dimEn

1 , and �1 instead of C(TN ), �dimEn
1 , and c0 and

will prove the existence of a basis on H1(TN ).
We now proceed to the explicit construction of the required multipliers on T

N .
We define them by induction on the dimension.

We recall briefly the case of the dimension 1 which is treated in [8], because
this is the starting point of our inductive construction. We consider Vn the De La
Vallée - Poussin operator of order 2n, Vn = 2σ2n+1 − σ2n , thus (Vn) is bounded on
C(T). The corresponding multiplier is:

vn(k) = 1 for |k| ≤ 2n

=
2n+1 − |k|

2n
for 2n ≤ |k| ≤ 2n+1

= 0 for |k| ≥ 2n+1 .

It is easy to check that vn satisfies the conditions (0’), (2’) and (3’). In order to
have (4’) we use Dn defined by the following multiplier:

dn(k) =
k − 2n−1

2n−1
for 0 ≤ k ≤ 2n−1

= 1 for 2n−1 ≤ k ≤ 4.2n−1

=
5.2n−1 − k

2n−1
for 4.2n−1 ≤ k ≤ 5.2n−1

= 0 otherwise .

Then Dn has the following properties: DnC(T) ⊆ A(T), (Vn − Vn−1)Dn|A(T) =
(Vn − Vn−1)|A(T) and supn ‖Dn‖ < ∞ . This gives (4).
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On Z
2, we form new multipliers by “crossbreeding” two sequences of multipliers

on Z. For this, we use operators that act on each variable, as described in § I. We
define Tn by

Tn =
n∑

i=0

V 1
n−i

(
S2

2i − S2
2i−1

)
+ S1

0

(
V 2

2n − S2
2n

)

with the convention S2−1 = 0. (In fact we decompose Vn with respect to dyadic
blocks: Vn =

∑n
i=0

(
S2i − S2i−1

)
+ Vn − S2n , then we apply this operator in the

second variable, composed on each dyadic bloc with decreasing V ′
ks acting on the

first variable).
The multiplier associated to the operator Tn, is:

tn(k1, k2) = vn−i(k1) if 2i−1 ≤ k2 ≤ 2i, i = 0, 1, . . . n

= vn(k2) if 2n ≤ k2 ≤ 2n+1, k1 = 0

= 0 otherwise .

This multiplier clearly satisfies supp tn is finite,
⋃

supp tn = Z
2 and tn = 1 on

supp tn−1. Hence we have (0’), (2’) and (3’).
Moreover since Vn = 2σ2n+1 − σ2n , the operator Tn is the difference of two

operators of the form 1
2n+1

∑n
i=0

∑
2i−1<k≤2−1 S1

kV
2
n−i .

Since supn
1

2n+1

∑
i=0

∥∥∑
2i−1<k≤2i Sk

∥∥ < ∞ and supn ‖Vn‖ < ∞ , we obtain
that (Tn) is uniformly bounded, thus we have (1).

To achieve condition (4), we take Bn constructed in a way similar to Tn, with
D2

k is place of V 2
k :

Bn =
n∑

i=0

D1
n−i

(
S2

2i − S2
2i−1

)
+ S1

0

(
V 2
n+1 − S2

2n

)
D2

n .

Then for the same reason as above for (Tn), since supn ‖Dk‖ < ∞ , (Bn) is uniformly
bounded. Moreover from the fact that dn = 1 on supp (vn − vn−1) ∩ Z+ and supp
dn ⊂ Z+, it follows that bn = 1 on supp (tn − tn−1) ∩ Z

2
+ and supp bn ⊂ Z

2
+ =

{(k, �) ∈ Z
2 s.t. k ≥ 0 or (k = 0 and � ≥ 0)

}
.

Thus Tn−Tn−1|A(T2) = (Tn−tn−1)Bn|A(T2) where Bn : C(T2) → A(T2). So we
have the following factorization: Tn − Tn−1|A(T2) = (Tn − Tn−1)Bn|A(T2)Tn+1|A(T2),
which proves (4).
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By Lusky’s theorem we obtain that A(T2) ⊕ c0 has a basis, thus A(T2) has a
basis. Now, we define inductively operators on C(Zl) by:

T 1
n = Vn

T 2
n = Tn

:

T 1,2,...l
n =

n∑

i=0

T 1,...l−1
n−i

(
Sl

2i − Sl
2i−1

)
+ S1,...l−1

0

(
V l

2n − Sl
2n

)

B1
n = Unand

B2
n = Bn

:

B1,2,...l
n =

n∑

i=0

B1,...l−1
n−i

(
Sl

2i − Sl
2i−1

)
+ S1,...l−1

0

(
V l

2n − Sl
2n

)
Bl

n .

At this point it is easy to see that if T 1,2,...l−1
n and B1,2,...l−1

n satisfy the required
properties on T

l−1, then T 1,2,...l
n and B1,2,...l

n enjoy the same properties on T
l. The

arguments are exactly the same as in the proof of the two dimensional case once
the one dimensional case is treated. Thus (T 1,2,...l−1

n )n satisfies properties (0)− (4),
which by Lusky’s theorem proves the existence of a basis in A(TN ). �

III. Bases in CΛ(TN) and L1
Λ(TN)

We now consider for the group G = T
N or T

N, the space of continuous or L1 functions
whose Fourier transform has its support in some subset Λ of the dual group Γ, we
denote them respectively CΛ(G) and L1

Λ(G) (the spaces A(G) and H1(G) correspond
to the case Λ = Γ+). We recall that Cohen’s theorem about idempotent measures
asserts that the characteristic function of a subset Λ of the dual group Γ is the
Fourier transform of some measure on the group G if and only if Λ is in the coset
ring of Γ (see by instance [12]). Using this result and sequences of generalized De
La Vallée - Poussin multipliers one can prove the following.

Theorem 2

(a) If Λ is in the coset ring of Z
N , then CΛ(TN ) and L1

Λ(TN ) have a basis.

(b) If Λ is in the coset ring of Z
N, then CΛ(TN) and L1

Λ(TN) have a basis.
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Proof. The multipliers that we use for (a) are products of the characteristic function
of the subset Λ and of the De La Vallée - Poussin multipliers on Z

N .
For (b) we use the following generalizations of the De La Vallée - Poussin mul-

tipliers. For (αn) an increasing sequence of positive integers, let denote Vn the
operator defined by the following multiplier on Z:

νn(k) = 1 for |k| ≤ αn

=
αn+1 − k

αn+1 − αn
for αn ≤ |k| ≤ αn+1

= 0 otherwise

then Vn can be seen has the difference of two Cesaro means and thus ‖Vn‖ ≤
αn+1+αn

αn+1−αn
. Let also δn be the analog of dn for νn in place of vn i.e. δn(k) = 1 for

k > 0 in supp (νn − νn−1) and supp δn included in Z+, then ‖Dn‖ ≤ αn+1
αn

.
Note that the operators Vn and Dn we considered before correspond to αn = 2n,

in which case supn ‖Vn‖ ≤ K and supn ‖Dn‖ ≤ K. Here we will take αj
n = (1+ j2)n

so that ‖Vj
n‖ ≤ αj

n+1+αj
n

αj
n+1−αj

n
= 1 + 2/j2. We consider Rn the operator defined by the

following multiplier:

rn
(
k1, . . . kn, . . .

)
= ν1

n(k1) . . . νn
n(kn)s0

(
kn+1

)
s0

(
kn+2

)
. . .

then ‖Rn‖ ≤ ∏∞
j=1 ‖Vj

n‖
∏∞

j=1(1 + 2/j2) ≤ K .

As for the proof of Theorem 1, one can check that (Rn)n composed with the
projection PΛ (defined by the characteristic function of the subset Λ) is a sequence
of operators which satisfies on CΛ(TN) and L1

Λ(TN) the properties (0)−(4) of Lusky’s
theorem. In particular we use the multipliers δn for the proof of (4). �
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1. S.V. Bockariěv, Existence of a basis in the space of functions analytic in the disk and some
properties of the Franklin system, Math. USSR-Sb. 24 (1974), 1–10.

2. J. Bourgain, New classes of Lp spaces, Springer-Verlag Lecture Notes in Math. 889, Berlin
Heildelberg New-York, 1981.

3. P.G. Casazza and N.J. Kalton, Notes on approximation properties in separable Banach spaces,
Geometry of Banach spaces, X. Muller - W. Schachermayer, Math. Soc. Lecture Notes 158,
Cambridge Univ. Press, 1991.

4. K. Hoffman, Banach spaces of analytic functions, Prentice Hall, 1962.



242 Lancien

5. J. Lindensrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, Berlin Heidelberg,
New-York, 1977.

6. J. Lindensrauss and L. Tzafriri, Classical Banach spaces, Springer-Verlag, Lecture Notes in
Math. 338, Berlin Heidelberg, New-York, 1973.

7. W. Lusky, On Banach spaces with the commuting bounded approximation property, Arch. Math.
58 (1992), 568–574.

8. W. Lusky, On bases of the disk algebra, manuscript.
9. B. Maurey, Isomorphismes entre espaces H1, Acta Math. 145 (1980), 79–120.

10. A. Pelczynski, Banach spaces of analytic functions and absolutely summing operators, CBMS
Regional Conf. Ser. in Math. 30, A.M.S. Providence RI, 1977.

11. C.J. Read, Different forms of the approximation property, to appear.
12. W. Rudin, Fourier analysis on groups, Tracts in Mathematics, 12, Interscience, New-York, 1967.
13. S.J. Szarek, A Banach space without a basis which has the bounded approximation property, Acta

Math. 159 (1987), 81–98.


