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Abstract. We consider the system of coupled elliptic equations{
−∆u− λ1u = µ1u3 + βuv2

−∆v − λ2v = µ2v3 + βu2v
in R3,

and study the existence of positive solutions satisfying the additional condition∫
R3
u2 = a21 and

∫
R3
v2 = a22.

Assuming that a1, a2, µ1, µ2 are positive fixed quantities, we prove existence

results for different ranges of the coupling parameter β > 0. The extension to

systems with an arbitrary number of components is discussed, as well as the or-
bital stability of the corresponding standing waves for the related Schrödinger

systems.

Nous considérons le système d’équations elliptiques couplées{
−∆u− λ1u = µ1u

3 + βuv2

−∆v − λ2v = µ2v
3 + βu2v

sur R3,

et étudions l’existence of solutions positives qui satisfont la condition additionnelle∫
R3

u2 = a2
1 et

∫
R3

v2 = a2
2.

En suppposant que a1, a2, µ1, µ2 sont des quantités positives fixées, nous obtenons
des résultats d’existence pour plusieurs plages du paramètre de couplage β > 0.
L’extention de ces résulats à des systèmes ayant un nombre quelconque d’équations
est discutée, tout comme la stabilité orbitale des ondes stationnaires correspon-
dantes dans les systèmes de Schrödinger associés.
Keywords: Nonlinear Schrödinger systems, normalized solutions, orbital stability, minimax prin-

ciple.
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1. Introduction

This paper concerns the existence of solutions (λ1, λ2, u, v) ∈ R2 × H1(R3,R2)
to the system of elliptic equations

(1.1)

{
−∆u− λ1u = µ1u

3 + βuv2

−∆v − λ2v = µ2v
3 + βu2v

in R3,

satisfying the additional condition

(1.2)

∫
R3

u2 = a2
1 and

∫
R3

v2 = a2
2.

One refers to this type of solutions as to normalized solutions, since (1.2) imposes
a normalization on the L2-masses of u and v. This fact implies that λ1 and λ2

cannot be determined a priori, but are part of the unknown.
The problem under investigation comes from the research of solitary waves for

the system of coupled Schrödinger equations

(1.3)

{
−ι∂tΦ1 = ∆Φ1 + µ1|Φ1|2Φ1 + β|Φ2|2Φ1

−ι∂tΦ2 = ∆Φ2 + µ2|Φ2|2Φ2 + β|Φ1|2Φ2

in R× R3,

having applications in nonlinear optics and in the Hartree-Fock approximation for
Bose-Einstein condensates with multiple states; see [14,30].

It is well known that three quantities are conserved in time along trajectories of
(1.3): the energy

JC(Φ1,Φ2) =
1

2

∫
R3

|∇Φ1|2 + |∇Φ2|2 −
1

4

∫
R3

µ1|Φ1|4 + 2β|Φ1|2|Φ2|2 + µ2|Φ2|4,

and the masses ∫
R3

|Φ1|2 and

∫
R3

|Φ2|2.

A solitary wave of (1.3) is a solution having the form

Φ1(t, x) = e−iλ1tu(x) and Φ2(t, x) = e−iλ2tv(x)

for some λ1, λ2 ∈ R, where (u, v) solves (1.1). Two different approaches are pos-
sible: one can either regard the frequencies λ1, λ2 as fixed, or include them in the
unknown and prescribe the masses. In this latter case, which seems to be partic-
ularly interesting from the physical point of view, λ1 and λ2 appear as Lagrange
multipliers with respect to the mass constraint.

The problem with fixed λi has been widely investigated in the last ten years,
and, at least for systems with 2 components and existence of positive solutions (i. e.
u, v > 0 in R3), the situation is quite well understood. A complete review of the
available results in this context goes beyond the aim of this paper; we refer the
interested reader to [1, 2, 3, 6, 7, 12, 22, 23, 26, 28, 31, 39, 40, 41, 42, 44, 45] and to the
references therein.

In striking contrast, very few papers deal with the existence of normalized so-
lutions. Up to our knowledge, the only known results are the ones in [32] (see
also the reference therein), regarding the problem in 1 space dimension, and those
in [5, 35, 37, 43], dealing with the higher dimensional case. In [32] the authors
proved existence of solutions, for any positive value of µ1, µ2, β, a1, and a2, as
constrained minimizers of the energy functional on the product of the L2-spheres
{‖u‖22 = a2

1} × {‖v‖22 = a2
2}, and studied their stability properties. We observe
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that in higher dimension the functional is unbounded from below when µ1, µ2 and
β are positive, and hence the approach in [32] cannot be adapted. In [37], the
authors consider (1.1) in bounded domains of RN , or the problem with trapping
potentials in the whole space RN (the presence of a trapping potential makes the
two problems essentially equivalent), with N ≤ 3. In both cases, they proved exis-
tence of positive solutions with small masses a1 and a2, and the orbital stability of
the associated solitary waves, see Theorem 1.3 therein. It is remarkable that they
can work essentially without assumptions on µ1, µ2 and β. The requirement that
the masses have to be small gives their result a bifurcation flavor. In [35, 43] the
authors consider the defocusing setting µ1, µ2 < 0 in regime of competition β < 0
in bounded domains. In the defocusing competitive case µ1, µ2, β < 0 existence is
an easy consequence of standard Lusternik-Schnirelmann theory because the func-
tional is bounded from below. Supposing that all the components have the same
mass, they prove existence of infinitely many solutions and occurrence of phase-
separation as β → −∞. Concerning [5], we postpone a discussion of the results
therein in the following paragraphs.

In the present paper we address a situation which is substantially different com-
pared to those considered in [32, 35, 37, 43]. We study system (1.1) in R3 in the
focusing setting µ1, µ2 > 0, so that the functional is unbounded from below on the
constraint. We prove the existence of positive normalized solutions for different
ranges of the coupling parameter β > 0, without any assumption on the masses
a1, a2. Our approach is variational: we find solutions of (1.1)-(1.2) as critical points
of the energy functional

(1.4) J(u, v) =

∫
R3

(
1

2
|∇u|2 − µ1

4
u4

)
+

∫
R3

(
1

2
|∇v|2 − µ2

4
v4

)
− β

2

∫
R3

u2v2,

on the constraint Ta1 × Ta2 , where for a ∈ R we define

(1.5) Ta :=

{
u ∈ H1(R3) :

∫
R3

u2 = a2

}
.

The main results are the following:

Theorem 1.1. Let a1, a2, µ1, µ2 > 0 be fixed, and let β1 > 0 be defined by

(1.6) max

{
1

a2
1µ

2
1

,
1

a2
2µ

2
2

}
=

1

a2
1(µ1 + β1)2

+
1

a2
2(µ2 + β1)2

.

If 0 < β < β1, then (1.1)-(1.2) has a solution (λ̃1, λ̃2, ũ, ṽ) such that λ̃1, λ̃2 < 0,
and ũ and ṽ are both positive and radial.

For our next result we introduce a Pohozaev-type constraint as follows:

(1.7) V := {(u, v) ∈ Ta1 × Ta2 : G(u, v) = 0} ,
where

G(u, v) =

∫
R3

(
|∇u|2 + |∇v|2

)
− 3

4

∫
R3

(
µ1u

4 + 2βu2v2 + µ2v
4
)
.

We shall see that V contains all solutions of (1.1)-(1.2). We also define a Rayleigh-
type quotient as

(1.8) R(u, v) :=
8
(∫

R3 |∇u|2 + |∇v|2
)3

27
(∫

R3 µ1u4 + 2βu2v2 + µ2v4
)2 .



4 NORMALIZED SOLUTIONS FOR COUPLED SCHRÖDINGER EQUATIONS

Theorem 1.2. Let a1, a2, µ1, µ2 > 0 be fixed, and let β2 > 0 be defined by

(1.9)

(
a2

1 + a2
2

)3
(µ1a4

1 + µ2a4
2 + 2β2a2

1a
2
2)

2 = min

{
1

a2
1µ

2
1

,
1

a2
2µ

2
2

}
.

If β > β2, then (1.1)-(1.2) has a solution (λ̄1, λ̄2, ū, v̄) such that λ̄1, λ̄2 < 0, and ū
and v̄ are both positive and radial. Moreover, (λ̄1, λ̄2, ū, v̄) is a ground state solution
in the sense that

J(ū, v̄) = inf{J(u, v) : (u, v) ∈ V } = inf
(u,v)∈Ta1×Ta2

R(u, v)

= inf {J(u, v) : (u, v) is a solution of (1.1)-(1.2) for some λ1, λ2}
holds.

Remark 1.3. a) As it should be clear by (1.6) and (1.9), the values of β1 and β2 are
not obtained by means of any limit process, and our results are not of perturbative
type. Notice in particular that, with suitable choices of a1, a2, µ1, µ2, we can make
either β1 arbitrarily large, or β2 arbitrarily small. Conditions 0 < β < β1 and
β > β2 are sufficient for the existence of solutions, but may be not necessary, and
it remains an open problem to determine whether or not they can be improved.

b) The variational characterizations of the solutions obtained in Theorems 1.1
and 1.2 are different. The solution from Theorem 1.1 has Morse index 2 as crit-
ical point of J constrained to Ta1 × Ta2 . On the other hand, the solution from
Theorem 1.2 is a mountain pass solution of J on the constraint.

c) Our results can be extended with minor changes to systems with general
exponents of type

(1.10)

{
−∆u1 − λ1u1 = µ1|u1|2p1−2u1 + β|u1|r−2|u2|ru1

−∆u2 − λ2u2 = µ2|u2|2p2−2u2 + β|u1|r|u2|r−2u2

in RN

(or the k components analogue) with N ≤ 4, provided we restrict ourselves to a
L2-supercritical and Sobolev subcritical setting:

2 +
4

N
< 2pi, 2r <

2N

N − 2
.

Moreover, the proofs do not use the evenness of the functional. Thus one may
replace the terms u4, v4 in (1.4) by general nonlinearities f(u), g(v) which are not
odd. Similarly the coupling term u2v2 in the functional may be replaced by a
nonsymmetric one. We decided not to include this kind of generality since it would
make the statement of our results and the proofs very technical.

d) Also in the case of fixed frequencies for system (1.1) there exist values 0 < β′1 <
β′2 such that the problem has a positive solution whenever β < β′1 or β > β′2 [1,40],
see also [28]. In this setting, it is known that if λ1 ≥ λ2, µ1 ≥ µ2, and one of the
inequalities is strict, then β′1 < β′2, and for β ∈ [β′1, β

′
2] the problem has no positive

solution [6, 40]. On the other hand, the non-existence range (in terms of β) can
disappear. This is the case, for instance, if λ1 = λ2 = µ1 = µ2 = 1. Then (1.1)
has positive solutions for all β > 0. Since in the context of normalized solutions
the values λi are not prescribed, it is an interesting open problem whether there
are conditions on a1, a2, µ1, µ2 such that positive solutions of (1.1)-(1.2) exist for
all β > 0. We observe that this is what happens in dimension N = 1, see [32].

e) Despite the similarity between our results and those in [1, 40], the proofs
differ substantially. First, while in [1, 40] the approach is based on the research
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of critical points constrained on Nehari-type sets associated to the problem, here
no Nehari manifold is available, since λ1 and λ2 are part of the unknown; as a
consequence, we shall directly investigate the geometry of the functional on the
product of the L2-spheres Ta1 × Ta2 in order to apply a suitable minimax theorem.
We also point out that in [1, 40], as well as in all the contributions related to
the problem with fixed frequencies, one of the main difficulties is represented by
the fact that one searches for solutions having both u 6≡ 0 and v 6≡ 0. Here this
problem is still present, and actually it assumes a more subtle form, in the following
sense: let us suppose that we can find a Palais-Smale sequence for J on Ta1 × Ta2 ,
and suppose that this sequence is weakly convergent in H1 to a limit (u, v). Due
to the lack of compactness of the embedding H1(R3) ↪→ L2(R3), a delicate step
consists in showing that (u, v) ∈ Ta1 × Ta2 , so that it satisfies (1.2). Notice that
the lack of compactness persists also if we restrict ourselves to a radial setting. As
a consequence, we emphasize that it is not sufficient to rule out the possibility that
in the weak limit u ≡ 0 or v ≡ 0. We have also to prevent the loss of part of the
mass of one of the components in the passage to the limit.

Both theorems rest upon a suitable minimax argument, where an important role
is played by the ground state levels `(a1, µ1) and `(a2, µ2) associated to the scalar
problems {

−∆w − λw = µw3 in R3∫
R3 w

2 = a2

with a = a1 and µ = µ1, or with a = a2 and µ = µ2, respectively. We refer to
Section 2 for the precise definition of `(a, µ). In this perspective, it is interesting to
emphasize the different relations between the critical values of Theorems 1.1 and
1.2 with `(a1, µ1) and `(a2, µ2).

Proposition 1.4. With the notation of Theorems 1.1 and 1.2, we have

J(ū, v̄) < min{`(a1, µ1), `(a2, µ2)} ≤ max{`(a1, µ1), `(a2, µ2)} < J(ũ, ṽ).

In [5] the authors consider systems of the type of (1.10) looking also for solutions
satisfying (1.2). The results obtained in [5] have no intersection with the one of
the present paper because there 2 < p1 < 2 + 4/N < p2 < 6. A common feature
is that one looks for constrained critical points in a situation where the functional
is unbounded from below on the constraint. Already in the scalar case it is known
that, when the underlying equations are set on all the space, looking to critical
points which are not global minima of the associated functional may present new
difficulties (with respect to the minimizing problem), see [9, 18]. In particular
a standard approach following the Compactness Concentration Principle of P.L.
Lions [24,25] is hardly applicable. We also mention [4,19,27] for multiplicity results
in that direction, and [36] for normalized solutions in bounded domains.

In the second part of the paper we partially generalize the previous results to
the k ≥ 2 components system

(1.11)

{
−∆ui − λiui =

∑k
j=1 βiju

2
jui in R3

ui ∈ H1(R3)
i = 1, . . . , k,

with the normalization condition

(1.12)

∫
R3

u2
i = a2

i i = 1, . . . , k.
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We always suppose that βij = βji for every i 6= j. Notice that problem (1.1)-(1.2)
falls in this setting with k = 2, u = u1, v = u2, βii = µi and β12 = β.

From a variational point of view, thanks to the fact that βij = βji solutions of
(1.11)-(1.12) are critical points of

J(u1, . . . , uk) :=

∫
R3

1

2

k∑
i=1

|∇ui|2 −
1

4

k∑
i,j=1

βiju
2
iu

2
j


on the constraint Ta1 × · · · × Tak , where Ta has been defined in (1.5). Notice that
the definition of the functional J depends on k and the matrix βij , but we will not
stress such dependence to keep the notation as simple as possible.

The first result which we present is the extension of Theorem 1.2 to any k ≥ 3.
To this aim, we introduce

(1.13) V := {(u1, . . . , uk) ∈ Ta1 × · · · × Tak : G(u1, . . . , uk) = 0} ,

where

G(u1, . . . , uk) =

∫
R3

k∑
i=1

|∇ui|2 −
3

4

∫
R3

k∑
i,j=1

βiju
2
iu

2
j ,

and the Rayleigh-type quotient

R(u1, . . . , uk) :=
8
(∫

R3

∑k
i=1 |∇ui|2

)3

27
(∫

R3

∑k
i,j=1 βiju

2
iu

2
j

)2 .

Theorem 1.5. Let k ≥ 2, and let ai, βii, βij > 0 be positive constant, such that the
following inequality holds:
(1.14) (

k∑
i=1

a2
i

)3

 k∑
i,j=1

βija
2
i a

2
j

2 < min
I⊂{1,...,k}
|I|≤k−1

1max
i∈I
{βjjaj}+

k − 2

k − 1
max
i 6=j
i,j∈I

{
βija

1/2
i a

1/2
j

}2 ,

where |I| denotes the cardinality of the set I. Then (1.11)-(1.12) has a solution
(λ̄1, . . . , λ̄k, ū1, . . . , ūk) such that λ̄i < 0, and ūi is positive and radial for every i.
Moreover,

J(ū1, . . . , ūk) = inf
V
J = inf

Ta1
×···×Tak

R

= inf {J(u1, . . . , uk) : (u1, . . . , uk) is a solution of (1.11)-(1.12)} ,

that is (λ̄1, . . . , λ̄k, ū1, . . . , ūk) is a ground state solution.

Some remarks are in order.

Remark 1.6. a) The set of parameters fulfilling condition (1.14) is not empty.
For instance, if ai = a for every i, βii > 0 are fixed and βij = β for every i 6= j,
then (1.14) is satisfied provided β is sufficiently large. More in general, if βii > 0,
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βij = β for every i 6= j, and(∑
i a

2
i

)3 (k−2
k−1

)2

maxi 6=j{aiaj}(∑
i 6=j a

2
i a

2
j

)2 < 1,

then (1.14) is satisfied provided β is sufficiently large.
b) At a first glance (1.14) seems unclear if compared with the simple condition

β > β2 appearing in Theorem 1.2. On the contrary, for k = 2 it is easy to check
that (1.14) is fulfilled provided β12 is larger than the positive threshold β2.

c) A condition somehow similar to (1.14) appears also for the problem with fixed
frequencies λi, see Theorem 2.1 in [26].

Regarding the extension of Theorem 1.1 to systems with an arbitrary number of
components, we have a much weaker result.

Proposition 1.7. Let ai, βii > 0 be fixed positive constant. There exists β0 > 0
such that if |βij | < β0 for every i 6= j, then system (1.11)-(1.12) has a solution

(λ̃1, . . . , λ̃k, ũ1, . . . , ũk) such that λi < 0, and ui is positive and radial for every i.

The proof is based on a simple application of the implicit function theorem, and
is omitted for the sake of brevity. Notice that using a perturbative argument we
can allow some (or all) the couplings βij to take negative values. On the other
hand, being β0 obtained by a limit argument, it cannot be estimated from below
and it could be very small; in this sense Proposition 1.7 is weaker than Theorem
1.1, where an explicit estimate for β1 is available.

Let us now turn to the question of the orbital stability of the solitary waves of

(1.15) −ι∂tΦj = ∆Φj + βjj |Φj |2Φj +
∑
k 6=j

βkj |Φk|2Φj in R× R3, j = 1, . . . , k,

associated to the solutions found in Theorem 1.5 (or Theorem 1.2 if k = 2). In
this framework, we can adapt the classical Berestycki-Cazenave argument [10] (see
also [11,21] for more detailed proofs) and prove the following:

Theorem 1.8. Let k ≥ 2, and (λ̄1, . . . , λ̄k, ū1, . . . , ūk) be the solution obtained in
Theorem 1.5 (or in Theorem 1.2 if k = 2). Then the associated solitary wave is
orbitally unstable by blow up in finite time.

Regarding the stability of the solutions found in Theorem 1.1 and Proposition
1.7, a Berestycki-Cazenave-type argument does not seem to be applicable, since
these solutions are characterized by a different minimax construction with respect
to those in Theorems 1.2 and 1.5. Thus, the stability remains open in these cases,
and we just recall that dealing with systems which are L2 supercritical does imply
that orbitally stable solutions do not exist. In that direction we refer to [8] where,
in this context, a stable solution is found for a scalar problem.

The orbital stability of solutions to weakly coupled Schrödinger equations as-
sociated to power-type systems like (1.10) has been studied in several papers (we
refer to [13, 29, 32, 33, 34, 38] and to the references therein), but the available re-
sults mainly regard the L2-subcritical setting 2p < 1 + 4/N , and the problem with
fixed frequencies. In particular, we point out that Theorem 1.8 does not follow by
previous contributions.
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2. Preliminaries

In the first part of the section, we collect some facts concerning the cubic NLS
equation, which will be used later. Let us consider the scalar problem

(2.1)


−∆w + w = w3 in R3

w > 0 in R3

w(0) = maxw and w ∈ H1(R3).

It is well known that (2.1) has a unique solution, denoted by w0 and that this
solution is radial. In what follows we set

(2.2) C0 :=

∫
R3

w2
0 and C1 :=

∫
R3

w4
0.

For a, µ ∈ R fixed, let us search for (λ,w) ∈ R × H1(R3), with λ < 0 in R3,
solving

(2.3)

{
−∆w − λw = µw3 in R3

w(0) = maxw and
∫
R3 w

2 = a2.

Solutions w of (2.3) can be found as critical points of Iµ : H1(R3) 7→ R, defined by

(2.4) Iµ(w) =

∫
R3

(
1

2
|∇w|2 − µ

4
w4

)
,

constrained on the L2-sphere Ta, and λ appears as Lagrange multipliers. It is well
known that they can be obtained by the solutions of (2.1) by scaling.

Let us introduce the set

(2.5) P(a, µ) :=

{
w ∈ Ta :

∫
R3

|∇w|2 =
3µ

4

∫
R3

w4

}
.

The role of P(a, µ) is clarified by the following result.

Lemma 2.1. If w is a solution of (2.3), then w ∈ P(a, µ). In addition the positive
solution w of (2.3) minimizes Iµ on P(a, µ).

Proof. The proof of the first part is a simple consequence of the Pohozaev identity.
We refer to Lemma 2.7 in [18] for more details. For the last part we refer to Lemma
2.10 in [18]. �

Proposition 2.2. Problem (2.3) has a unique positive solution (λa,µ, wa,µ) defined
by

λa,µ := − C2
0

µ2a4
and wa,µ(x) :=

C0

µ3/2a2
w0

(
C0

µa2
x

)
.

The function wa,µ satisfies ∫
R3

|∇wa,µ|2 =
3C0C1

4µ2a2
(2.6) ∫

R3

w4
a,µ =

C0C1

µ3a2
.(2.7)

`(a, µ) := Iµ(wa,µ) =
C0C1

8µ2a2
.(2.8)

The value `(a, µ) is called least energy level of problem (2.3).
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Proof. It is not difficult to directly check that wa,µ defined in the proposition is
a solution of (2.3) for λ = λa,µ < 0. By [20], it is the only positive solution. To
obtain (2.6) and (2.7), we can use the explicit expression of wa,µ: by a change of
variables ∫

R3

|∇wa,µ|2 =
C0

µ2a2

∫
R3

|∇w0|2 =
3C0

4µ2a2

∫
R3

w4
0,

where the last equality follows by Lemma 2.1 with a2 = C0 and µ = 1. This gives
(2.6). In a similar way, one can also prove (2.7) and (2.8). �

Working with systems with several components, it will be useful to have a char-
acterization of the best constant in a Gagliardo-Nirenberg inequality in terms of
C0 and C1. To obtain it, we observe at first that if wa := wa,C0/a2 , then wa is the
unique positive solution of{

−∆w + w = C0

a2 w
3 in R3

w(0) = maxw and
∫
R3 w

2 = a2,

and hence is a minimizer of Ia,C0/a2 on P(a,C0/a
2). Our next result shows that this

level can also be characterized as an infimum of a Rayleigh-type quotient, defined
by

Ra(w) :=
8
(∫

R3 |∇w|2
)3

27
(
C0

a2

∫
R3 w4

)2 .
Lemma 2.3. There holds

inf
P(a,C0/a2)

Ia,C0/a2 = inf
Ta

Ra.

Proof. We refer to the proof of the forthcoming identity (4.14), where the corre-
sponding equality is proved for systems, and which then includes the present result
as a particular case. �

Let us recall the following Gagliardo-Nirenberg inequality: there exists a univer-
sal constant S > 0 such that

(2.9)

∫
R3

w4 ≤ S
(∫

R3

w2

)1/2(∫
R3

|∇w|2
)3/2

for all w ∈ H1(R3).

In particular, the optimal value of S can be found as

(2.10)
1

S2
= inf
w∈H1(R3)\{0}

(∫
R3 w

2
)
·
(∫

R3 |∇w|2
)3(∫

R3 w4
)2 = inf

w∈Ta

a2
(∫

R3 |∇w|2
)3(∫

R3 w4
)2 ,

where the last equality comes from the fact that the ratio on the right hand side is
invariant with respect to multiplication of w with a positive number.

Lemma 2.4. In the previous notation, we have

S2 =
64

27C0C1
,

where C0 and C1 have been defined in (2.2).
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Proof. Multiplying and dividing the last term in (2.10) by 8a2/(27C2
0 ), we deduce

that
1

S2
=

27C2
0

8a2
inf
w∈Ta

Ra(w).

Hence, by Proposition 2.2 and Lemma 2.3, we infer that

1

S2
=

27C2
0

8a2
IC0/a2(wa,C0/a2) =

27C0C1

64
. �

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which is based upon a
two-dimensional linking argument.

In order to avoid compactness issues, we work in a radial setting. This means
that we search for solutions of (1.1)-(1.2) as critical points of J constrained on
Sa1 × Sa2 , where for any a ∈ R the set Sa is defined by

(3.1) Sa :=

{
w ∈ H1

rad(R3) :

∫
R3

w2 = a2

}
,

and H1
rad(R3) denotes the subset of H1(R3) containing all the functions which are

radial with respect to the origin. Recall that H1
rad(R3) ↪→ L4(R3) with compact

embedding, and the fact that critical points of J constrained on Sa1×Sa2 (thus in a
radial setting) are true critical points of J constrained in the full product Ta1 ×Ta2
is a consequence of the Palais’ principle of symmetric criticality.

In order to describe the minimax structure, it is convenient to introduce some
notation. We define, for s ∈ R and w ∈ H1(R3), the radial dilation

(3.2) (s ? w)(x) := e
3s
2 w(esx).

It is straightforward to check that if w ∈ Sa, then s ? w ∈ Sa for every s ∈ R.

Lemma 3.1. For every µ > 0 and w ∈ H1(R3), there holds:

Iµ(s ? w) =
e2s

2

∫
R3

|∇w|2 − e3s

4
µ

∫
R3

w4

∂

∂s
Iµ(s ? w) = e2s

(∫
R3

|∇w|2 − 3es

4
µ

∫
R3

w4

)
.

In particular, if w = wa,µ, then

∂

∂s
Iµ(s ? wa,µ) is


> 0 if s < 0

= 0 if s = 0

< 0 if s > 0.

For the reader’s convenience, we recall that Iµ denotes the functional for the
scalar equation, see (2.4), and wa,µ has been defined in Proposition 2.2.

Proof. For the first part, it is sufficient to use the definition of s ? w and a change
of variables in the integrals. For the second part, we observe that

∂

∂s
Iµ(s ? wa,µ) is


> 0 if s < s̄

= 0 if s = s̄

< 0 if s > s̄,
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where s̄ ∈ R is uniquely defined by

es̄ =
4
∫
R3 |∇wa,µ|2

3µ
∫
R3 w4

a,µ

.

Recalling that wa,µ ∈ P(a, µ), see Lemma 2.1, we deduce that es̄ = 1, i.e. s̄ = 0. �

For a1, a2, µ1, µ2 > 0 let β1 = β1(a1, a2, µ1, µ2) > 0 be defined by (1.6).

Lemma 3.2. For 0 < β < β1 there holds:

inf {J(u, v) : (u, v) ∈ P(a1, µ1 + β)× P(a2, µ2 + β)} > max{`(a1, µ1), `(a2, µ2)}
where `(ai, µi) is defined by (2.8).

Proof. Using Young’s inequality and recalling the definition of Iµ (see (2.4)), we
obtain for (u, v) ∈ P(a1, µ1 + β)× P(a2, µ2 + β):

J(u, v) = Iµ1
(u) + Iµ2

(v)− β

2

∫
R3

u2v2

≥ Iµ1(u) + Iµ2(v)− β

4

∫
R3

u4 − β

4

∫
R3

v4

= Iµ1+β(u) + Iµ2+β(v) ≥ inf
u∈P(a1,µ1+β)

Iµ1+β(u) + inf
v∈P(a2,µ2+β)

Iµ2+β(v)

= `(a1, µ1 + β) + `(a2, µ2 + β)

Therefore, the claim is satisfied provided

max{`(a1, µ1), `(a2, µ2)} < `(a1, µ1 + β) + `(a2, µ2 + β),

that is (by Proposition 2.2)

(3.3) max

{
C0C1

8a2
1µ

2
1

,
C0C1

8a2
2µ

2
2

}
<

C0C1

8a2
1(µ1 + β)2

+
C0C1

8a2
2(µ2 + β)2

.

Clearly, this holds for 0 < β < β1. �

Now we fix 0 < β < β1 = β1(a1, a2, µ1, µ2) and choose ε > 0 such that

inf {J(u, v) : (u, v) ∈ P(a1, µ1 + β)× P(a2, µ2 + β)}
> max{`(a1, µ1), `(a2, µ2)}+ ε.

(3.4)

We introduce

(3.5) w1 := wa1,µ1+β and w2 := wa2,µ2+β ,

and for i = 1, 2,

(3.6) ϕi(s) := Iµi
(s ? wi) and ψi(s) :=

∂

∂s
Iµi+β(s ? wi).

Lemma 3.3. For i = 1, 2 there exists ρi < 0 and Ri > 0, depending on ε and on
β, such that

(i) 0 < ϕi(ρi) < ε and ϕi(Ri) ≤ 0;
(ii) ψi(s) > 0 for any s < 0 and ψi(s) < 0 for every s > 0. In particular,

ψi(ρi) > 0 and ψi(Ri) < 0.

Proof. By Lemma 3.1, we deduce that ϕi(s)→ 0+ as s→ −∞, and ϕi(s)→ −∞ as
s→ +∞. Thus there exist ρi and Ri satisfying (i). Condition (ii) follows directly
from Lemma 3.1. �
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Let Q := [ρ1, R1]× [ρ2, R2], and let

γ0(t1, t2) := (t1 ? w1, t2 ? w2) ∈ Sa1 × Sa2 ∀(t1, t2) ∈ Q.
We introduce the minimax class

Γ :=
{
γ ∈ C

(
Q,Sa1 × Sa2

)
: γ = γ0 on ∂Q

}
.

The minimax structure of the problem is enlightened by (3.4) and the following two
lemmas.

Lemma 3.4. There holds

sup
∂Q

J(γ0) ≤ max{`(a1, µ1), `(a2, µ2)}+ ε.

Proof. Notice that

J(u, v) = Iµ1
(u) + Iµ2

(v)− β

2

∫
R3

u2v2 ≤ Iµ1
(u) + Iµ2

(v)

for every (u, v) ∈ Sa1 × Sa2 , since β > 0. Therefore, by Lemma 3.3 we infer that

J(t1 ? w1, ρ2 ? w2) ≤ Iµ1
(t1 ? w1) + Iµ2

(ρ2 ? w2) ≤ Iµ1
(t1 ? w1) + ε

≤ sup
s∈R

Iµ1
(s ? w1) + ε.

In order to estimate the last term, by Proposition 2.2 it is easy to check that

wai,µi = s̄i ? wi for es̄i :=
4
∫
R3 |∇wi|2

3
∫
R3 µiw4

i

=
µi + β

µi
.

As a consequence, observing also that s1?(s2?w) = (s1 +s2)?w for every s1, s2 ∈ R
and w ∈ H1(R3), we have

(3.7) sup
s∈R

Iµ1(s ? w1) = sup
s∈R

Iµ1(s ? wa1,µ1).

As a consequence of Lemma 3.1 the supremum on the right hand side is achieved
for s = 0, and hence

(3.8) J(t1 ? w1, ρ2 ? w2) ≤ `(a1, µ1) + ε ∀t1 ∈ [ρ1, R1],

and in a similar way one can show that

(3.9) J(ρ1 ? w1, t2 ? w2) ≤ `(a2, µ2) + ε ∀t2 ∈ [ρ2, R2].

The value of J(γ0) on the remaining sides of ∂Q is smaller: indeed by Lemma 3.3
and (3.7)

J(t1 ? w1, R2 ? w2) ≤ Iµ1(t1 ? w1) + Iµ2(R2 ? w2)

≤ sup
s∈R

Iµ1
(s ? w1) = `(a1, µ1)(3.10)

for every t1 ∈ [ρ1, R1], and analogously

(3.11) J(R1 ? w1, t2 ? w2) ≤ `(a2, µ2) ∀t2 ∈ [ρ2, R2].

Collecting together (3.8)-(3.11), the thesis follows. �

Now we show that the class Γ “links” with P(a1, µ1 + β)× P(a2, µ2 + β).

Lemma 3.5. For every γ ∈ Γ, there exists (t1,γ , t2,γ) ∈ Q such that γ(t1,γ , t2,γ) ∈
P(a1, µ1 + β)× P(a2, µ2 + β).
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Proof. For γ ∈ Γ, we use the notation γ(t1, t2) = (γ1(t1, t2), γ2(t1, t2)) ∈ Sa1 × Sa2 .
Let us consider the map Fγ : Q→ R2 defined by

Fγ(t1, t2) :=

(
∂

∂s
Iµ1+β(s ? γ1(t1, t2))

∣∣∣∣
s=0

,
∂

∂s
Iµ2+β(s ? γ2(t1, t2))

∣∣∣∣
s=0

)
.

From

∂

∂s
Iµi+β(s ? γi(t1, t2))

∣∣∣∣
s=0

=
∂

∂s

(
e2s

2

∫
R3

|∇γi(t1, t2)|2 − e3s

4
(µi + β)

∫
R3

γ4
i (t1, t2)

)∣∣∣∣
s=0

=

∫
R3

|∇γi(t1, t2)|2 − 3

4
(µi + β)

∫
R3

γ4
i (t1, t2)

we deduce that

Fγ(t1, t2) = (0, 0) if and only if γ(t1, t2) ∈ P(a1, µ1 + β)× P(a2, µ2 + β).

In order to show that Fγ(t1, t2) = (0, 0) has a solution in Q for every γ ∈ Γ, we can
check that the oriented path Fγ(∂+Q) has winding number equal to 1 with respect
to the origin of R2, so that standard degree theory gives the desired result. In doing
this, we observe at first that Fγ(∂+Q) = Fγ0(∂+Q) depends only on the choice of
γ0, and not on γ. Then we compute

Fγ0(t1, t2) =

(
e2t1

(∫
R3

|∇w1|2 −
3et1

4
(µ1 + β)

∫
R3

w4
1

)
,

e2t2

(∫
R3

|∇w2|2 −
3et2

4
(µ1 + β)

∫
R3

w4
2

))
= (ψ1(t1), ψ2(t2)),

where we recall that the definition of ψi has been given in (3.6). Therefore, the
restriction of Fγ0 on ∂Q is completely described by Lemma 3.3-(ii), see the picture
below:

ρ1

ρ2

R1

R2

l4

l1

l3

l2

Q

F (l1)

F (l2)

F (l3)

F (l4)

In particular, we have that the topological degree

deg(Fγ , Q, (0, 0)) = ι(Fγ0(∂+Q), (0, 0)) = 1,

where ι(σ, P ) denotes the winding number of the curve σ with respect to the point
P . Hence there exists (t1,γ , t2,γ) ∈ Q such that Fγ(t1,γ , t2,γ) = (0, 0), which, as
observed, is the desired result. �

Lemmas 3.4 and 3.5 permit to apply the minimax principle (Theorem 3.2 in [15])
to J on Γ. In this way, we could obtain a Palais-Smale sequence for the constrained
functional J on Sa1×Sa2 , but the boundedness of the Palais-Smale sequence would
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be unknown. In order to find a bounded Palais-Smale sequence, we shall adapt the
trick introduced by one of the authors in [18] in the present setting.

Lemma 3.6. There exists a Palais-Smale sequence (un, vn) for J on Sa1 × Sa2 at
the level

c := inf
γ∈Γ

max
(t1,t2)∈Q

J(γ(t1, t2)) > max{`(a1, µ1), `(a2, µ2)},

satisfying the additional condition

(3.12)

∫
R3

(
|∇un|2 + |∇vn|2

)
− 3

4

(∫
R3

µ1u
4
n + µ2v

4
n + 2βu2

nv
2
n

)
= o(1),

where o(1)→ 0 as n→∞. Furthermore, u−n , v
−
n → 0 a.e. in R3 as n→∞.

Proof. We consider the augmented functional J̃ : R × Sa1 × Sa2 → R defined by

J̃(s, u, v) := J(s ? u, s ? v). Let also

γ̃0(t1, t2) := (0, γ0(t1, t2)) = (0, t1 ? w1, t2 ? w2),

and

Γ̃ := {γ̃ ∈ C(Q,R× Sa1 × Sa2) : γ̃ = γ̃0 on ∂Q} .
We wish to apply the minimax principle Theorem 3.2 in [15] to the functional J̃

with the minimax class Γ̃, in order to find a Palais-Smale sequence for J̃ at level

c̃ := inf
γ̃∈Γ̃

sup
(t1,t2)∈Q

J̃(γ̃(t1, t2)).

Notice that, since J̃(γ̃0) = J(γ0) on ∂Q, by Lemmas 3.4 and 3.5, the assumptions
of the minimax principle will be satisfied if we show that c̃ = c. This equality is a
simple consequence of the definition: firstly, since Γ ⊂ Γ̃, we have c̃ ≤ c. Secondly,
using the notation

γ̃(t1, t2) = (s(t1, t2), γ1(t1, t2), γ2(t1, t2)),

for any γ̃ ∈ Γ̃ and (t1, t2) ∈ Q it results that

J̃(γ̃(t1, t2)) = J(s(t1, t2) ? γ1(t1, t2), s(t1, t2) ? γ2(t1, t2)),

and (s(·)?γ1(·), s(·)?γ2(·)) ∈ Γ. Thus c̃ = c, and the minimax principle is applicable.
Notice that, using the notation of Theorem 3.2 in [15], we can choose the minimiz-

ing sequence γ̃n = (sn, γ1,n, γ2,n) for c̃ satisfying the additional conditions sn ≡ 0,
γ1,n(t1, t2) ≥ 0 a.e. in RN for every (t1, t2) ∈ Q, γ2,n(t1, t2) ≥ 0 a.e. in RN for
every (t1, t2) ∈ Q. Indeed, the first condition comes from the fact that

J̃(γ̃(t1, t2)) = J(s(t1, t2) ? γ1(t1, t2), s(t1, t2) ? γ2(t1, t2))

= J̃(0, s(t1, t2) ? γ1(t1, t2), s(t1, t2) ? γ2(t1, t2)).

The remaining ones are a consequence of the fact that J̃(s, u, v) = J̃(s, |u|, |v|).
In conclusion, Theorem 3.2 in [15] implies that there exists a Palais-Smale se-

quence (s̃n, ũn, ṽn) for J̃ on R× Sa1 × Sa2 at level c̃, and such that

(3.13) lim
n→∞

|s̃n|+ distH1 ((ũn, ṽn), γ̃n(Q)) = 0.

To obtain a Palais-Smale sequence for J at level c satisfying (3.12), it is possible
to argue as in [18, Lemma 2.4] with minor changes. The fact that u−n , v

−
n → 0 a.e.

in RN as n → ∞ comes from (3.13). Finally, the lower estimate for c comes from
Lemma 3.4. �
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To complete the proof of Theorem 1.1, we aim at showing that (un, vn) is strongly
convergent in H1(R3,R2) to a limit (u, v). Once this has been achieved the claim
follows because

dJ |Sa1×Sa2
(un, vn)→ 0 and (un, vn) ∈ Sa1 × Sa2

for all n. A first step in this direction is given by the following statement.

Lemma 3.7. The sequence {(un, vn)} is bounded in H1(R3,R2). Furthermore,
there exists C̄ > 0 such that∫

R3

|∇un|2 + |∇vn|2 ≥ C̄ for all n.

Proof. Using (3.12), we have

J(un, vn) =
1

6

(∫
R3

|∇un|2 + |∇vn|2
)
− o(1),

where o(1)→ 0 as n→∞. Therefore, the desired results follow from the fact that
J(un, vn)→ c > 0. �

By the previous lemma, up to a subsequence (un, vn)→ (ũ, ṽ) weakly in H1(R3),
strongly in L4(R3) (by compactness of the embedding H1

rad(R3) ↪→ L4(R3)), and
a. e. in R3; in particular, both ũ and ṽ are nonnegative in R3; we explicitly remark
that we cannot deduce strong convergence in L2(R3), so that we cannot conclude
that (ũ, ṽ) ∈ Sa1 × Sa2 . Observe that as a consequence of dJ |Sa1

×Sa2
(un, vn) → 0

there exist two sequences of real numbers (λ1,n) and (λ2,n) such that

(3.14)

∫
R3

(
∇un · ∇ϕ+∇vn · ∇ψ − µ1u

3
nϕ− µ2v

3
nψ − βunvn(unψ + vnϕ)

)
−
∫
R3

(λ1,nunϕ+ λ2,nψ) = o(1)‖(ϕ,ψ)‖H1

for every (ϕ,ψ) ∈ H1(R3,R2), with o(1)→ 0 as n→∞. For more details we refer
to Lemma 2.2 of [5].

Lemma 3.8. Both (λ1,n) and (λ2,n) are bounded sequences, and at least one of
them is converging, up to a subsequence, to a strictly negative value.

Proof. The value of the (λi,n) can be found using (un, 0) and (0, vn) as test functions
in (3.14):

λ1,na
2
1 =

∫
R3

(
|∇un|2 − µ1u

4
n − βu2

nv
2
n

)
− o(1)

λ2,na
2
2 =

∫
R3

(
|∇vn|2 − µ2v

4
n − βu2

nv
2
n

)
− o(1),

with o(1) → 0 as n → ∞. Hence the boundedness of (λi,n) follows by the bound-
edness of (un, vn) in H1 and in L4. Moreover, by (3.12) and Lemma 3.7

λ1,na
2
1 + λ2,na

2
2 =

∫
R3

(
|∇un|2 + |∇vn|2 − µ1u

4
n − µ2v

4
n − 2βu2

nv
2
n

)
− o(1)

= −1

3

∫
R3

(
|∇un|2 + |∇vn|2

)
+ o(1) ≤ − C̄

6

for every n sufficiently large, so that at least one sequence of (λi,n) is negative and
bounded away from 0. �
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From now on, we consider converging subsequences λ1,n → λ1 ∈ R and λ2,n →
λ2 ∈ R. The sign of the limit values plays an essential role in our argument, as
clarified by the next statement.

Lemma 3.9. If λ1 < 0 (resp. λ2 < 0) then un → ū (resp. vn → v̄) strongly in
H1(R3).

Proof. Let us suppose that λ1 < 0. By weak convergence in H1(R3), strong con-
vergence in L4(R3), and using (3.14), we have

o(1) = (dJ(un, vn)− dJ(ũ, ṽ)) [(un − ũ, 0)]− λ1

∫
R3

(un − ũ)2

=

∫
R3

|∇(un − ũ)|2 − λ1(un − ũ)2 + o(1),

with o(1)→ 0 as n→∞. Since λ1 < 0, this is equivalent to the strong convergence
in H1. The proof in the case λ2 < 0 is similar. �

Remark 3.10. It is important to observe that Lemmas 3.7-3.9 do not depend on
the value of β. This implies that we can use them in the proof of Theorem 1.2.

Conclusion of the proof of Theorem 1.1. By (3.14), the convergence of (λ1,n) and
(λ2,n), and the weak convergence (un, vn) ⇀ (ũ, ṽ), we have that (ũ, ṽ) is a solution
of (1.1). It remains to prove that it satisfies (1.2). Without loss of generality,
by Lemma 3.8 we can suppose that λ1 < 0, and hence (see Lemma 3.9) un → ũ
strongly in H1(R3). If λ2 < 0, we can infer in the same way that vn → ṽ strongly
in H1(R3), which completes the proof. Now we argue by contradiction and assume
that λ2 ≥ 0 and vn 6→ ṽ strongly in H1(R3). Notice that, by regularity, any weak
solution of (1.1) is smooth. Since both ũ, ṽ ≥ 0 in RN , we have that

−∆ṽ = λ2ṽ + µ2ṽ
3 + βũ2ṽ ≥ 0 in R3,

and hence we can apply Lemma A.2 in [17], deducing that ṽ ≡ 0. In particular,
this implies that ũ solves

(3.15)


−∆ũ− λ1ũ = µ1ũ

3 in R3

ũ > 0 in R3∫
R3 ũ

2 = a1,

so that ũ ∈ P(a1, µ1) and Iµ1
(ũ) = `(a1, µ1) (recall (2.5) and Proposition 2.2). But

then, using (3.12) and ũ ∈ P(a1, µ1), we obtain

c = lim
n→∞

J(un, vn) = lim
n→∞

1

8

∫
R3

(
µ1u

4
n + 2βu2

nv
2
n + µ2v

4
n

)
=
µ1

8

∫
R3

ũ4 = Iµ1(ũ) = `(a1, µ1),

(3.16)

in contradiction with Lemma 3.6. �

Remark 3.11. In the conclusion of the proof of Theorem 1.1 we used the unique-
ness, up to translation, of the positive solution to (3.15) to deduce that, being ũ a
positive solution of (3.15), its level Iµ1

(ũ1) is equal to `(a1, µ1). Such a uniqueness
result is known for systems as (1.1) only if β is very small (see [16]). This is what
prevents us to extend Theorem 1.1 to systems with several components without
requiring the coupling parameters to be very small. In particular, we observe that



NORMALIZED SOLUTIONS FOR COUPLED SCHRÖDINGER EQUATIONS 17

the minimax construction can be extended to systems with an arbitrary number of
components with some extra work.

4. Proof of Theorem 1.2

This section is divided into two parts. In the first one, we show the existence of
a positive solution (ū, v̄), in the second one we characterize it as a ground state, in
the sense that

J(ū, v̄) = inf{J(u, v) : (u, v) ∈ V }
= inf {J(u, v) : (u, v) is a solution of (1.1)-(1.2) for some λ1, λ2} .

The proof of Theorem 1.2 is based upon a mountain pass argument, and, com-
pared with the proof of Theorem 1.1, it is closer to the proof of the existence of
normalized solutions for the single equation. We shall often consider, for (u, v) ∈
Sa1 × Sa2 , the function

J(s ? (u, v)) =
e2s

2

∫
R3

(
|∇u|2 + |∇v|2

)
− e3s

4

∫
R3

(
µ1u

4 + 2βu2v2 + µ2v
4
)
,

where s ? (u, v) = (s ? u, s ? v) for short, and s ? u is defined in (3.2). Recall that if
(u, v) ∈ Sa1 × Sa2 , then also s ? (u, v) ∈ Sa1 × Sa2 . As an immediate consequence
of the definition, the following holds:

Lemma 4.1. Let (u, v) ∈ Sa1 × Sa2 . Then

lim
s→−∞

∫
R3

|∇(s ? u)|2 + |∇(s ? v)|2 = 0, lim
s→+∞

∫
R3

|∇(s ? u)|2 + |∇(s ? v)|2 = +∞,

and

lim
s→−∞

J(s ? (u, v)) = 0+, lim
s→−∞

J(s ? (u, v)) = −∞.

The next lemma enlighten the mountain pass structure of the problem.

Lemma 4.2. There exists K > 0 sufficiently small such that for the sets

A :=

{
(u, v) ∈ Sa1 × Sa2 :

∫
R3

|∇u|2 + |∇v|2 ≤ K
}

and

B :=

{
(u, v) ∈ Sa1 × Sa2 :

∫
R3

|∇u|2 + |∇v|2 = 2K

}
there holds

J(u, v) > 0 on A and sup
A
J < inf

B
J.

Proof. By the Gagliardo-Nirenberg inequality (2.9)∫
R3

(
µ1u

4 + 2βu2v2 + µ2v
4
)
≤ C

∫
R3

(
u4 + v4

)
≤ C

(∫
R3

|∇u|2 + |∇v|2
)3/2

for every (u, v) ∈ Sa1 × Sa2 , where C > 0 depends on µ1, µ2, β, a1, a2 > 0 but not
on the particular choice of (u, v). Now, if (u1, v1) ∈ B and (u2, v2) ∈ A (with K to
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be determined), we have

J(u1, v1)− J(u2, v2) ≥ 1

2

(∫
R3

|∇u1|2 + |∇v1|2 −
∫
R3

|∇u2|2 + |∇v2|2
)

− 1

4

∫
R3

(
µ1u

4
1 + 2βu2

1v
2
1 + µ2v

4
1

)
≥ K

2
− C

4
(2K)3/2 ≥ K

4
provided K > 0 is sufficiently small. Furthermore, making K smaller if necessary,
we have also

(4.1) J(u2, v2) ≥ 1

2

(∫
R3

|∇u2|2 + |∇v2|2
)
− C

4

(∫
R3

|∇u2|2 + |∇v2|2
)3/2

> 0

for every (u2, v2) ∈ A. �

In order to introduce a suitable minimax class, we recall that wa,µ denotes the
unique positive radial solution of (2.3) with mass a and reaction parameter µ, see
Proposition 2.2. Now we define

(4.2) C :=

{
(u, v) ∈ Sa1 × Sa2 :

∫
R3

|∇u|2 + |∇v|2 ≥ 3K and J(u, v) ≤ 0

}
.

It is clear by Lemma 4.1 that there exist s1 < 0 and s2 > 0 such that

s1 ?
(
wa1,C0/a21

, wa2,C0/a22

)
=: (ū1, v̄1) ∈ A

s2 ?
(
wa1,C0/a21

, wa2,C0/a22

)
=: (ū2, v̄2) ∈ C.

Finally we define

(4.3) Γ := {γ ∈ C([0, 1], Sa1 × Sa2) : γ(0) = (ū1, v̄1) and γ(1) = (ū2, v̄2)} .
By Lemma 4.2 and by the continuity of the L2-norm of the gradient in the topology
of H1, it follows that the mountain pass lemma is applicable for J on the minimax
class Γ. Arguing as in Lemma 3.6, we deduce the following:

Lemma 4.3. There exists a Palais-Smale sequence (un, vn) for J on Sa1 × Sa2 at
the level

d := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

satisfying the additional condition (3.12):∫
R3

(
|∇un|2 + |∇vn|2

)
− 3

4

(∫
R3

µ1u
4
n + µ2v

4
n + 2βu2

nv
2
n

)
= o(1),

with o(1)→ 0 as n→∞. Furthermore, u−n , v
−
n → 0 a.e. in R3 as n→∞.

As in the previous section, the last part of the proof consists in showing that
(un, vn)→ (ū, v̄) in H1(R3,R2), and (ū, v̄) is a solution of (1.1)-(1.2). This can be
done similarly to the case β > 0 small, recalling also Remark 3.10. Firstly, thanks
to (3.12), up to a subsequence (un, vn) → (ū, v̄) weakly in H1(R3,R2), strongly
in L4(R3,R2), a. e. in R3. By weak convergence and by Lemma 3.8, (u, v) is a
solution of (1.1) for some λ1, λ2 ∈ R. Moreover, we can also suppose that one
of these parameters, say λ1, is strictly negative. Thus, Lemma 3.9 implies that
un → ū strongly in H1(R3). If by contradiction vn 6→ v̄ strongly in H1(R3),
then λ2 ≥ 0, and by Lemma A.2 in [17] we deduce that v̄ ≡ 0. As in (3.16),
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this implies that d = `(a1, µ1) (defined in Proposition 2.2), and it remains to
show that this gives a contradiction. To this purpose, we recall the definition of
β2 = β2(a1, a2, µ1, µ2) > 0, see (1.9).

Lemma 4.4. If β > β2, then

sup
s∈R

J
(
s ?
(
wa1,C0/a21

, wa2,C0/a22

))
< min{`(a1, µ1), `(a2, µ2)}.

Proof. Using the explicit expression of wai,C0/a2i
and the definition of C1, for which

we refer to Proposition 2.2 and (2.2), we can compute

(4.4)

∫
R3

(
s ? wa1,C0/a21

)2 (
s ? wa2,C0/a22

)2

=

∫
R3

e6s

(
a1

C
1/2
0

w0(esx)

)2(
a2

C
1/2
0

w0(esx)

)2

dx

= e3s a
2
1a

2
2

C2
0

∫
R3

w4
0 = e3sC1a

2
1a

2
2

C2
0

.

Using again Proposition 2.2, we can explicitly compute the maximum in s of the
function

J
(
s ?
(
wa1,C0/a21

, wa2,C0/a22

))
=

3e2s

8

(
C1a

2
1

C0
+
C1a

2
2

C0

)
− e3s

4

(
µ1C1a

4
1

C2
0

+
µ2C1a

4
2

C2
0

+ 2
βC1a

2
1a

2
2

C2
0

)
.

This maximum is given by

max
s∈R

J
(
s ?
(
wa1,C0/a21

, wa2,C0/a22

))
=

C1C0

(
a2

1 + a2
2

)3
8 (µ1a4

1 + µ2a4
2 + 2βa2

1a
2
2)

2 .

Recalling the definitions of β2, `(a1, µ1) and `(a2, µ2), the lemma is then a conse-
quence of the assumption β > β2. �

Existence of a positive solution at level d. In our proof by contradiction, we are
supposing that vn 6→ v̄ strongly in H1(R3), and we have observed that then v̄ ≡ 0
and d = `(a1, µ1). Let us consider the path

γ(t) := (((1− t)s1 + ts2) ? (wa1,µ1
, wa2,µ2

)) .

Clearly, γ ∈ Γ, so that by Lemma 4.4

d ≤ sup
t∈[0,1]

J(γ(t)) ≤ sup
s∈R

J(s ? (wa1,µ1
, wa2,µ2

)) < `(a1, µ1),

a contradiction. �

Variational characterization for (ū, v̄). In what follows we shall prove that

J(ū, v̄) = inf{J(u, v) : (u, v) ∈ V } = inf
(u,v)∈Ta1×Ta2

R(u, v)

= inf {J(u, v) : (u, v) is a solution of (1.1)-(1.2) for some λ1, λ2} ,

where V and R have been defined in (1.7) and (1.8), respectively. We also recall
the definitions of A, see Lemma 4.2, and of C, see (4.2). Let

A+ := {(u, v) ∈ A : u, v ≥ 0 a.e. in R3}
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and
C+ := {(u, v) ∈ C : u, v ≥ 0 a.e. in R3}.

For any (u1, v1) ∈ A+ and (u2, v2) ∈ C+, let

Γ(u1, v1, u2, v2) := {γ ∈ C([0, 1], Sa1 × Sa2) : γ(0) = (u1, v1) and γ(1) = (u2, v2)} .

Lemma 4.5. The sets A+ and C+ are connected by arcs, so that

(4.5) d = inf
γ∈Γ(u1,v1,u2,v2)

max
t∈[0,1]

J(γ(t))

for every (u1, v1) ∈ A+ and (u2, v2) ∈ C+.

Proof. The proof is similar to the one of Lemma 2.8 in [18]. Equality (4.5) follows
easily once we show that A+ and C+ are connected by arcs (recall the definition of
Γ, see (4.3), and also that ū1, v̄1, ū2, v̄2 ≥ 0 in RN ).

Let (u1, v1), (u2, v2) ∈ Sa1 × Sa2 be nonnegative functions such that

(4.6)

∫
R3

|∇u1|2 + |∇v1|2dx =

∫
R3

|∇u2|2 + |∇v2|2dx = α2

for some α > 0. We define, for s ∈ R and t ∈ [0, π/2],

h(s, t)(x) := (cos t(s ? u1)(x) + sin t(s ? u2)(x), cos t(s ? v1)(x) + sin t(s ? v2)(x)) .

Although h depends on (u1, v1) and (u2, v2), we will not stress such dependence in
order to simplify the notation. Setting h = (h1, h2), we have that h1(s, t), h2(s, t) ≥
0 a.e. in RN , and by direct computations it is not difficult to check that∫

R3

h2
1(s, t) = a2

1 + sin(2t)

∫
R3

u1u2∫
R3

h2
2(s, t) = a2

2 + sin(2t)

∫
R3

v1v2∫
R3

|∇h1(s, t)|+ |∇h2(s, t)|2 = e2s

(
α2 + sin(2t)

∫
R3

∇u1 · ∇u2 +∇v1 · ∇v2

)
for all (s, t) ∈ R× [0, π/2]. From these expressions, and recalling (4.6) and the fact
that u1, v1, u2, v2 ≥ 0 a. e. in RN , it is possible to deduce that there exists C > 0
(depending on (u1, v1) and (u2, v2)) such that

Ce2s ≤
∫
R3

|∇h1(s, t)|2 + |∇h2(s, t)|2 ≤ 2α2e2s

a2
1 ≤

∫
R3

h2
1(s, t) ≤ 2a2

1 and a2
2 ≤

∫
R3

h2
2(s, t) ≤ 2a2

2

Thus, we can define for (s, t) ∈ R× [0, π/2] the function

ĥ(s, t)(x) :=

(
a1

h1(s, t)

‖h1(s, t)‖L2

, a2
h2(s, t)

‖h2(s, t)‖L2

)
.

Notice that ĥ(s, t) ∈ Sa1 × Sa2 for every (s, t). It results

(4.7)
min{a2

1, a
2
2}Ce2s

2 max{a2
1, a

2
2}
≤
∫
R3

|∇ĥ1(s, t)|2 + |∇ĥ2(s, t)|2 ≤ 2α2e2s max{a2
1, a

2
2}

min{a2
1, a

2
2}

.

Furthermore, using again (4.6) (and replacing if necessary C with a smaller quan-
tity), it is possible to check that

(4.8)

∫
R3

ĥ4
1(s, t) ≥ Ce3s and

∫
R3

ĥ4
2(s, t) ≥ Ce3s
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for all (s, t) ∈ R× [0, π/2].
These estimates permits to prove the desired result. Let (u1, v1), (u2, v2) ∈ A+,

and let ĥ de defined as in the previous discussion. By (4.7) there exists s0 > 0 such
that ∫

R3

|∇ĥ1(−s0, t)|2 + |∇ĥ2(−s0, t)|2 ≤ K for all t ∈
[
0,
π

2

]
,

where K has been defined in Lemma 4.2. For this choice of s0, let

σ1(r) :=


−r ? (u1, v1) = ĥ(−r, 0) 0 ≤ r ≤ s0

ĥ(−s0, r − s0) s0 < r ≤ s0 + π
2(

r − 2s0 − π
2

)
? (u2, v2) = ĥ

(
r − 2s0 − π

2 ,
π
2

)
s0 + π

2 < r ≤ 2s0 + π
2 .

It is not difficult to check that σ is a continuous path connecting (u1, v1) and (u2, v2)
and lying in A+. To conclude that A+ is connected by arcs, it remains to analyse
the cases when condition (4.6) is not satisfied. Suppose for instance∫

R3

|∇u1|2 + |∇v1|2 >
∫
R3

|∇u2|2 + |∇v2|2.

Then, by Lemma 4.1, there exists s1 < 0 such that∫
R3

|∇(s1 ? u1)|2 + |∇(s1 ? v1)|2 =

∫
R3

|∇u2|2 + |∇v2|2.

Therefore, to connect (u1, v1) and (u2, v2) by a path in A+ we can at first connect
(u1, v1) with s1 ? (u1, v1), and then connect this point with (u2, v2).

In order to prove that also C+ is connected by arcs, let us fix (u1, v1), (u2, v2) ∈
C+, and suppose that (4.6) holds (as before, we can always reduce to this case).
By (4.7) and (4.8), there exists s0 > 0 such that∫

R3

|∇ĥ1(s0, t)|2 + |∇ĥ2(s0, t)|2 ≥ 3K and J(ĥ(s0, t)) ≤ 0

for all t ∈ [0, π/2]. For this choice of s0, we set

σ2(r) :=


r ? (u1, v1) = ĥ(r, 0) 0 ≤ r ≤ s0

ĥ(s0, r − s0) s0 < r ≤ s0 + π
2(

2s0 + π
2 − r

)
? (u2, v2) = ĥ

(
2s0 + π

2 − r,
π
2

)
s0 + π

2 < r ≤ 2s0 + π
2 ,

which is the desired continuous path connecting (u1, v1) and (u2, v2) in C+. �

As we shall see, the previous lemma will be the key in proving the variational
characterization of (ū, v̄). Let us recall the set

V := {(u, v) ∈ Ta1 × Ta2 : G(u, v) = 0} ,

from (1.7), and its radial subset

(4.9) Vrad := {(u, v) ∈ Sa1 × Sa2 : G(u, v) = 0} ,

where

G(u, v) =

∫
R3

(
|∇u|2 + |∇v|2

)
− 3

4

∫
R3

(
µ1u

4 + 2βu2v2 + µ2v
4
)
.

Lemma 4.6. If (u, v) is a solution of (1.1)-(1.2) for some λ1, λ2 ∈ R, then (u, v) ∈
V .
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Proof. The Pohozaev identity for system (1.1) reads

(4.10)
1

2

∫
R3

|∇u|2 + |∇v|2 =

∫
R3

3

2

(
λ1u

2 + λ2v
2
)

+
3

4

(
µ1u

4 + 2βu2v2 + µ2v
4
)
.

On the other hand, testing (1.1) with (u, v), we find

λ1

∫
R3

u2 =

∫
R3

|∇u|2 −
∫
R3

(
µ1u

4 + βu2v2
)

λ2

∫
R3

v2 =

∫
R3

|∇v|2 −
∫
R3

(
βu2v2 + µ2v

4
)

which substituted into (4.10) give the desired result. �

For (u, v) ∈ Ta1 × Ta2 , let us set

Ψ(u,v)(s) := J(s ? (u, v)),

where as before s ? (u, v) = (s ? u, s ? v) for short, and s ? u is defined in (3.2).
It is not difficult to check that V, Vrad are not empty. Actually, directly from the

definition, one has much more.

Lemma 4.7. For every (u, v) ∈ Ta1 × Ta2 , there exists a unique s(u,v) ∈ R such
that s(u,v) ? (u, v) ∈ V . Moreover, s(u,v) is the unique critical point of Ψ(u,v), which
is a strict maximum.

Lemma 4.8. There holds inf
V
J = inf

Vrad

J .

Proof. In order to prove the lemma we assume by contradiction that there exists
(u, v) ∈ V such that

(4.11) 0 < J(u, v) < inf
Vrad

J.

For u ∈ H1(R3) let u∗ denotes its Schwarz spherical rearrangement. By the prop-
erties of Schwarz symmetrization we have that J(u∗, v∗) ≤ J(u, v) and G(u∗, v∗) ≤
G(u, v) = 0. Thus there exists s0 ≤ 0 such that G(s0 ? (u∗, v∗)) = 0. We claim that

J(s0 ? (u∗, v∗)) ≤ e2s0J(u∗, v∗).

Indeed using that G(s0 ? (u∗, v∗)) = G(u, v) = 0 we have

(4.12)

J(s0 ? (u∗, v∗)) =
e2s0

6

∫
R3

|∇u∗|2 + |∇v∗|2

≤ e2s0

6

∫
R3

|∇u|2 + |∇v|2 = e2s0J(u, v).

Thus
0 < J(u, v) < inf

Vrad

J ≤ J(s0 ? (u∗, v∗)) ≤ e2s0J(u, v)

which contradicts s0 ≤ 0. �

Conclusion of the proof of Theorem 1.2. Recalling that any solution of (1.1)-(1.2)
stays in V , if we have

(4.13) J(ū, v̄) = d ≤ inf{J(u, v) : (u, v) ∈ Vrad}
the equality J(ū, v̄) = infV J follows in view of Lemma 4.8. In order to prove (4.13)
we choose an arbitrary (u, v) ∈ Vrad and show that J(u, v) ≥ d. At first, since
(u, v) ∈ Vrad implies (|u|, |v|) ∈ Vrad and J(u, v) = J(|u|, |v|), it is not restrictive to
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suppose that u, v ≥ 0 a.e. in R3. Let us consider the function Ψ(u,v). By Lemma 4.1

there exists s0 � 1 such that (−s0) ? (u, v) ∈ A+ and s0 ? (u, v) ∈ C+. Therefore,
the continuous path

γ(t) := ((2t− 1)s0) ? (u, v) t ∈ [0, 1]

connects A+ with C+, and by Lemmas 4.5 and 4.7 we infer that

d ≤ max
t∈[0,1]

J(γ(t)) = J(u, v).

Since this holds for all the elements in Vrad, inequality (4.13) follows. It remains to
prove that

(4.14) inf
V
J = inf

Ta1
×Ta2

R.

If (u, v) ∈ V , then

4
∫
R3 |∇u|2 + |∇v|2

3
∫
R3 µ1u4 + 2βu2v2 + µ2v4

= 1 and J(u, v) =
1

6

∫
R3

|∇u|2 + |∇v|2.

Therefore

J(u, v) =
1

6

∫
R3

(
|∇u|2 + |∇v|2

)
·
(

4
∫
R3 |∇u|2 + |∇v|2

3
∫
R3 µ1u4 + 2βu2v2 + µ2v4

)2

= R(u, v),

which proves that infV J ≥ infTa1×Ta2
R. On the other hand, it is easy to check

that

R(s ? (u, v)) = R(u, v) for all s ∈ R, (u, v) ∈ Ta × Ta2 .
By Lemma 4.7, we conclude that

R(u, v) = R(s(u,v) ? (u, v)) = J(s(u,v) ? (u, v)) ≥ inf
V
J

for every (u, v) ∈ Ta1 × Ta2 . �

5. Systems with many components

In this section we prove Theorem 1.5. The problem under investigation is (1.11)-
(1.12): we search for solutions to{

−∆ui − λiui =
∑k
j=1 βiju

2
jui in R3

ui ∈ H1(R3)
i = 1, . . . , k,

satisfying ∫
R3

u2
i = a2

i i = 1, . . . , k.

Dealing with multi-components systems, we adopt the notation u := (u1, . . . , uk).
The first part of the proof is similar to the one of Theorem 1.2, therefore, we only
sketch it. For u ∈ Sa1 × · · · × Sak (recall definition (3.1)) and s ∈ R, we consider

J(s ? u) =
e2s

2

∫
R3

∑
i

|∇ui|2 −
e3s

4

∫
R3

∑
i,j

βiju
2
iu

2
j .

It is not difficult to extend Lemma 4.2 for k > 2, proving the following:
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Lemma 5.1. There exists K > 0 small enough such that

sup
A
J < inf

B
J and J(u) > 0 ∀u ∈ A,

where

A :=

{
u ∈ Sa1 × Sak :

∫
R3

k∑
i=1

|∇ui|2 ≤ K

}
and

B :=

{
u ∈ Sa1 × Sak :

∫
R3

k∑
i=1

|∇ui|2 = 2K

}
.

We also introduce the set

(5.1) C :=

{
u ∈ Sa1 × · · · × Sak :

∫
R3

k∑
i=1

|∇ui|2 ≥ 3K and J(u) ≤ 0

}
,

and we recall the definition of wa,µ, given in Proposition 2.2. Let

û := (wa1,C0/a21
, . . . , wak,C0/a2k

).

It is clear that there exist s1 < 0 and s2 > 0 such that s1 ? û ∈ A and s2 ? û ∈ C.
Setting

Γ := {γ ∈ C([0, 1], Sa1 × · · · × Sak) : γ(0) = s1 ? û, γ(1) = s2 ? û} ,

by Lemma 5.1, it is possible to argue as in Lemma 4.3, showing that there exists a
Palais-Smale sequence (un) for J at level

d := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

satisfying the additional condition

(5.2) G(u) =

∫
R3

k∑
i=1

|∇ui|2 −
3

4

∫
R3

k∑
i,j=1

βiju
2
iu

2
j = o(1),

with o(1) → 0 as n → ∞. Moreover u−i,n → 0 a.e. in R3 as n → ∞, for any i.
Notice that the value d depends on all the masses ai and on all the couplings βij .

It remains to show that un → ū strongly in H1, and the limit is a solution
of (1.11)-(1.12). In order to do this, we argue as for the 2-components system:
thanks to (5.2), up to a subsequence un → ū weakly in H1(R3,Rk), strongly in
L4(R3,Rk), a.e. in R3. As before we arrive at the conclusion that ū is a solution of
(1.11) for some λ1, . . . , λk ∈ R. We can also suppose that one of these parameters,
say λ1, is strictly negative. Thus, Lemma 3.9 implies that u1,n → ū1 strongly in
H1(R3). If by contradiction uj,n 6→ ūj strongly in H1(R3) for some j, then λj ≥ 0,
and by Lemma A.2 in [17] we deduce that ūj ≡ 0. To complete the proof, we aim
at showing that ūi 6≡ 0 for every i, and to do this it is necessary to substantially
modify the argument used for Theorem 1.1.

We divide the set of indexes {1, . . . , k} in two subsets:

I1 := {i ∈ {1, . . . , k} : λi < 0} and I2 := {i ∈ {1, . . . , k} : λi ≥ 0}.

Notice that 1 ∈ I1, so that the cardinality of I2 is at most k−1, and that the absurd
assumption can be written as I2 6= ∅. Up to a relabelling, we can suppose for the
sake of simplicity that I1 = {1, . . . ,m} and I2 = {m+1, . . . , k} for some 1 ≤ m < k.
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As a consequence of strong convergence (and of the maximum principle) we obtain
for every i ∈ I1: 

−∆ūi − λiūi =
∑
j∈I1 βij ūiū

2
j in R3,

ūi > 0 in R3,∫
R3 ū

2
i = a2

i ,

while ūi ≡ 0 for every i ∈ I2. As in Lemma 4.6, this implies that (ū1, . . . , ūm) ∈
V I1rad, where

V I1rad :=

u ∈ Sa1 × · · · × Sam :

∫
R3

m∑
i=1

|∇ui|2 =
3

4

∫
R3

m∑
i,j=1

βiju
2
iu

2
j

 .

Therefore

(5.3) J(ū) = J(ū1, . . . , ūm, 0, . . . , 0) ≥ inf
V

I1
rad

J.

Notice that in the last term we used J to denote the functional associated to a
system with m components, while in the previous terms J is used for the functional
associated to the full system having k components. This should not be a source of
misunderstanding.

The value J(u) can also be characterized in a different way: by (5.2), strong

L4-convergence, and recalling that (ū1, . . . , ūm) ∈ V I1rad, we have also

d = lim
n→∞

J(un) = lim
n→∞

1

8

∫
R3

k∑
i,j=1

βiju
2
i,nu

2
j,n

=
1

8

∫
R3

m∑
i,j=1

βij ū
2
i ū

2
j = J(ū1, . . . ūm, 0, . . . , 0) = J(ū).

(5.4)

A comparison between (5.3) and (5.4) reveals that

(5.5) d ≥ inf
V

I1
rad

J.

To find a contradiction, we shall provide an estimate from above on d, an estimate
from below on inf

V
I1
rad

J , and show that these are not compatible with (5.5).

Upper estimate on d. The upper estimate on d can be obtained generalizing the
proof of Lemma 4.4.

Lemma 5.2. With C0 and C1 defined in (2.2), there holds

d ≤
C0C1

(∑
i a

2
i

)3
8
(∑

i,j βija
2
i a

2
j

)2 .

Proof. We observe that, as in (4.4),∫
R3

(
s ? wai,C0/a2i

)2 (
s ? waj ,C0/a2j

)2

= e3s
C1a

2
i a

2
j

C2
0

for every i, j. Thus, using Proposition 2.2, we have

J
(
s ?
(
wa1,C0/a21

, . . . , wak,C0/a2k

))
=

3e2s

8

k∑
i=1

C1a
2
i

C0
− e3s

4

k∑
i,j=1

βij
C1a

2
i a

2
j

C2
0

.
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Computing the maximum in s of the previous quantity, the thesis is a direct con-
sequence of the fact that, by definition

d ≤ sup
s∈R

J
(
s ?
(
wa1,C0/a21

, . . . , wak,C0/a2k

))
=

C0C1

(∑
i a

2
i

)3
8
(∑

i,j βija
2
i a

2
j

)2 . �

Lower estimate for inf
V

I1
rad

J . Recall that we supposed, for the sake of simplicity,

that I1 = {1, . . . ,m} for some 1 ≤ m < k.

Lemma 5.3. It results

inf
V

I1
rad

J ≥ C0C1

8

[
max

1≤j≤m
{βjjaj}+

m− 1

m
max

1≤i 6=j≤m
{βija1/2

i a
1/2
j }

]2 .

Proof. We notice first that, if u ∈ V I1rad, then

(5.6) J(u) =
8
(∑m

i=1 |∇ui|2
)3

27
(∫

R3

∑k
i,j=1 βiju

2
iu

2
j

)2 .

We also recall that∑
1≤i 6=j≤m

xixj ≤
m− 1

m

(
m∑
i=1

xi

)2

for all m ∈ N, x1, . . . , xm > 0.

Thus, by the Young’s and the Gagliardo-Nirenberg’s inequalities we have

m∑
i,j=1

∫
R3

βiju
2
iu

2
j ≤

m∑
i,j=1

βij
2

(∫
R3

u4
i

) 1
2
(∫

R3

u4
j

) 1
2

≤ S
m∑

i,j=1

βij
√
aiaj

(∫
R3

|∇ui|2
) 3

4
(∫

R3

|∇uj |2
) 3

4

≤ S

[
max

1≤j≤m
{βjjaj}

m∑
i=1

(∫
R3

|∇ui|2
) 3

2

+ max
1≤i 6=j≤m

{βij
√
aiaj}

∑
i 6=j

(∫
R3

|∇ui|2
) 3

4
(∫

R3

|∇uj |2
) 3

4


≤ S

[
max

1≤j≤m
{βjjaj}+

m− 1

m
max

1≤i6=j≤m
{βij
√
aiaj}

]( m∑
i=1

∫
R3

|∇ui|2
) 3

2

for every (u1, . . . , um) ∈ Sa1 × · · · × Sam . Recalling the characterization of S in
terms of C0 and C1, Lemma 2.4, and equation (5.6), this completes the proof. �

Conclusion of the proof of Theorem 1.5. We want to show that, under assumption
(1.14), inequality (5.5) cannot be satisfied. If

(5.7)
C0C1

(∑k
i=1 a

2
i

)3

8

 k∑
i,j=1

βija
2
i a

2
j

2 <
C0C1

8

[
max

1≤j≤m
{βjjaj}+

m− 1

m
max

1≤i 6=j≤m
{βija1/2

i a
1/2
j }

]2 ,
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then this follows by Lemmas 5.2 and 5.3. A condition which implies the validity
of (5.7) is assumption (1.14). Concerning the variational characterizations of the
solution ū, it is possible to adapt the proofs in the previous section with minor
changes. �

Remark 5.4. We emphasize the main difference between the concluding arguments
in Theorem 1.2 and 1.5. In the former case, in order to obtain a contradiction one
has to compare the value d with two fixed quantities `(a1, µ1) and `(a2, µ2), which
do not depend on β. On one hand, arguing by contradiction one has d = `(ai, µi) for
some i; on the other hand, we have seen that it is sufficient to take β very large to
have d < min{`(a1, µ1), `(a2, µ2)}, which gives a contradiction. For systems with
many components the situation is much more involved: the crucial equality for
Theorem 1.5 is (5.5), which involves two quantities both depending on the coupling
parameters. It is tempting to think that the natural assumption in Theorem 1.5 is
βij ≥ β̄ for every i 6= j. But if we make some βij too large, than both sides in (5.5)
become very small. Hence without any condition on the other parameters (βij and
ai) it seems hard to obtain a contradiction. Notice also that we do not have any
control on the set I1, which makes the problem even more involved and imposes an
assumption involving all the possible choices of I1.

6. Orbital stability

This section is devoted to the proof of Theorem 1.8, and we focus on a general k
components system. Let (λ̄1, . . . , λ̄k, ū1, . . . , ūk) be the solution of (1.11) found in
Theorem 1.5. The crucial fact is that by Theorem 1.5 we have J(ū) = infV J , with
V defined by (1.13). The dynamics of (1.15) takes place in H1(R3,Ck). By using
similar arguments as in the proof of Lemma 4.8, with (u∗, v∗) replaced by (|u|, |v|),
one can show that infVC J = infV J , where

VC :=
{
u ∈ TC

a1 × · · · × T
C
ak

: G(u) = 0
}
,

and

TC
a :=

{
u ∈ H1(R3,Ck) :

∫
R3

|u|2 = a2

}
.

Let us introduce the function

gu(t) :=
t2

2

∫
R3

k∑
i=1

|∇ui|2 −
t3

4

∫
R3

k∑
i,j=1

βij |ui|2|uj |2,

defined for t > 0. Notice that gu(t) = J(log t ? u). It is clear that for any u ∈
H1(R3,Ck) there exists a unique critical point tu > 0 for gu, which is a strict
maximum, and that log tu ? u ∈ VC. Moreover, the function gu is concave in
(tu,+∞).

Lemma 6.1. Let d := inf{J(u) : u ∈ VC}. Then

G(u) < 0 =⇒ G(u) ≤ J(u)− d.

Proof. By a direct computation G(u) = g′u(1). Thus, the condition G(u) < 0
implies that tu < 1, and gu is concave in (tu,+∞). As a consequence,

gu(1) ≥ gu(tu) + (1− tu)g′u(1) ≥ gu(tu) +G(u) ≥ d+G(u),

and since gu(1) = J(u) the thesis follows. �



28 NORMALIZED SOLUTIONS FOR COUPLED SCHRÖDINGER EQUATIONS

Conclusion of the proof of Theorem 1.5. Let us := s ? ū. Since ū ∈ VC, it follows
that G(us) < 0 for every s > 0. Let Φs = (Φs1, . . . ,Φ

s
k) be the solution of system

(1.15) with initial datum us, defined on the maximal interval (Tmin, Tmax). By
continuity, provided |t| is sufficiently small we have G(Φs(t)) < 0. Therefore, by
Lemma 6.1 and recalling that the energy is conserved along trajectories of (1.15),
we have

G(Φs(t)) ≤ J(Φs(t))− d = J(us)− d =: −δ < 0

for any such t, and by continuity again we infer that G(Φs(t)) ≤ −δ for every
t ∈ (Tmin, Tmax). To obtain a contradiction, we recall that the virial identity (see
Proposition 6.5.1 in [11] for the identity associated to the scalar equation; dealing
with a gradient-type system, the computations are very similar) establishes that

f ′′s (t) = 8G(Φs(t)) ≤ −8δ < 0 for fs(t) :=

∫
R3

|x|2
k∑
i=1

|Φsi (t, x)|2 dx,

and as a consequence

0 ≤ fs(t) ≤ −δt2 +O(t) for all t ∈ (−Tmin, Tmax).

Since the right hand side becomes negative for |t| sufficiently large, it is necessary
that both Tmin and Tmax are bounded. This proves that, for a sequence of ini-
tial data arbitrarily close to ū, we have blow-up in finite time, implying orbital
instability. �
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