ON A SEMILINEAR EQUATION INVOLVING THE CURL-CURL OPERATOR

THOMAS BARTSCH (GIESSEN)

We present recent joint work with J. Mederski on solutions $E:\Omega\to\mathbb{R}^3$ of the problem

$$\begin{cases} \nabla \times (\nabla \times E) + \lambda E = \partial_E F(x, E) & \text{in } \Omega \\ \nu \times E = 0 & \text{on } \partial \Omega \end{cases}$$

on a simply connected, smooth, bounded domain $\Omega \subset \mathbb{R}^3$ with connected boundary and exterior normal $\nu : \partial \Omega \to \mathbb{R}^3$. Here $\nabla \times$ denotes the curl operator in \mathbb{R}^3 , the nonlinearity $F : \Omega \times \mathbb{R}^3 \to \mathbb{R}$ is superquadratic and subcritical in E. The model nonlinearity is of the form $F(x, E) = \Gamma(x)|E|^p$ for $\Gamma \in L^{\infty}(\Omega)$ positive, some 2 . It need not be radial nor even in the <math>E-variable. The problem comes from the time-harmonic Maxwell equations, the boundary conditions are those for Ω surrounded by a perfect conductor.