NORMALIZED SOLUTIONS FOR A SYSTEM OF COUPLED CUBIC SCHRÖDINGER EQUATIONS ON \mathbb{R}^{3}

Thomas Bartsch
Mathematisches Institut, Justus-Liebig-Universität Giessen,
Arndtstrasse 2, 35392 Giessen (Germany),
E-mail address: Thomas.Bartsch@math.uni-giessen.de
Louis Jeanjean
Laboratoire de Mathématiques (UMR 6623), Université de Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex (France),
E-mail address: louis.jeanjean@univ-fcomte.fr
Nicola Soave (Corresponding author)
Mathematisches Institut, Justus-Liebig-Universität Giessen,
$$
\text { Arndtstrasse 2, } 35392 \text { Giessen (Germany) }
$$
E-mail address: Nicola.Soave@math.uni-giessen.de; nicola.soave@gmail.com

Abstract. We consider the system of coupled elliptic equations

$$
\left\{\begin{array}{l}
-\Delta u-\lambda_{1} u=\mu_{1} u^{3}+\beta u v^{2} \\
-\Delta v-\lambda_{2} v=\mu_{2} v^{3}+\beta u^{2} v
\end{array} \quad \text { in } \mathbb{R}^{3}\right.
$$

and study the existence of positive solutions satisfying the additional condition

$$
\int_{\mathbb{R}^{3}} u^{2}=a_{1}^{2} \quad \text { and } \quad \int_{\mathbb{R}^{3}} v^{2}=a_{2}^{2}
$$

Assuming that $a_{1}, a_{2}, \mu_{1}, \mu_{2}$ are positive fixed quantities, we prove existence results for different ranges of the coupling parameter $\beta>0$. The extension to systems with an arbitrary number of components is discussed, as well as the orbital stability of the corresponding standing waves for the related Schrödinger systems.
Nous considérons le système d'équations elliptiques couplées

$$
\left\{\begin{array}{l}
-\Delta u-\lambda_{1} u=\mu_{1} u^{3}+\beta u v^{2} \\
-\Delta v-\lambda_{2} v=\mu_{2} v^{3}+\beta u^{2} v
\end{array} \quad \text { sur } \mathbb{R}^{3},\right.
$$

et étudions l'existence of solutions positives qui satisfont la condition additionnelle

$$
\int_{\mathbb{R}^{3}} u^{2}=a_{1}^{2} \quad \text { et } \quad \int_{\mathbb{R}^{3}} v^{2}=a_{2}^{2}
$$

En suppposant que $a_{1}, a_{2}, \mu_{1}, \mu_{2}$ sont des quantités positives fixées, nous obtenons des résultats d'existence pour plusieurs plages du paramètre de couplage $\beta>0$. L'extention de ces résulats à des systèmes ayant un nombre quelconque d'équations est discutée, tout comme la stabilité orbitale des ondes stationnaires correspondantes dans les systèmes de Schrödinger associés.
Keywords: Nonlinear Schrödinger systems, normalized solutions, orbital stability, minimax principle.

[^0]
1. Introduction

This paper concerns the existence of solutions $\left(\lambda_{1}, \lambda_{2}, u, v\right) \in \mathbb{R}^{2} \times H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ to the system of elliptic equations

$$
\left\{\begin{array}{l}
-\Delta u-\lambda_{1} u=\mu_{1} u^{3}+\beta u v^{2} \tag{1.1}\\
-\Delta v-\lambda_{2} v=\mu_{2} v^{3}+\beta u^{2} v
\end{array} \quad \text { in } \mathbb{R}^{3},\right.
$$

satisfying the additional condition

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} u^{2}=a_{1}^{2} \quad \text { and } \quad \int_{\mathbb{R}^{3}} v^{2}=a_{2}^{2} . \tag{1.2}
\end{equation*}
$$

One refers to this type of solutions as to normalized solutions, since (1.2) imposes a normalization on the L^{2}-masses of u and v. This fact implies that λ_{1} and λ_{2} cannot be determined a priori, but are part of the unknown.

The problem under investigation comes from the research of solitary waves for the system of coupled Schrödinger equations

$$
\left\{\begin{array}{l}
-\iota \partial_{t} \Phi_{1}=\Delta \Phi_{1}+\mu_{1}\left|\Phi_{1}\right|^{2} \Phi_{1}+\beta\left|\Phi_{2}\right|^{2} \Phi_{1} \tag{1.3}\\
-\iota \partial_{t} \Phi_{2}=\Delta \Phi_{2}+\mu_{2}\left|\Phi_{2}\right|^{2} \Phi_{2}+\beta\left|\Phi_{1}\right|^{2} \Phi_{2}
\end{array} \quad \text { in } \mathbb{R} \times \mathbb{R}^{3}\right.
$$

having applications in nonlinear optics and in the Hartree-Fock approximation for Bose-Einstein condensates with multiple states; see [14, 30].

It is well known that three quantities are conserved in time along trajectories of (1.3): the energy

$$
J_{\mathbb{C}}\left(\Phi_{1}, \Phi_{2}\right)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla \Phi_{1}\right|^{2}+\left|\nabla \Phi_{2}\right|^{2}-\frac{1}{4} \int_{\mathbb{R}^{3}} \mu_{1}\left|\Phi_{1}\right|^{4}+2 \beta\left|\Phi_{1}\right|^{2}\left|\Phi_{2}\right|^{2}+\mu_{2}\left|\Phi_{2}\right|^{4}
$$

and the masses

$$
\int_{\mathbb{R}^{3}}\left|\Phi_{1}\right|^{2} \quad \text { and } \quad \int_{\mathbb{R}^{3}}\left|\Phi_{2}\right|^{2}
$$

A solitary wave of (1.3) is a solution having the form

$$
\Phi_{1}(t, x)=e^{-i \lambda_{1} t} u(x) \quad \text { and } \quad \Phi_{2}(t, x)=e^{-i \lambda_{2} t} v(x)
$$

for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, where (u, v) solves (1.1). Two different approaches are possible: one can either regard the frequencies λ_{1}, λ_{2} as fixed, or include them in the unknown and prescribe the masses. In this latter case, which seems to be particularly interesting from the physical point of view, λ_{1} and λ_{2} appear as Lagrange multipliers with respect to the mass constraint.

The problem with fixed λ_{i} has been widely investigated in the last ten years, and, at least for systems with 2 components and existence of positive solutions (i. e. $u, v>0$ in \mathbb{R}^{3}), the situation is quite well understood. A complete review of the available results in this context goes beyond the aim of this paper; we refer the interested reader to $[1,2,3,6,7,12,22,23,26,28,31,39,40,41,42,44,45]$ and to the references therein.

In striking contrast, very few papers deal with the existence of normalized solutions. Up to our knowledge, the only known results are the ones in [32] (see also the reference therein), regarding the problem in 1 space dimension, and those in $[5,35,37,43]$, dealing with the higher dimensional case. In [32] the authors proved existence of solutions, for any positive value of $\mu_{1}, \mu_{2}, \beta, a_{1}$, and a_{2}, as constrained minimizers of the energy functional on the product of the L^{2}-spheres $\left\{\|u\|_{2}^{2}=a_{1}^{2}\right\} \times\left\{\|v\|_{2}^{2}=a_{2}^{2}\right\}$, and studied their stability properties. We observe
that in higher dimension the functional is unbounded from below when μ_{1}, μ_{2} and β are positive, and hence the approach in [32] cannot be adapted. In [37], the authors consider (1.1) in bounded domains of \mathbb{R}^{N}, or the problem with trapping potentials in the whole space \mathbb{R}^{N} (the presence of a trapping potential makes the two problems essentially equivalent), with $N \leq 3$. In both cases, they proved existence of positive solutions with small masses a_{1} and a_{2}, and the orbital stability of the associated solitary waves, see Theorem 1.3 therein. It is remarkable that they can work essentially without assumptions on μ_{1}, μ_{2} and β. The requirement that the masses have to be small gives their result a bifurcation flavor. In [35, 43] the authors consider the defocusing setting $\mu_{1}, \mu_{2}<0$ in regime of competition $\beta<0$ in bounded domains. In the defocusing competitive case $\mu_{1}, \mu_{2}, \beta<0$ existence is an easy consequence of standard Lusternik-Schnirelmann theory because the functional is bounded from below. Supposing that all the components have the same mass, they prove existence of infinitely many solutions and occurrence of phaseseparation as $\beta \rightarrow-\infty$. Concerning [5], we postpone a discussion of the results therein in the following paragraphs.

In the present paper we address a situation which is substantially different compared to those considered in $[32,35,37,43]$. We study system (1.1) in \mathbb{R}^{3} in the focusing setting $\mu_{1}, \mu_{2}>0$, so that the functional is unbounded from below on the constraint. We prove the existence of positive normalized solutions for different ranges of the coupling parameter $\beta>0$, without any assumption on the masses a_{1}, a_{2}. Our approach is variational: we find solutions of (1.1)-(1.2) as critical points of the energy functional

$$
\begin{equation*}
J(u, v)=\int_{\mathbb{R}^{3}}\left(\frac{1}{2}|\nabla u|^{2}-\frac{\mu_{1}}{4} u^{4}\right)+\int_{\mathbb{R}^{3}}\left(\frac{1}{2}|\nabla v|^{2}-\frac{\mu_{2}}{4} v^{4}\right)-\frac{\beta}{2} \int_{\mathbb{R}^{3}} u^{2} v^{2} \tag{1.4}
\end{equation*}
$$

on the constraint $T_{a_{1}} \times T_{a_{2}}$, where for $a \in \mathbb{R}$ we define

$$
\begin{equation*}
T_{a}:=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}} u^{2}=a^{2}\right\} \tag{1.5}
\end{equation*}
$$

The main results are the following:
Theorem 1.1. Let $a_{1}, a_{2}, \mu_{1}, \mu_{2}>0$ be fixed, and let $\beta_{1}>0$ be defined by

$$
\begin{equation*}
\max \left\{\frac{1}{a_{1}^{2} \mu_{1}^{2}}, \frac{1}{a_{2}^{2} \mu_{2}^{2}}\right\}=\frac{1}{a_{1}^{2}\left(\mu_{1}+\beta_{1}\right)^{2}}+\frac{1}{a_{2}^{2}\left(\mu_{2}+\beta_{1}\right)^{2}} \tag{1.6}
\end{equation*}
$$

If $0<\beta<\beta_{1}$, then (1.1)-(1.2) has a solution $\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \tilde{u}, \tilde{v}\right)$ such that $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}<0$, and \tilde{u} and \tilde{v} are both positive and radial.

For our next result we introduce a Pohozaev-type constraint as follows:

$$
\begin{equation*}
V:=\left\{(u, v) \in T_{a_{1}} \times T_{a_{2}}: G(u, v)=0\right\}, \tag{1.7}
\end{equation*}
$$

where

$$
G(u, v)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\nabla v|^{2}\right)-\frac{3}{4} \int_{\mathbb{R}^{3}}\left(\mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}\right)
$$

We shall see that V contains all solutions of (1.1)-(1.2). We also define a Rayleightype quotient as

$$
\begin{equation*}
\mathcal{R}(u, v):=\frac{8\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}\right)^{3}}{27\left(\int_{\mathbb{R}^{3}} \mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}\right)^{2}} . \tag{1.8}
\end{equation*}
$$

Theorem 1.2. Let $a_{1}, a_{2}, \mu_{1}, \mu_{2}>0$ be fixed, and let $\beta_{2}>0$ be defined by

$$
\begin{equation*}
\frac{\left(a_{1}^{2}+a_{2}^{2}\right)^{3}}{\left(\mu_{1} a_{1}^{4}+\mu_{2} a_{2}^{4}+2 \beta_{2} a_{1}^{2} a_{2}^{2}\right)^{2}}=\min \left\{\frac{1}{a_{1}^{2} \mu_{1}^{2}}, \frac{1}{a_{2}^{2} \mu_{2}^{2}}\right\} \tag{1.9}
\end{equation*}
$$

If $\beta>\beta_{2}$, then (1.1)-(1.2) has a solution $\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}, \bar{u}, \bar{v}\right)$ such that $\bar{\lambda}_{1}, \bar{\lambda}_{2}<0$, and \bar{u} and \bar{v} are both positive and radial. Moreover, $\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}, \bar{u}, \bar{v}\right)$ is a ground state solution in the sense that

$$
\begin{aligned}
J(\bar{u}, \bar{v}) & =\inf \{J(u, v):(u, v) \in V\}=\inf _{(u, v) \in T_{a_{1}} \times T_{a_{2}}} \mathcal{R}(u, v) \\
& =\inf \left\{J(u, v):(u, v) \text { is a solution of }(1.1)-(1.2) \text { for some } \lambda_{1}, \lambda_{2}\right\}
\end{aligned}
$$

holds.
Remark 1.3. a) As it should be clear by (1.6) and (1.9), the values of β_{1} and β_{2} are not obtained by means of any limit process, and our results are not of perturbative type. Notice in particular that, with suitable choices of $a_{1}, a_{2}, \mu_{1}, \mu_{2}$, we can make either β_{1} arbitrarily large, or β_{2} arbitrarily small. Conditions $0<\beta<\beta_{1}$ and $\beta>\beta_{2}$ are sufficient for the existence of solutions, but may be not necessary, and it remains an open problem to determine whether or not they can be improved.
b) The variational characterizations of the solutions obtained in Theorems 1.1 and 1.2 are different. The solution from Theorem 1.1 has Morse index 2 as critical point of J constrained to $T_{a_{1}} \times T_{a_{2}}$. On the other hand, the solution from Theorem 1.2 is a mountain pass solution of J on the constraint.
c) Our results can be extended with minor changes to systems with general exponents of type

$$
\left\{\begin{array}{l}
-\Delta u_{1}-\lambda_{1} u_{1}=\mu_{1}\left|u_{1}\right|^{2 p_{1}-2} u_{1}+\beta\left|u_{1}\right|^{r-2}\left|u_{2}\right|^{r} u_{1} \tag{1.10}\\
-\Delta u_{2}-\lambda_{2} u_{2}=\mu_{2}\left|u_{2}\right|^{2 p_{2}-2} u_{2}+\beta\left|u_{1}\right|^{r}\left|u_{2}\right|^{r-2} u_{2}
\end{array} \quad \text { in } \mathbb{R}^{N}\right.
$$

(or the k components analogue) with $N \leq 4$, provided we restrict ourselves to a L^{2}-supercritical and Sobolev subcritical setting:

$$
2+\frac{4}{N}<2 p_{i}, 2 r<\frac{2 N}{N-2}
$$

Moreover, the proofs do not use the evenness of the functional. Thus one may replace the terms u^{4}, v^{4} in (1.4) by general nonlinearities $f(u), g(v)$ which are not odd. Similarly the coupling term $u^{2} v^{2}$ in the functional may be replaced by a nonsymmetric one. We decided not to include this kind of generality since it would make the statement of our results and the proofs very technical.
d) Also in the case of fixed frequencies for system (1.1) there exist values $0<\beta_{1}^{\prime}<$ β_{2}^{\prime} such that the problem has a positive solution whenever $\beta<\beta_{1}^{\prime}$ or $\beta>\beta_{2}^{\prime}[1,40]$, see also [28]. In this setting, it is known that if $\lambda_{1} \geq \lambda_{2}, \mu_{1} \geq \mu_{2}$, and one of the inequalities is strict, then $\beta_{1}^{\prime}<\beta_{2}^{\prime}$, and for $\beta \in\left[\beta_{1}^{\prime}, \beta_{2}^{\prime}\right]$ the problem has no positive solution $[6,40]$. On the other hand, the non-existence range (in terms of β) can disappear. This is the case, for instance, if $\lambda_{1}=\lambda_{2}=\mu_{1}=\mu_{2}=1$. Then (1.1) has positive solutions for all $\beta>0$. Since in the context of normalized solutions the values λ_{i} are not prescribed, it is an interesting open problem whether there are conditions on $a_{1}, a_{2}, \mu_{1}, \mu_{2}$ such that positive solutions of (1.1)-(1.2) exist for all $\beta>0$. We observe that this is what happens in dimension $N=1$, see [32].
e) Despite the similarity between our results and those in [1, 40], the proofs differ substantially. First, while in $[1,40]$ the approach is based on the research
of critical points constrained on Nehari-type sets associated to the problem, here no Nehari manifold is available, since λ_{1} and λ_{2} are part of the unknown; as a consequence, we shall directly investigate the geometry of the functional on the product of the L^{2}-spheres $T_{a_{1}} \times T_{a_{2}}$ in order to apply a suitable minimax theorem. We also point out that in $[1,40]$, as well as in all the contributions related to the problem with fixed frequencies, one of the main difficulties is represented by the fact that one searches for solutions having both $u \not \equiv 0$ and $v \not \equiv 0$. Here this problem is still present, and actually it assumes a more subtle form, in the following sense: let us suppose that we can find a Palais-Smale sequence for J on $T_{a_{1}} \times T_{a_{2}}$, and suppose that this sequence is weakly convergent in H^{1} to a limit (u, v). Due to the lack of compactness of the embedding $H^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{2}\left(\mathbb{R}^{3}\right)$, a delicate step consists in showing that $(u, v) \in T_{a_{1}} \times T_{a_{2}}$, so that it satisfies (1.2). Notice that the lack of compactness persists also if we restrict ourselves to a radial setting. As a consequence, we emphasize that it is not sufficient to rule out the possibility that in the weak limit $u \equiv 0$ or $v \equiv 0$. We have also to prevent the loss of part of the mass of one of the components in the passage to the limit.

Both theorems rest upon a suitable minimax argument, where an important role is played by the ground state levels $\ell\left(a_{1}, \mu_{1}\right)$ and $\ell\left(a_{2}, \mu_{2}\right)$ associated to the scalar problems

$$
\left\{\begin{array}{l}
-\Delta w-\lambda w=\mu w^{3} \quad \text { in } \mathbb{R}^{3} \\
\int_{\mathbb{R}^{3}} w^{2}=a^{2}
\end{array}\right.
$$

with $a=a_{1}$ and $\mu=\mu_{1}$, or with $a=a_{2}$ and $\mu=\mu_{2}$, respectively. We refer to Section 2 for the precise definition of $\ell(a, \mu)$. In this perspective, it is interesting to emphasize the different relations between the critical values of Theorems 1.1 and 1.2 with $\ell\left(a_{1}, \mu_{1}\right)$ and $\ell\left(a_{2}, \mu_{2}\right)$.

Proposition 1.4. With the notation of Theorems 1.1 and 1.2, we have

$$
J(\bar{u}, \bar{v})<\min \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\} \leq \max \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\}<J(\tilde{u}, \tilde{v})
$$

In [5] the authors consider systems of the type of (1.10) looking also for solutions satisfying (1.2). The results obtained in [5] have no intersection with the one of the present paper because there $2<p_{1}<2+4 / N<p_{2}<6$. A common feature is that one looks for constrained critical points in a situation where the functional is unbounded from below on the constraint. Already in the scalar case it is known that, when the underlying equations are set on all the space, looking to critical points which are not global minima of the associated functional may present new difficulties (with respect to the minimizing problem), see [9, 18]. In particular a standard approach following the Compactness Concentration Principle of P.L. Lions $[24,25]$ is hardly applicable. We also mention [4,19,27] for multiplicity results in that direction, and [36] for normalized solutions in bounded domains.

In the second part of the paper we partially generalize the previous results to the $k \geq 2$ components system

$$
\left\{\begin{array}{l}
-\Delta u_{i}-\lambda_{i} u_{i}=\sum_{j=1}^{k} \beta_{i j} u_{j}^{2} u_{i} \quad \text { in } \mathbb{R}^{3} \tag{1.11}\\
u_{i} \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array} \quad i=1, \ldots, k,\right.
$$

with the normalization condition

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} u_{i}^{2}=a_{i}^{2} \quad i=1, \ldots, k \tag{1.12}
\end{equation*}
$$

We always suppose that $\beta_{i j}=\beta_{j i}$ for every $i \neq j$. Notice that problem (1.1)-(1.2) falls in this setting with $k=2, u=u_{1}, v=u_{2}, \beta_{i i}=\mu_{i}$ and $\beta_{12}=\beta$.

From a variational point of view, thanks to the fact that $\beta_{i j}=\beta_{j i}$ solutions of (1.11)-(1.12) are critical points of

$$
J\left(u_{1}, \ldots, u_{k}\right):=\int_{\mathbb{R}^{3}}\left(\frac{1}{2} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}-\frac{1}{4} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2}\right)
$$

on the constraint $T_{a_{1}} \times \cdots \times T_{a_{k}}$, where T_{a} has been defined in (1.5). Notice that the definition of the functional J depends on k and the matrix $\beta_{i j}$, but we will not stress such dependence to keep the notation as simple as possible.

The first result which we present is the extension of Theorem 1.2 to any $k \geq 3$. To this aim, we introduce

$$
\begin{equation*}
V:=\left\{\left(u_{1}, \ldots, u_{k}\right) \in T_{a_{1}} \times \cdots \times T_{a_{k}}: G\left(u_{1}, \ldots, u_{k}\right)=0\right\} \tag{1.13}
\end{equation*}
$$

where

$$
G\left(u_{1}, \ldots, u_{k}\right)=\int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}-\frac{3}{4} \int_{\mathbb{R}^{3}} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2}
$$

and the Rayleigh-type quotient

$$
\mathcal{R}\left(u_{1}, \ldots, u_{k}\right):=\frac{8\left(\int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}\right)^{3}}{27\left(\int_{\mathbb{R}^{3}} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2}\right)^{2}}
$$

Theorem 1.5. Let $k \geq 2$, and let $a_{i}, \beta_{i i}, \beta_{i j}>0$ be positive constant, such that the following inequality holds:

$$
\begin{equation*}
\frac{\left(\sum_{i=1}^{k} a_{i}^{2}\right)^{3}}{\left(\sum_{i, j=1}^{k} \beta_{i j} a_{i}^{2} a_{j}^{2}\right)^{2}}<\min _{\substack{\mathcal{I} \subset\{1, \ldots, k\} \\|\mathcal{I}| \leq k-1}} \frac{1}{\left.\max _{i \in \mathcal{I}}\left\{\beta_{j j} a_{j}\right\}+\frac{k-2}{k-1} \max _{\substack{i \neq j \\ i, j \in \mathcal{I}}}\left\{\beta_{i j} a_{i}^{1 / 2} a_{j}^{1 / 2}\right\}\right]^{2}}, \tag{1.14}
\end{equation*}
$$

where $|\mathcal{I}|$ denotes the cardinality of the set \mathcal{I}. Then (1.11)-(1.12) has a solution $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}, \bar{u}_{1}, \ldots, \bar{u}_{k}\right)$ such that $\bar{\lambda}_{i}<0$, and \bar{u}_{i} is positive and radial for every i. Moreover,

$$
\begin{aligned}
J\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right) & =\inf _{V} J=\inf _{T_{a_{1}} \times \cdots \times T_{a_{k}}} \mathcal{R} \\
& =\inf \left\{J\left(u_{1}, \ldots, u_{k}\right):\left(u_{1}, \ldots, u_{k}\right) \text { is a solution of }(1.11)-(1.12)\right\},
\end{aligned}
$$

that is $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}, \bar{u}_{1}, \ldots, \bar{u}_{k}\right)$ is a ground state solution.
Some remarks are in order.
Remark 1.6. a) The set of parameters fulfilling condition (1.14) is not empty. For instance, if $a_{i}=a$ for every $i, \beta_{i i}>0$ are fixed and $\beta_{i j}=\beta$ for every $i \neq j$, then (1.14) is satisfied provided β is sufficiently large. More in general, if $\beta_{i i}>0$,
$\beta_{i j}=\beta$ for every $i \neq j$, and

$$
\frac{\left(\sum_{i} a_{i}^{2}\right)^{3}\left(\frac{k-2}{k-1}\right)^{2} \max _{i \neq j}\left\{a_{i} a_{j}\right\}}{\left(\sum_{i \neq j} a_{i}^{2} a_{j}^{2}\right)^{2}}<1
$$

then (1.14) is satisfied provided β is sufficiently large.
b) At a first glance (1.14) seems unclear if compared with the simple condition $\beta>\beta_{2}$ appearing in Theorem 1.2. On the contrary, for $k=2$ it is easy to check that (1.14) is fulfilled provided β_{12} is larger than the positive threshold β_{2}.
c) A condition somehow similar to (1.14) appears also for the problem with fixed frequencies λ_{i}, see Theorem 2.1 in [26].

Regarding the extension of Theorem 1.1 to systems with an arbitrary number of components, we have a much weaker result.

Proposition 1.7. Let $a_{i}, \beta_{i i}>0$ be fixed positive constant. There exists $\beta_{0}>0$ such that if $\left|\beta_{i j}\right|<\beta_{0}$ for every $i \neq j$, then system (1.11)-(1.12) has a solution $\left(\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{k}, \tilde{u}_{1}, \ldots, \tilde{u}_{k}\right)$ such that $\lambda_{i}<0$, and u_{i} is positive and radial for every i.

The proof is based on a simple application of the implicit function theorem, and is omitted for the sake of brevity. Notice that using a perturbative argument we can allow some (or all) the couplings $\beta_{i j}$ to take negative values. On the other hand, being β_{0} obtained by a limit argument, it cannot be estimated from below and it could be very small; in this sense Proposition 1.7 is weaker than Theorem 1.1, where an explicit estimate for β_{1} is available.

Let us now turn to the question of the orbital stability of the solitary waves of

$$
\begin{equation*}
-\iota \partial_{t} \Phi_{j}=\Delta \Phi_{j}+\beta_{j j}\left|\Phi_{j}\right|^{2} \Phi_{j}+\sum_{k \neq j} \beta_{k j}\left|\Phi_{k}\right|^{2} \Phi_{j} \quad \text { in } \mathbb{R} \times \mathbb{R}^{3}, j=1, \ldots, k \tag{1.15}
\end{equation*}
$$

associated to the solutions found in Theorem 1.5 (or Theorem 1.2 if $k=2$). In this framework, we can adapt the classical Berestycki-Cazenave argument [10] (see also $[11,21]$ for more detailed proofs) and prove the following:
Theorem 1.8. Let $k \geq 2$, and $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}, \bar{u}_{1}, \ldots, \bar{u}_{k}\right)$ be the solution obtained in Theorem 1.5 (or in Theorem 1.2 if $k=2$). Then the associated solitary wave is orbitally unstable by blow up in finite time.

Regarding the stability of the solutions found in Theorem 1.1 and Proposition 1.7, a Berestycki-Cazenave-type argument does not seem to be applicable, since these solutions are characterized by a different minimax construction with respect to those in Theorems 1.2 and 1.5. Thus, the stability remains open in these cases, and we just recall that dealing with systems which are L^{2} supercritical does imply that orbitally stable solutions do not exist. In that direction we refer to [8] where, in this context, a stable solution is found for a scalar problem.

The orbital stability of solutions to weakly coupled Schrödinger equations associated to power-type systems like (1.10) has been studied in several papers (we refer to $[13,29,32,33,34,38]$ and to the references therein), but the available results mainly regard the L^{2}-subcritical setting $2 p<1+4 / N$, and the problem with fixed frequencies. In particular, we point out that Theorem 1.8 does not follow by previous contributions.

2. Preliminaries

In the first part of the section, we collect some facts concerning the cubic NLS equation, which will be used later. Let us consider the scalar problem

$$
\begin{cases}-\Delta w+w=w^{3} & \text { in } \mathbb{R}^{3} \tag{2.1}\\ w>0 & \text { in } \mathbb{R}^{3} \\ w(0)=\max w \quad \text { and } \quad w \in H^{1}\left(\mathbb{R}^{3}\right) . & \end{cases}
$$

It is well known that (2.1) has a unique solution, denoted by w_{0} and that this solution is radial. In what follows we set

$$
\begin{equation*}
C_{0}:=\int_{\mathbb{R}^{3}} w_{0}^{2} \quad \text { and } \quad C_{1}:=\int_{\mathbb{R}^{3}} w_{0}^{4} \tag{2.2}
\end{equation*}
$$

For $a, \mu \in \mathbb{R}$ fixed, let us search for $(\lambda, w) \in \mathbb{R} \times H^{1}\left(\mathbb{R}^{3}\right)$, with $\lambda<0$ in \mathbb{R}^{3}, solving

$$
\begin{cases}-\Delta w-\lambda w=\mu w^{3} & \tag{2.3}\\ w(0)=\max w \quad \text { and } \quad \int_{\mathbb{R}^{3}} w^{2}=a^{2} . & \end{cases}
$$

Solutions w of (2.3) can be found as critical points of $I_{\mu}: H^{1}\left(\mathbb{R}^{3}\right) \mapsto \mathbb{R}$, defined by

$$
\begin{equation*}
I_{\mu}(w)=\int_{\mathbb{R}^{3}}\left(\frac{1}{2}|\nabla w|^{2}-\frac{\mu}{4} w^{4}\right) \tag{2.4}
\end{equation*}
$$

constrained on the L^{2}-sphere T_{a}, and λ appears as Lagrange multipliers. It is well known that they can be obtained by the solutions of (2.1) by scaling.

Let us introduce the set

$$
\begin{equation*}
\mathcal{P}(a, \mu):=\left\{w \in T_{a}: \int_{\mathbb{R}^{3}}|\nabla w|^{2}=\frac{3 \mu}{4} \int_{\mathbb{R}^{3}} w^{4}\right\} . \tag{2.5}
\end{equation*}
$$

The role of $\mathcal{P}(a, \mu)$ is clarified by the following result.
Lemma 2.1. If w is a solution of (2.3), then $w \in \mathcal{P}(a, \mu)$. In addition the positive solution w of (2.3) minimizes I_{μ} on $\mathcal{P}(a, \mu)$.

Proof. The proof of the first part is a simple consequence of the Pohozaev identity. We refer to Lemma 2.7 in [18] for more details. For the last part we refer to Lemma 2.10 in [18].

Proposition 2.2. Problem (2.3) has a unique positive solution ($\lambda_{a, \mu}, w_{a, \mu}$) defined by

$$
\lambda_{a, \mu}:=-\frac{C_{0}^{2}}{\mu^{2} a^{4}} \quad \text { and } \quad w_{a, \mu}(x):=\frac{C_{0}}{\mu^{3 / 2} a^{2}} w_{0}\left(\frac{C_{0}}{\mu a^{2}} x\right) .
$$

The function $w_{a, \mu}$ satisfies

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left|\nabla w_{a, \mu}\right|^{2} & =\frac{3 C_{0} C_{1}}{4 \mu^{2} a^{2}} \tag{2.6}\\
\int_{\mathbb{R}^{3}} w_{a, \mu}^{4} & =\frac{C_{0} C_{1}}{\mu^{3} a^{2}} . \tag{2.7}\\
\ell(a, \mu):=I_{\mu}\left(w_{a, \mu}\right) & =\frac{C_{0} C_{1}}{8 \mu^{2} a^{2}} . \tag{2.8}
\end{align*}
$$

The value $\ell(a, \mu)$ is called least energy level of problem (2.3).

Proof. It is not difficult to directly check that $w_{a, \mu}$ defined in the proposition is a solution of (2.3) for $\lambda=\lambda_{a, \mu}<0$. By [20], it is the only positive solution. To obtain (2.6) and (2.7), we can use the explicit expression of $w_{a, \mu}$: by a change of variables

$$
\int_{\mathbb{R}^{3}}\left|\nabla w_{a, \mu}\right|^{2}=\frac{C_{0}}{\mu^{2} a^{2}} \int_{\mathbb{R}^{3}}\left|\nabla w_{0}\right|^{2}=\frac{3 C_{0}}{4 \mu^{2} a^{2}} \int_{\mathbb{R}^{3}} w_{0}^{4}
$$

where the last equality follows by Lemma 2.1 with $a^{2}=C_{0}$ and $\mu=1$. This gives (2.6). In a similar way, one can also prove (2.7) and (2.8).

Working with systems with several components, it will be useful to have a characterization of the best constant in a Gagliardo-Nirenberg inequality in terms of C_{0} and C_{1}. To obtain it, we observe at first that if $w_{a}:=w_{a, C_{0} / a^{2}}$, then w_{a} is the unique positive solution of

$$
\begin{cases}-\Delta w+w=\frac{C_{0}}{a^{2}} w^{3} & \text { in } \mathbb{R}^{3} \\ w(0)=\max w \quad \text { and } \quad \int_{\mathbb{R}^{3}} w^{2}=a^{2}, & \end{cases}
$$

and hence is a minimizer of $I_{a, C_{0} / a^{2}}$ on $\mathcal{P}\left(a, C_{0} / a^{2}\right)$. Our next result shows that this level can also be characterized as an infimum of a Rayleigh-type quotient, defined by

$$
\mathcal{R}_{a}(w):=\frac{8\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{3}}{27\left(\frac{C_{0}}{a^{2}} \int_{\mathbb{R}^{3}} w^{4}\right)^{2}}
$$

Lemma 2.3. There holds

$$
\inf _{\mathcal{P}\left(a, C_{0} / a^{2}\right)} I_{a, C_{0} / a^{2}}=\inf _{T_{a}} \mathcal{R}_{a}
$$

Proof. We refer to the proof of the forthcoming identity (4.14), where the corresponding equality is proved for systems, and which then includes the present result as a particular case.

Let us recall the following Gagliardo-Nirenberg inequality: there exists a universal constant $S>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} w^{4} \leq S\left(\int_{\mathbb{R}^{3}} w^{2}\right)^{1 / 2}\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{3 / 2} \quad \text { for all } w \in H^{1}\left(\mathbb{R}^{3}\right) \tag{2.9}
\end{equation*}
$$

In particular, the optimal value of S can be found as

$$
\begin{equation*}
\frac{1}{S^{2}}=\inf _{w \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}} \frac{\left(\int_{\mathbb{R}^{3}} w^{2}\right) \cdot\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{3}}{\left(\int_{\mathbb{R}^{3}} w^{4}\right)^{2}}=\inf _{w \in T_{a}} \frac{a^{2}\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{3}}{\left(\int_{\mathbb{R}^{3}} w^{4}\right)^{2}} \tag{2.10}
\end{equation*}
$$

where the last equality comes from the fact that the ratio on the right hand side is invariant with respect to multiplication of w with a positive number.

Lemma 2.4. In the previous notation, we have

$$
S^{2}=\frac{64}{27 C_{0} C_{1}},
$$

where C_{0} and C_{1} have been defined in (2.2).

Proof. Multiplying and dividing the last term in (2.10) by $8 a^{2} /\left(27 C_{0}^{2}\right)$, we deduce that

$$
\frac{1}{S^{2}}=\frac{27 C_{0}^{2}}{8 a^{2}} \inf _{w \in T_{a}} \mathcal{R}_{a}(w)
$$

Hence, by Proposition 2.2 and Lemma 2.3, we infer that

$$
\frac{1}{S^{2}}=\frac{27 C_{0}^{2}}{8 a^{2}} I_{C_{0} / a^{2}}\left(w_{a, C_{0} / a^{2}}\right)=\frac{27 C_{0} C_{1}}{64}
$$

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which is based upon a two-dimensional linking argument.

In order to avoid compactness issues, we work in a radial setting. This means that we search for solutions of (1.1)-(1.2) as critical points of J constrained on $S_{a_{1}} \times S_{a_{2}}$, where for any $a \in \mathbb{R}$ the set S_{a} is defined by

$$
\begin{equation*}
S_{a}:=\left\{w \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}} w^{2}=a^{2}\right\} \tag{3.1}
\end{equation*}
$$

and $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{3}\right)$ denotes the subset of $H^{1}\left(\mathbb{R}^{3}\right)$ containing all the functions which are radial with respect to the origin. Recall that $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{4}\left(\mathbb{R}^{3}\right)$ with compact embedding, and the fact that critical points of J constrained on $S_{a_{1}} \times S_{a_{2}}$ (thus in a radial setting) are true critical points of J constrained in the full product $T_{a_{1}} \times T_{a_{2}}$ is a consequence of the Palais' principle of symmetric criticality.

In order to describe the minimax structure, it is convenient to introduce some notation. We define, for $s \in \mathbb{R}$ and $w \in H^{1}\left(\mathbb{R}^{3}\right)$, the radial dilation

$$
\begin{equation*}
(s \star w)(x):=e^{\frac{3 s}{2}} w\left(e^{s} x\right) \tag{3.2}
\end{equation*}
$$

It is straightforward to check that if $w \in S_{a}$, then $s \star w \in S_{a}$ for every $s \in \mathbb{R}$.
Lemma 3.1. For every $\mu>0$ and $w \in H^{1}\left(\mathbb{R}^{3}\right)$, there holds:

$$
\begin{aligned}
I_{\mu}(s \star w) & =\frac{e^{2 s}}{2} \int_{\mathbb{R}^{3}}|\nabla w|^{2}-\frac{e^{3 s}}{4} \mu \int_{\mathbb{R}^{3}} w^{4} \\
\frac{\partial}{\partial s} I_{\mu}(s \star w) & =e^{2 s}\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}-\frac{3 e^{s}}{4} \mu \int_{\mathbb{R}^{3}} w^{4}\right) .
\end{aligned}
$$

In particular, if $w=w_{a, \mu}$, then

$$
\frac{\partial}{\partial s} I_{\mu}\left(s \star w_{a, \mu}\right) \text { is } \begin{cases}>0 & \text { if } s<0 \\ =0 & \text { if } s=0 \\ <0 & \text { if } s>0\end{cases}
$$

For the reader's convenience, we recall that I_{μ} denotes the functional for the scalar equation, see (2.4), and $w_{a, \mu}$ has been defined in Proposition 2.2.

Proof. For the first part, it is sufficient to use the definition of $s \star w$ and a change of variables in the integrals. For the second part, we observe that

$$
\frac{\partial}{\partial s} I_{\mu}\left(s \star w_{a, \mu}\right) \text { is } \begin{cases}>0 & \text { if } s<\bar{s} \\ =0 & \text { if } s=\bar{s} \\ <0 & \text { if } s>\bar{s}\end{cases}
$$

where $\bar{s} \in \mathbb{R}$ is uniquely defined by

$$
e^{\bar{s}}=\frac{4 \int_{\mathbb{R}^{3}}\left|\nabla w_{a, \mu}\right|^{2}}{3 \mu \int_{\mathbb{R}^{3}} w_{a, \mu}^{4}} .
$$

Recalling that $w_{a, \mu} \in \mathcal{P}(a, \mu)$, see Lemma 2.1, we deduce that $e^{\bar{s}}=1$, i.e. $\bar{s}=0$.
For $a_{1}, a_{2}, \mu_{1}, \mu_{2}>0$ let $\beta_{1}=\beta_{1}\left(a_{1}, a_{2}, \mu_{1}, \mu_{2}\right)>0$ be defined by (1.6).
Lemma 3.2. For $0<\beta<\beta_{1}$ there holds:

$$
\inf \left\{J(u, v):(u, v) \in \mathcal{P}\left(a_{1}, \mu_{1}+\beta\right) \times \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)\right\}>\max \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\}
$$

where $\ell\left(a_{i}, \mu_{i}\right)$ is defined by (2.8).
Proof. Using Young's inequality and recalling the definition of I_{μ} (see (2.4)), we obtain for $(u, v) \in \mathcal{P}\left(a_{1}, \mu_{1}+\beta\right) \times \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)$:

$$
\begin{aligned}
J(u, v) & =I_{\mu_{1}}(u)+I_{\mu_{2}}(v)-\frac{\beta}{2} \int_{\mathbb{R}^{3}} u^{2} v^{2} \\
& \geq I_{\mu_{1}}(u)+I_{\mu_{2}}(v)-\frac{\beta}{4} \int_{\mathbb{R}^{3}} u^{4}-\frac{\beta}{4} \int_{\mathbb{R}^{3}} v^{4} \\
& =I_{\mu_{1}+\beta}(u)+I_{\mu_{2}+\beta}(v) \geq \inf _{u \in \mathcal{P}\left(a_{1}, \mu_{1}+\beta\right)} I_{\mu_{1}+\beta}(u)+\inf _{v \in \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)} I_{\mu_{2}+\beta}(v) \\
& =\ell\left(a_{1}, \mu_{1}+\beta\right)+\ell\left(a_{2}, \mu_{2}+\beta\right)
\end{aligned}
$$

Therefore, the claim is satisfied provided

$$
\max \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\}<\ell\left(a_{1}, \mu_{1}+\beta\right)+\ell\left(a_{2}, \mu_{2}+\beta\right)
$$

that is (by Proposition 2.2)

$$
\begin{equation*}
\max \left\{\frac{C_{0} C_{1}}{8 a_{1}^{2} \mu_{1}^{2}}, \frac{C_{0} C_{1}}{8 a_{2}^{2} \mu_{2}^{2}}\right\}<\frac{C_{0} C_{1}}{8 a_{1}^{2}\left(\mu_{1}+\beta\right)^{2}}+\frac{C_{0} C_{1}}{8 a_{2}^{2}\left(\mu_{2}+\beta\right)^{2}} \tag{3.3}
\end{equation*}
$$

Clearly, this holds for $0<\beta<\beta_{1}$.
Now we fix $0<\beta<\beta_{1}=\beta_{1}\left(a_{1}, a_{2}, \mu_{1}, \mu_{2}\right)$ and choose $\varepsilon>0$ such that

$$
\begin{align*}
\inf \{J(u, v):(u, v) \in & \left.\mathcal{P}\left(a_{1}, \mu_{1}+\beta\right) \times \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)\right\} \\
& >\max \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\}+\varepsilon \tag{3.4}
\end{align*}
$$

We introduce

$$
\begin{equation*}
w_{1}:=w_{a_{1}, \mu_{1}+\beta} \quad \text { and } \quad w_{2}:=w_{a_{2}, \mu_{2}+\beta} \tag{3.5}
\end{equation*}
$$

and for $i=1,2$,

$$
\begin{equation*}
\varphi_{i}(s):=I_{\mu_{i}}\left(s \star w_{i}\right) \quad \text { and } \quad \psi_{i}(s):=\frac{\partial}{\partial s} I_{\mu_{i}+\beta}\left(s \star w_{i}\right) \tag{3.6}
\end{equation*}
$$

Lemma 3.3. For $i=1,2$ there exists $\rho_{i}<0$ and $R_{i}>0$, depending on ε and on β, such that
(i) $0<\varphi_{i}\left(\rho_{i}\right)<\varepsilon$ and $\varphi_{i}\left(R_{i}\right) \leq 0$;
(ii) $\psi_{i}(s)>0$ for any $s<0$ and $\psi_{i}(s)<0$ for every $s>0$. In particular, $\psi_{i}\left(\rho_{i}\right)>0$ and $\psi_{i}\left(R_{i}\right)<0$.
Proof. By Lemma 3.1, we deduce that $\varphi_{i}(s) \rightarrow 0^{+}$as $s \rightarrow-\infty$, and $\varphi_{i}(s) \rightarrow-\infty$ as $s \rightarrow+\infty$. Thus there exist ρ_{i} and R_{i} satisfying (i). Condition (ii) follows directly from Lemma 3.1.

Let $Q:=\left[\rho_{1}, R_{1}\right] \times\left[\rho_{2}, R_{2}\right]$, and let

$$
\gamma_{0}\left(t_{1}, t_{2}\right):=\left(t_{1} \star w_{1}, t_{2} \star w_{2}\right) \in S_{a_{1}} \times S_{a_{2}} \quad \forall\left(t_{1}, t_{2}\right) \in \bar{Q} .
$$

We introduce the minimax class

$$
\Gamma:=\left\{\gamma \in \mathcal{C}\left(\bar{Q}, S_{a_{1}} \times S_{a_{2}}\right): \gamma=\gamma_{0} \text { on } \partial Q\right\} .
$$

The minimax structure of the problem is enlightened by (3.4) and the following two lemmas.

Lemma 3.4. There holds

$$
\sup _{\partial Q} J\left(\gamma_{0}\right) \leq \max \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\}+\varepsilon .
$$

Proof. Notice that

$$
J(u, v)=I_{\mu_{1}}(u)+I_{\mu_{2}}(v)-\frac{\beta}{2} \int_{\mathbb{R}^{3}} u^{2} v^{2} \leq I_{\mu_{1}}(u)+I_{\mu_{2}}(v)
$$

for every $(u, v) \in S_{a_{1}} \times S_{a_{2}}$, since $\beta>0$. Therefore, by Lemma 3.3 we infer that

$$
\begin{aligned}
J\left(t_{1} \star w_{1}, \rho_{2} \star w_{2}\right) & \leq I_{\mu_{1}}\left(t_{1} \star w_{1}\right)+I_{\mu_{2}}\left(\rho_{2} \star w_{2}\right) \leq I_{\mu_{1}}\left(t_{1} \star w_{1}\right)+\varepsilon \\
& \leq \sup _{s \in \mathbb{R}} I_{\mu_{1}}\left(s \star w_{1}\right)+\varepsilon .
\end{aligned}
$$

In order to estimate the last term, by Proposition 2.2 it is easy to check that

$$
w_{a_{i}, \mu_{i}}=\bar{s}_{i} \star w_{i} \quad \text { for } \quad e^{\bar{s}_{i}}:=\frac{4 \int_{\mathbb{R}^{3}}\left|\nabla w_{i}\right|^{2}}{3 \int_{\mathbb{R}^{3}} \mu_{i} w_{i}^{4}}=\frac{\mu_{i}+\beta}{\mu_{i}} .
$$

As a consequence, observing also that $s_{1} \star\left(s_{2} \star w\right)=\left(s_{1}+s_{2}\right) \star w$ for every $s_{1}, s_{2} \in \mathbb{R}$ and $w \in H^{1}\left(\mathbb{R}^{3}\right)$, we have

$$
\begin{equation*}
\sup _{s \in \mathbb{R}} I_{\mu_{1}}\left(s \star w_{1}\right)=\sup _{s \in \mathbb{R}} I_{\mu_{1}}\left(s \star w_{a_{1}, \mu_{1}}\right) . \tag{3.7}
\end{equation*}
$$

As a consequence of Lemma 3.1 the supremum on the right hand side is achieved for $s=0$, and hence

$$
\begin{equation*}
J\left(t_{1} \star w_{1}, \rho_{2} \star w_{2}\right) \leq \ell\left(a_{1}, \mu_{1}\right)+\varepsilon \quad \forall t_{1} \in\left[\rho_{1}, R_{1}\right], \tag{3.8}
\end{equation*}
$$

and in a similar way one can show that

$$
\begin{equation*}
J\left(\rho_{1} \star w_{1}, t_{2} \star w_{2}\right) \leq \ell\left(a_{2}, \mu_{2}\right)+\varepsilon \quad \forall t_{2} \in\left[\rho_{2}, R_{2}\right] . \tag{3.9}
\end{equation*}
$$

The value of $J\left(\gamma_{0}\right)$ on the remaining sides of ∂Q is smaller: indeed by Lemma 3.3 and (3.7)

$$
\begin{align*}
J\left(t_{1} \star w_{1}, R_{2} \star w_{2}\right) & \leq I_{\mu_{1}}\left(t_{1} \star w_{1}\right)+I_{\mu_{2}}\left(R_{2} \star w_{2}\right) \\
& \leq \sup _{s \in \mathbb{R}} I_{\mu_{1}}\left(s \star w_{1}\right)=\ell\left(a_{1}, \mu_{1}\right) \tag{3.10}
\end{align*}
$$

for every $t_{1} \in\left[\rho_{1}, R_{1}\right]$, and analogously

$$
\begin{equation*}
J\left(R_{1} \star w_{1}, t_{2} \star w_{2}\right) \leq \ell\left(a_{2}, \mu_{2}\right) \quad \forall t_{2} \in\left[\rho_{2}, R_{2}\right] . \tag{3.11}
\end{equation*}
$$

Collecting together (3.8)-(3.11), the thesis follows.
Now we show that the class Γ "links" with $\mathcal{P}\left(a_{1}, \mu_{1}+\beta\right) \times \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)$.
Lemma 3.5. For every $\gamma \in \Gamma$, there exists $\left(t_{1, \gamma}, t_{2, \gamma}\right) \in Q$ such that $\gamma\left(t_{1, \gamma}, t_{2, \gamma}\right) \in$ $\mathcal{P}\left(a_{1}, \mu_{1}+\beta\right) \times \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)$.

Proof. For $\gamma \in \Gamma$, we use the notation $\gamma\left(t_{1}, t_{2}\right)=\left(\gamma_{1}\left(t_{1}, t_{2}\right), \gamma_{2}\left(t_{1}, t_{2}\right)\right) \in S_{a_{1}} \times S_{a_{2}}$. Let us consider the map $F_{\gamma}: Q \rightarrow \mathbb{R}^{2}$ defined by

$$
F_{\gamma}\left(t_{1}, t_{2}\right):=\left(\left.\frac{\partial}{\partial s} I_{\mu_{1}+\beta}\left(s \star \gamma_{1}\left(t_{1}, t_{2}\right)\right)\right|_{s=0},\left.\frac{\partial}{\partial s} I_{\mu_{2}+\beta}\left(s \star \gamma_{2}\left(t_{1}, t_{2}\right)\right)\right|_{s=0}\right) .
$$

From

$$
\begin{aligned}
& \left.\frac{\partial}{\partial s} I_{\mu_{i}+\beta}\left(s \star \gamma_{i}\left(t_{1}, t_{2}\right)\right)\right|_{s=0} \\
& \quad=\left.\frac{\partial}{\partial s}\left(\frac{e^{2 s}}{2} \int_{\mathbb{R}^{3}}\left|\nabla \gamma_{i}\left(t_{1}, t_{2}\right)\right|^{2}-\frac{e^{3 s}}{4}\left(\mu_{i}+\beta\right) \int_{\mathbb{R}^{3}} \gamma_{i}^{4}\left(t_{1}, t_{2}\right)\right)\right|_{s=0} \\
& \quad=\int_{\mathbb{R}^{3}}\left|\nabla \gamma_{i}\left(t_{1}, t_{2}\right)\right|^{2}-\frac{3}{4}\left(\mu_{i}+\beta\right) \int_{\mathbb{R}^{3}} \gamma_{i}^{4}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

we deduce that

$$
F_{\gamma}\left(t_{1}, t_{2}\right)=(0,0) \quad \text { if and only if } \quad \gamma\left(t_{1}, t_{2}\right) \in \mathcal{P}\left(a_{1}, \mu_{1}+\beta\right) \times \mathcal{P}\left(a_{2}, \mu_{2}+\beta\right)
$$

In order to show that $F_{\gamma}\left(t_{1}, t_{2}\right)=(0,0)$ has a solution in Q for every $\gamma \in \Gamma$, we can check that the oriented path $F_{\gamma}\left(\partial^{+} Q\right)$ has winding number equal to 1 with respect to the origin of \mathbb{R}^{2}, so that standard degree theory gives the desired result. In doing this, we observe at first that $F_{\gamma}\left(\partial^{+} Q\right)=F_{\gamma_{0}}\left(\partial^{+} Q\right)$ depends only on the choice of γ_{0}, and not on γ. Then we compute

$$
\begin{aligned}
& F_{\gamma_{0}}\left(t_{1}, t_{2}\right)=\left(e^{2 t_{1}}\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{1}\right|^{2}-\frac{3 e^{t_{1}}}{4}\left(\mu_{1}+\beta\right) \int_{\mathbb{R}^{3}} w_{1}^{4}\right)\right. \\
&\left.e^{2 t_{2}}\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{2}\right|^{2}-\frac{3 e^{t_{2}}}{4}\left(\mu_{1}+\beta\right) \int_{\mathbb{R}^{3}} w_{2}^{4}\right)\right)=\left(\psi_{1}\left(t_{1}\right), \psi_{2}\left(t_{2}\right)\right),
\end{aligned}
$$

where we recall that the definition of ψ_{i} has been given in (3.6). Therefore, the restriction of $F_{\gamma_{0}}$ on ∂Q is completely described by Lemma 3.3-(ii), see the picture below:

In particular, we have that the topological degree

$$
\operatorname{deg}\left(F_{\gamma}, Q,(0,0)\right)=\iota\left(F_{\gamma_{0}}\left(\partial^{+} Q\right),(0,0)\right)=1
$$

where $\iota(\sigma, P)$ denotes the winding number of the curve σ with respect to the point P. Hence there exists $\left(t_{1, \gamma}, t_{2, \gamma}\right) \in Q$ such that $F_{\gamma}\left(t_{1, \gamma}, t_{2, \gamma}\right)=(0,0)$, which, as observed, is the desired result.

Lemmas 3.4 and 3.5 permit to apply the minimax principle (Theorem 3.2 in [15]) to J on Γ. In this way, we could obtain a Palais-Smale sequence for the constrained functional J on $S_{a_{1}} \times S_{a_{2}}$, but the boundedness of the Palais-Smale sequence would
be unknown. In order to find a bounded Palais-Smale sequence, we shall adapt the trick introduced by one of the authors in [18] in the present setting.
Lemma 3.6. There exists a Palais-Smale sequence $\left(u_{n}, v_{n}\right)$ for J on $S_{a_{1}} \times S_{a_{2}}$ at the level

$$
c:=\inf _{\gamma \in \Gamma} \max _{\left(t_{1}, t_{2}\right) \in Q} J\left(\gamma\left(t_{1}, t_{2}\right)\right)>\max \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\},
$$

satisfying the additional condition

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right)-\frac{3}{4}\left(\int_{\mathbb{R}^{3}} \mu_{1} u_{n}^{4}+\mu_{2} v_{n}^{4}+2 \beta u_{n}^{2} v_{n}^{2}\right)=o(1) \tag{3.12}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $n \rightarrow \infty$. Furthermore, $u_{n}^{-}, v_{n}^{-} \rightarrow 0$ a.e. in \mathbb{R}^{3} as $n \rightarrow \infty$.
Proof. We consider the augmented functional $\tilde{J}: \mathbb{R} \times S_{a_{1}} \times S_{a_{2}} \rightarrow \mathbb{R}$ defined by $\tilde{J}(s, u, v):=J(s \star u, s \star v)$. Let also

$$
\tilde{\gamma}_{0}\left(t_{1}, t_{2}\right):=\left(0, \gamma_{0}\left(t_{1}, t_{2}\right)\right)=\left(0, t_{1} \star w_{1}, t_{2} \star w_{2}\right)
$$

and

$$
\tilde{\Gamma}:=\left\{\tilde{\gamma} \in \mathcal{C}\left(Q, \mathbb{R} \times S_{a_{1}} \times S_{a_{2}}\right): \tilde{\gamma}=\tilde{\gamma}_{0} \text { on } \partial Q\right\}
$$

We wish to apply the minimax principle Theorem 3.2 in [15] to the functional \tilde{J} with the minimax class $\tilde{\Gamma}$, in order to find a Palais-Smale sequence for \tilde{J} at level

$$
\tilde{c}:=\inf _{\tilde{\gamma} \in \tilde{\Gamma}} \sup _{\left(t_{1}, t_{2}\right) \in Q} \tilde{J}\left(\tilde{\gamma}\left(t_{1}, t_{2}\right)\right) .
$$

Notice that, since $\tilde{J}\left(\tilde{\gamma}_{0}\right)=J\left(\gamma_{0}\right)$ on ∂Q, by Lemmas 3.4 and 3.5 , the assumptions of the minimax principle will be satisfied if we show that $\tilde{c}=c$. This equality is a simple consequence of the definition: firstly, since $\Gamma \subset \tilde{\Gamma}$, we have $\tilde{c} \leq c$. Secondly, using the notation

$$
\tilde{\gamma}\left(t_{1}, t_{2}\right)=\left(s\left(t_{1}, t_{2}\right), \gamma_{1}\left(t_{1}, t_{2}\right), \gamma_{2}\left(t_{1}, t_{2}\right)\right),
$$

for any $\tilde{\gamma} \in \tilde{\Gamma}$ and $\left(t_{1}, t_{2}\right) \in Q$ it results that

$$
\tilde{J}\left(\tilde{\gamma}\left(t_{1}, t_{2}\right)\right)=J\left(s\left(t_{1}, t_{2}\right) \star \gamma_{1}\left(t_{1}, t_{2}\right), s\left(t_{1}, t_{2}\right) \star \gamma_{2}\left(t_{1}, t_{2}\right)\right)
$$

and $\left(s(\cdot) \star \gamma_{1}(\cdot), s(\cdot) \star \gamma_{2}(\cdot)\right) \in \Gamma$. Thus $\tilde{c}=c$, and the minimax principle is applicable.
Notice that, using the notation of Theorem 3.2 in [15], we can choose the minimizing sequence $\tilde{\gamma}_{n}=\left(s_{n}, \gamma_{1, n}, \gamma_{2, n}\right)$ for \tilde{c} satisfying the additional conditions $s_{n} \equiv 0$, $\gamma_{1, n}\left(t_{1}, t_{2}\right) \geq 0$ a.e. in \mathbb{R}^{N} for every $\left(t_{1}, t_{2}\right) \in Q, \gamma_{2, n}\left(t_{1}, t_{2}\right) \geq 0$ a.e. in \mathbb{R}^{N} for every $\left(t_{1}, t_{2}\right) \in Q$. Indeed, the first condition comes from the fact that

$$
\begin{aligned}
\tilde{J}\left(\tilde{\gamma}\left(t_{1}, t_{2}\right)\right) & =J\left(s\left(t_{1}, t_{2}\right) \star \gamma_{1}\left(t_{1}, t_{2}\right), s\left(t_{1}, t_{2}\right) \star \gamma_{2}\left(t_{1}, t_{2}\right)\right) \\
& =\tilde{J}\left(0, s\left(t_{1}, t_{2}\right) \star \gamma_{1}\left(t_{1}, t_{2}\right), s\left(t_{1}, t_{2}\right) \star \gamma_{2}\left(t_{1}, t_{2}\right)\right)
\end{aligned}
$$

The remaining ones are a consequence of the fact that $\tilde{J}(s, u, v)=\tilde{J}(s,|u|,|v|)$.
In conclusion, Theorem 3.2 in [15] implies that there exists a Palais-Smale sequence $\left(\tilde{s}_{n}, \tilde{u}_{n}, \tilde{v}_{n}\right)$ for \tilde{J} on $\mathbb{R} \times S_{a_{1}} \times S_{a_{2}}$ at level \tilde{c}, and such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\tilde{s}_{n}\right|+\operatorname{dist}_{H^{1}}\left(\left(\tilde{u}_{n}, \tilde{v}_{n}\right), \tilde{\gamma}_{n}(Q)\right)=0 . \tag{3.13}
\end{equation*}
$$

To obtain a Palais-Smale sequence for J at level c satisfying (3.12), it is possible to argue as in [18, Lemma 2.4] with minor changes. The fact that $u_{n}^{-}, v_{n}^{-} \rightarrow 0$ a.e. in \mathbb{R}^{N} as $n \rightarrow \infty$ comes from (3.13). Finally, the lower estimate for c comes from Lemma 3.4.

To complete the proof of Theorem 1.1, we aim at showing that $\left(u_{n}, v_{n}\right)$ is strongly convergent in $H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ to a limit (u, v). Once this has been achieved the claim follows because

$$
\left.d J\right|_{S_{a_{1}} \times S_{a_{2}}}\left(u_{n}, v_{n}\right) \rightarrow 0 \quad \text { and } \quad\left(u_{n}, v_{n}\right) \in S_{a_{1}} \times S_{a_{2}}
$$

for all n. A first step in this direction is given by the following statement.
Lemma 3.7. The sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$. Furthermore, there exists $\bar{C}>0$ such that

$$
\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2} \geq \bar{C} \quad \text { for all } n
$$

Proof. Using (3.12), we have

$$
J\left(u_{n}, v_{n}\right)=\frac{1}{6}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right)-o(1)
$$

where $o(1) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, the desired results follow from the fact that $J\left(u_{n}, v_{n}\right) \rightarrow c>0$.

By the previous lemma, up to a subsequence $\left(u_{n}, v_{n}\right) \rightarrow(\tilde{u}, \tilde{v})$ weakly in $H^{1}\left(\mathbb{R}^{3}\right)$, strongly in $L^{4}\left(\mathbb{R}^{3}\right)$ (by compactness of the embedding $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{4}\left(\mathbb{R}^{3}\right)$), and a. e. in \mathbb{R}^{3}; in particular, both \tilde{u} and \tilde{v} are nonnegative in \mathbb{R}^{3}; we explicitly remark that we cannot deduce strong convergence in $L^{2}\left(\mathbb{R}^{3}\right)$, so that we cannot conclude that $(\tilde{u}, \tilde{v}) \in S_{a_{1}} \times S_{a_{2}}$. Observe that as a consequence of $\left.d J\right|_{S_{a_{1}} \times S_{a_{2}}}\left(u_{n}, v_{n}\right) \rightarrow 0$ there exist two sequences of real numbers $\left(\lambda_{1, n}\right)$ and $\left(\lambda_{2, n}\right)$ such that

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left(\nabla u_{n} \cdot \nabla \varphi+\nabla v_{n} \cdot \nabla \psi-\right. & \left.\mu_{1} u_{n}^{3} \varphi-\mu_{2} v_{n}^{3} \psi-\beta u_{n} v_{n}\left(u_{n} \psi+v_{n} \varphi\right)\right) \tag{3.14}\\
& -\int_{\mathbb{R}^{3}}\left(\lambda_{1, n} u_{n} \varphi+\lambda_{2, n} \psi\right)=o(1)\|(\varphi, \psi)\|_{H^{1}}
\end{align*}
$$

for every $(\varphi, \psi) \in H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$, with $o(1) \rightarrow 0$ as $n \rightarrow \infty$. For more details we refer to Lemma 2.2 of [5].
Lemma 3.8. Both $\left(\lambda_{1, n}\right)$ and $\left(\lambda_{2, n}\right)$ are bounded sequences, and at least one of them is converging, up to a subsequence, to a strictly negative value.

Proof. The value of the $\left(\lambda_{i, n}\right)$ can be found using $\left(u_{n}, 0\right)$ and $\left(0, v_{n}\right)$ as test functions in (3.14):

$$
\begin{aligned}
& \lambda_{1, n} a_{1}^{2}=\int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}-\mu_{1} u_{n}^{4}-\beta u_{n}^{2} v_{n}^{2}\right)-o(1) \\
& \lambda_{2, n} a_{2}^{2}=\int_{\mathbb{R}^{3}}\left(\left|\nabla v_{n}\right|^{2}-\mu_{2} v_{n}^{4}-\beta u_{n}^{2} v_{n}^{2}\right)-o(1)
\end{aligned}
$$

with $o(1) \rightarrow 0$ as $n \rightarrow \infty$. Hence the boundedness of $\left(\lambda_{i, n}\right)$ follows by the boundedness of $\left(u_{n}, v_{n}\right)$ in H^{1} and in L^{4}. Moreover, by (3.12) and Lemma 3.7

$$
\begin{aligned}
\lambda_{1, n} a_{1}^{2}+\lambda_{2, n} a_{2}^{2} & =\int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}-\mu_{1} u_{n}^{4}-\mu_{2} v_{n}^{4}-2 \beta u_{n}^{2} v_{n}^{2}\right)-o(1) \\
& =-\frac{1}{3} \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right)+o(1) \leq-\frac{\bar{C}}{6}
\end{aligned}
$$

for every n sufficiently large, so that at least one sequence of $\left(\lambda_{i, n}\right)$ is negative and bounded away from 0 .

From now on, we consider converging subsequences $\lambda_{1, n} \rightarrow \lambda_{1} \in \mathbb{R}$ and $\lambda_{2, n} \rightarrow$ $\lambda_{2} \in \mathbb{R}$. The sign of the limit values plays an essential role in our argument, as clarified by the next statement.

Lemma 3.9. If $\lambda_{1}<0$ (resp. $\lambda_{2}<0$) then $u_{n} \rightarrow \bar{u}$ (resp. $v_{n} \rightarrow \bar{v}$) strongly in $H^{1}\left(\mathbb{R}^{3}\right)$.

Proof. Let us suppose that $\lambda_{1}<0$. By weak convergence in $H^{1}\left(\mathbb{R}^{3}\right)$, strong convergence in $L^{4}\left(\mathbb{R}^{3}\right)$, and using (3.14), we have

$$
\begin{aligned}
o(1) & =\left(d J\left(u_{n}, v_{n}\right)-d J(\tilde{u}, \tilde{v})\right)\left[\left(u_{n}-\tilde{u}, 0\right)\right]-\lambda_{1} \int_{\mathbb{R}^{3}}\left(u_{n}-\tilde{u}\right)^{2} \\
& =\int_{\mathbb{R}^{3}}\left|\nabla\left(u_{n}-\tilde{u}\right)\right|^{2}-\lambda_{1}\left(u_{n}-\tilde{u}\right)^{2}+o(1),
\end{aligned}
$$

with $o(1) \rightarrow 0$ as $n \rightarrow \infty$. Since $\lambda_{1}<0$, this is equivalent to the strong convergence in H^{1}. The proof in the case $\lambda_{2}<0$ is similar.

Remark 3.10. It is important to observe that Lemmas 3.7-3.9 do not depend on the value of β. This implies that we can use them in the proof of Theorem 1.2.
Conclusion of the proof of Theorem 1.1. By (3.14), the convergence of $\left(\lambda_{1, n}\right)$ and $\left(\lambda_{2, n}\right)$, and the weak convergence $\left(u_{n}, v_{n}\right) \rightharpoonup(\tilde{u}, \tilde{v})$, we have that (\tilde{u}, \tilde{v}) is a solution of (1.1). It remains to prove that it satisfies (1.2). Without loss of generality, by Lemma 3.8 we can suppose that $\lambda_{1}<0$, and hence (see Lemma 3.9) $u_{n} \rightarrow \tilde{u}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$. If $\lambda_{2}<0$, we can infer in the same way that $v_{n} \rightarrow \tilde{v}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$, which completes the proof. Now we argue by contradiction and assume that $\lambda_{2} \geq 0$ and $v_{n} \nrightarrow \tilde{v}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$. Notice that, by regularity, any weak solution of (1.1) is smooth. Since both $\tilde{u}, \tilde{v} \geq 0$ in \mathbb{R}^{N}, we have that

$$
-\Delta \tilde{v}=\lambda_{2} \tilde{v}+\mu_{2} \tilde{v}^{3}+\beta \tilde{u}^{2} \tilde{v} \geq 0 \quad \text { in } \mathbb{R}^{3}
$$

and hence we can apply Lemma A. 2 in [17], deducing that $\tilde{v} \equiv 0$. In particular, this implies that \tilde{u} solves

$$
\begin{cases}-\Delta \tilde{u}-\lambda_{1} \tilde{u}=\mu_{1} \tilde{u}^{3} & \text { in } \mathbb{R}^{3} \tag{3.15}\\ \tilde{u}>0 & \text { in } \mathbb{R}^{3} \\ \int_{\mathbb{R}^{3}} \tilde{u}^{2}=a_{1}, & \end{cases}
$$

so that $\tilde{u} \in \mathcal{P}\left(a_{1}, \mu_{1}\right)$ and $I_{\mu_{1}}(\tilde{u})=\ell\left(a_{1}, \mu_{1}\right)$ (recall (2.5) and Proposition 2.2). But then, using (3.12) and $\tilde{u} \in \mathcal{P}\left(a_{1}, \mu_{1}\right)$, we obtain

$$
\begin{align*}
c & =\lim _{n \rightarrow \infty} J\left(u_{n}, v_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{8} \int_{\mathbb{R}^{3}}\left(\mu_{1} u_{n}^{4}+2 \beta u_{n}^{2} v_{n}^{2}+\mu_{2} v_{n}^{4}\right) \\
& =\frac{\mu_{1}}{8} \int_{\mathbb{R}^{3}} \tilde{u}^{4}=I_{\mu_{1}}(\tilde{u})=\ell\left(a_{1}, \mu_{1}\right), \tag{3.16}
\end{align*}
$$

in contradiction with Lemma 3.6.
Remark 3.11. In the conclusion of the proof of Theorem 1.1 we used the uniqueness, up to translation, of the positive solution to (3.15) to deduce that, being \tilde{u} a positive solution of (3.15), its level $I_{\mu_{1}}\left(\tilde{u}_{1}\right)$ is equal to $\ell\left(a_{1}, \mu_{1}\right)$. Such a uniqueness result is known for systems as (1.1) only if β is very small (see [16]). This is what prevents us to extend Theorem 1.1 to systems with several components without requiring the coupling parameters to be very small. In particular, we observe that
the minimax construction can be extended to systems with an arbitrary number of components with some extra work.

4. Proof of Theorem 1.2

This section is divided into two parts. In the first one, we show the existence of a positive solution (\bar{u}, \bar{v}), in the second one we characterize it as a ground state, in the sense that

$$
\begin{aligned}
J(\bar{u}, \bar{v}) & =\inf \{J(u, v):(u, v) \in V\} \\
& =\inf \left\{J(u, v):(u, v) \text { is a solution of }(1.1)-(1.2) \text { for some } \lambda_{1}, \lambda_{2}\right\}
\end{aligned}
$$

The proof of Theorem 1.2 is based upon a mountain pass argument, and, compared with the proof of Theorem 1.1, it is closer to the proof of the existence of normalized solutions for the single equation. We shall often consider, for $(u, v) \in$ $S_{a_{1}} \times S_{a_{2}}$, the function

$$
J(s \star(u, v))=\frac{e^{2 s}}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\nabla v|^{2}\right)-\frac{e^{3 s}}{4} \int_{\mathbb{R}^{3}}\left(\mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}\right),
$$

where $s \star(u, v)=(s \star u, s \star v)$ for short, and $s \star u$ is defined in (3.2). Recall that if $(u, v) \in S_{a_{1}} \times S_{a_{2}}$, then also $s \star(u, v) \in S_{a_{1}} \times S_{a_{2}}$. As an immediate consequence of the definition, the following holds:

Lemma 4.1. Let $(u, v) \in S_{a_{1}} \times S_{a_{2}}$. Then
$\lim _{s \rightarrow-\infty} \int_{\mathbb{R}^{3}}|\nabla(s \star u)|^{2}+|\nabla(s \star v)|^{2}=0, \quad \lim _{s \rightarrow+\infty} \int_{\mathbb{R}^{3}}|\nabla(s \star u)|^{2}+|\nabla(s \star v)|^{2}=+\infty$,
and

$$
\lim _{s \rightarrow-\infty} J(s \star(u, v))=0^{+}, \quad \lim _{s \rightarrow-\infty} J(s \star(u, v))=-\infty .
$$

The next lemma enlighten the mountain pass structure of the problem.
Lemma 4.2. There exists $K>0$ sufficiently small such that for the sets

$$
A:=\left\{(u, v) \in S_{a_{1}} \times S_{a_{2}}: \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2} \leq K\right\}
$$

and

$$
B:=\left\{(u, v) \in S_{a_{1}} \times S_{a_{2}}: \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}=2 K\right\}
$$

there holds

$$
J(u, v)>0 \text { on } A \quad \text { and } \quad \sup _{A} J<\inf _{B} J
$$

Proof. By the Gagliardo-Nirenberg inequality (2.9)

$$
\int_{\mathbb{R}^{3}}\left(\mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}\right) \leq C \int_{\mathbb{R}^{3}}\left(u^{4}+v^{4}\right) \leq C\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}\right)^{3 / 2}
$$

for every $(u, v) \in S_{a_{1}} \times S_{a_{2}}$, where $C>0$ depends on $\mu_{1}, \mu_{2}, \beta, a_{1}, a_{2}>0$ but not on the particular choice of (u, v). Now, if $\left(u_{1}, v_{1}\right) \in B$ and $\left(u_{2}, v_{2}\right) \in A$ (with K to
be determined), we have

$$
\begin{aligned}
J\left(u_{1}, v_{1}\right)-J\left(u_{2}, v_{2}\right) \geq & \frac{1}{2}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{1}\right|^{2}+\left|\nabla v_{1}\right|^{2}-\int_{\mathbb{R}^{3}}\left|\nabla u_{2}\right|^{2}+\left|\nabla v_{2}\right|^{2}\right) \\
& -\frac{1}{4} \int_{\mathbb{R}^{3}}\left(\mu_{1} u_{1}^{4}+2 \beta u_{1}^{2} v_{1}^{2}+\mu_{2} v_{1}^{4}\right) \\
\geq & \frac{K}{2}-\frac{C}{4}(2 K)^{3 / 2} \geq \frac{K}{4}
\end{aligned}
$$

provided $K>0$ is sufficiently small. Furthermore, making K smaller if necessary, we have also

$$
\begin{equation*}
J\left(u_{2}, v_{2}\right) \geq \frac{1}{2}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{2}\right|^{2}+\left|\nabla v_{2}\right|^{2}\right)-\frac{C}{4}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{2}\right|^{2}+\left|\nabla v_{2}\right|^{2}\right)^{3 / 2}>0 \tag{4.1}
\end{equation*}
$$

for every $\left(u_{2}, v_{2}\right) \in A$.
In order to introduce a suitable minimax class, we recall that $w_{a, \mu}$ denotes the unique positive radial solution of (2.3) with mass a and reaction parameter μ, see Proposition 2.2. Now we define

$$
\begin{equation*}
C:=\left\{(u, v) \in S_{a_{1}} \times S_{a_{2}}: \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2} \geq 3 K \text { and } J(u, v) \leq 0\right\} . \tag{4.2}
\end{equation*}
$$

It is clear by Lemma 4.1 that there exist $s_{1}<0$ and $s_{2}>0$ such that

$$
\begin{aligned}
& s_{1} \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, w_{a_{2}, C_{0} / a_{2}^{2}}\right)=:\left(\bar{u}_{1}, \bar{v}_{1}\right) \in A \\
& s_{2} \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, w_{a_{2}, C_{0} / a_{2}^{2}}\right)=:\left(\bar{u}_{2}, \bar{v}_{2}\right) \in C .
\end{aligned}
$$

Finally we define

$$
\begin{equation*}
\Gamma:=\left\{\gamma \in \mathcal{C}\left([0,1], S_{a_{1}} \times S_{a_{2}}\right): \gamma(0)=\left(\bar{u}_{1}, \bar{v}_{1}\right) \text { and } \gamma(1)=\left(\bar{u}_{2}, \bar{v}_{2}\right)\right\} . \tag{4.3}
\end{equation*}
$$

By Lemma 4.2 and by the continuity of the L^{2}-norm of the gradient in the topology of H^{1}, it follows that the mountain pass lemma is applicable for J on the minimax class Γ. Arguing as in Lemma 3.6, we deduce the following:

Lemma 4.3. There exists a Palais-Smale sequence $\left(u_{n}, v_{n}\right)$ for J on $S_{a_{1}} \times S_{a_{2}}$ at the level

$$
d:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)),
$$

satisfying the additional condition (3.12):

$$
\int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right)-\frac{3}{4}\left(\int_{\mathbb{R}^{3}} \mu_{1} u_{n}^{4}+\mu_{2} v_{n}^{4}+2 \beta u_{n}^{2} v_{n}^{2}\right)=o(1),
$$

with $o(1) \rightarrow 0$ as $n \rightarrow \infty$. Furthermore, $u_{n}^{-}, v_{n}^{-} \rightarrow 0$ a.e. in \mathbb{R}^{3} as $n \rightarrow \infty$.
As in the previous section, the last part of the proof consists in showing that $\left(u_{n}, v_{n}\right) \rightarrow(\bar{u}, \bar{v})$ in $H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$, and (\bar{u}, \bar{v}) is a solution of (1.1)-(1.2). This can be done similarly to the case $\beta>0$ small, recalling also Remark 3.10. Firstly, thanks to (3.12), up to a subsequence $\left(u_{n}, v_{n}\right) \rightarrow(\bar{u}, \bar{v})$ weakly in $H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$, strongly in $L^{4}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$, a. e. in \mathbb{R}^{3}. By weak convergence and by Lemma $3.8,(u, v)$ is a solution of (1.1) for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Moreover, we can also suppose that one of these parameters, say λ_{1}, is strictly negative. Thus, Lemma 3.9 implies that $u_{n} \rightarrow \bar{u}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$. If by contradiction $v_{n} \nrightarrow \bar{v}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$, then $\lambda_{2} \geq 0$, and by Lemma A. 2 in [17] we deduce that $\bar{v} \equiv 0$. As in (3.16),
this implies that $d=\ell\left(a_{1}, \mu_{1}\right)$ (defined in Proposition 2.2), and it remains to show that this gives a contradiction. To this purpose, we recall the definition of $\beta_{2}=\beta_{2}\left(a_{1}, a_{2}, \mu_{1}, \mu_{2}\right)>0$, see (1.9).
Lemma 4.4. If $\beta>\beta_{2}$, then

$$
\sup _{s \in \mathbb{R}} J\left(s \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, w_{a_{2}, C_{0} / a_{2}^{2}}\right)\right)<\min \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\} .
$$

Proof. Using the explicit expression of $w_{a_{i}, C_{0} / a_{i}^{2}}$ and the definition of C_{1}, for which we refer to Proposition 2.2 and (2.2), we can compute

$$
\begin{align*}
\int_{\mathbb{R}^{3}}(s & \left.\star w_{a_{1}, C_{0} / a_{1}^{2}}\right)^{2}\left(s \star w_{a_{2}, C_{0} / a_{2}^{2}}\right)^{2} \\
& =\int_{\mathbb{R}^{3}} e^{6 s}\left(\frac{a_{1}}{C_{0}^{1 / 2}} w_{0}\left(e^{s} x\right)\right)^{2}\left(\frac{a_{2}}{C_{0}^{1 / 2}} w_{0}\left(e^{s} x\right)\right)^{2} d x \tag{4.4}\\
& =e^{3 s} \frac{a_{1}^{2} a_{2}^{2}}{C_{0}^{2}} \int_{\mathbb{R}^{3}} w_{0}^{4}=e^{3 s} \frac{C_{1} a_{1}^{2} a_{2}^{2}}{C_{0}^{2}}
\end{align*}
$$

Using again Proposition 2.2, we can explicitly compute the maximum in s of the function

$$
\begin{aligned}
J\left(s \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, w_{a_{2}, C_{0} / a_{2}^{2}}\right)\right)=\frac{3 e^{2 s}}{8} & \left(\frac{C_{1} a_{1}^{2}}{C_{0}}+\frac{C_{1} a_{2}^{2}}{C_{0}}\right) \\
& -\frac{e^{3 s}}{4}\left(\frac{\mu_{1} C_{1} a_{1}^{4}}{C_{0}^{2}}+\frac{\mu_{2} C_{1} a_{2}^{4}}{C_{0}^{2}}+2 \frac{\beta C_{1} a_{1}^{2} a_{2}^{2}}{C_{0}^{2}}\right) .
\end{aligned}
$$

This maximum is given by

$$
\max _{s \in \mathbb{R}} J\left(s \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, w_{a_{2}, C_{0} / a_{2}^{2}}\right)\right)=\frac{C_{1} C_{0}\left(a_{1}^{2}+a_{2}^{2}\right)^{3}}{8\left(\mu_{1} a_{1}^{4}+\mu_{2} a_{2}^{4}+2 \beta a_{1}^{2} a_{2}^{2}\right)^{2}} .
$$

Recalling the definitions of $\beta_{2}, \ell\left(a_{1}, \mu_{1}\right)$ and $\ell\left(a_{2}, \mu_{2}\right)$, the lemma is then a consequence of the assumption $\beta>\beta_{2}$.

Existence of a positive solution at level d. In our proof by contradiction, we are supposing that $v_{n} \nrightarrow \bar{v}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$, and we have observed that then $\bar{v} \equiv 0$ and $d=\ell\left(a_{1}, \mu_{1}\right)$. Let us consider the path

$$
\gamma(t):=\left(\left((1-t) s_{1}+t s_{2}\right) \star\left(w_{a_{1}, \mu_{1}}, w_{a_{2}, \mu_{2}}\right)\right)
$$

Clearly, $\gamma \in \Gamma$, so that by Lemma 4.4

$$
d \leq \sup _{t \in[0,1]} J(\gamma(t)) \leq \sup _{s \in \mathbb{R}} J\left(s \star\left(w_{a_{1}, \mu_{1}}, w_{a_{2}, \mu_{2}}\right)\right)<\ell\left(a_{1}, \mu_{1}\right),
$$

a contradiction.
Variational characterization for (\bar{u}, \bar{v}). In what follows we shall prove that

$$
\begin{aligned}
J(\bar{u}, \bar{v}) & =\inf \{J(u, v):(u, v) \in V\}=\inf _{(u, v) \in T_{a_{1}} \times T_{a_{2}}} \mathcal{R}(u, v) \\
& =\inf \left\{J(u, v):(u, v) \text { is a solution of }(1.1)-(1.2) \text { for some } \lambda_{1}, \lambda_{2}\right\}
\end{aligned}
$$

where V and \mathcal{R} have been defined in (1.7) and (1.8), respectively. We also recall the definitions of A, see Lemma 4.2, and of C, see (4.2). Let

$$
A^{+}:=\left\{(u, v) \in A: u, v \geq 0 \text { a.e. in } \mathbb{R}^{3}\right\}
$$

and

$$
C^{+}:=\left\{(u, v) \in C: u, v \geq 0 \text { a.e. in } \mathbb{R}^{3}\right\}
$$

For any $\left(u_{1}, v_{1}\right) \in A^{+}$and $\left(u_{2}, v_{2}\right) \in C^{+}$, let
$\Gamma\left(u_{1}, v_{1}, u_{2}, v_{2}\right):=\left\{\gamma \in \mathcal{C}\left([0,1], S_{a_{1}} \times S_{a_{2}}\right): \gamma(0)=\left(u_{1}, v_{1}\right)\right.$ and $\left.\gamma(1)=\left(u_{2}, v_{2}\right)\right\}$.
Lemma 4.5. The sets A^{+}and C^{+}are connected by arcs, so that

$$
\begin{equation*}
d=\inf _{\gamma \in \Gamma\left(u_{1}, v_{1}, u_{2}, v_{2}\right)} \max _{t \in[0,1]} J(\gamma(t)) \tag{4.5}
\end{equation*}
$$

for every $\left(u_{1}, v_{1}\right) \in A^{+}$and $\left(u_{2}, v_{2}\right) \in C^{+}$.
Proof. The proof is similar to the one of Lemma 2.8 in [18]. Equality (4.5) follows easily once we show that A^{+}and C^{+}are connected by arcs (recall the definition of Γ, see (4.3), and also that $\bar{u}_{1}, \bar{v}_{1}, \bar{u}_{2}, \bar{v}_{2} \geq 0$ in $\left.\mathbb{R}^{N}\right)$.

Let $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in S_{a_{1}} \times S_{a_{2}}$ be nonnegative functions such that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left|\nabla u_{1}\right|^{2}+\left|\nabla v_{1}\right|^{2} d x=\int_{\mathbb{R}^{3}}\left|\nabla u_{2}\right|^{2}+\left|\nabla v_{2}\right|^{2} d x=\alpha^{2} \tag{4.6}
\end{equation*}
$$

for some $\alpha>0$. We define, for $s \in \mathbb{R}$ and $t \in[0, \pi / 2]$,

$$
h(s, t)(x):=\left(\cos t\left(s \star u_{1}\right)(x)+\sin t\left(s \star u_{2}\right)(x), \cos t\left(s \star v_{1}\right)(x)+\sin t\left(s \star v_{2}\right)(x)\right) .
$$

Although h depends on $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}), we will not stress such dependence in order to simplify the notation. Setting $h=\left(h_{1}, h_{2}\right)$, we have that $h_{1}(s, t), h_{2}(s, t) \geq$ 0 a.e. in \mathbb{R}^{N}, and by direct computations it is not difficult to check that

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} h_{1}^{2}(s, t) & =a_{1}^{2}+\sin (2 t) \int_{\mathbb{R}^{3}} u_{1} u_{2} \\
\int_{\mathbb{R}^{3}} h_{2}^{2}(s, t) & =a_{2}^{2}+\sin (2 t) \int_{\mathbb{R}^{3}} v_{1} v_{2} \\
\int_{\mathbb{R}^{3}}\left|\nabla h_{1}(s, t)\right|+\left|\nabla h_{2}(s, t)\right|^{2} & =e^{2 s}\left(\alpha^{2}+\sin (2 t) \int_{\mathbb{R}^{3}} \nabla u_{1} \cdot \nabla u_{2}+\nabla v_{1} \cdot \nabla v_{2}\right)
\end{aligned}
$$

for all $(s, t) \in \mathbb{R} \times[0, \pi / 2]$. From these expressions, and recalling (4.6) and the fact that $u_{1}, v_{1}, u_{2}, v_{2} \geq 0$ a. e. in \mathbb{R}^{N}, it is possible to deduce that there exists $C>0$ (depending on $\left(u_{1}, v_{1}\right)$ and $\left.\left(u_{2}, v_{2}\right)\right)$ such that

$$
\begin{array}{r}
C e^{2 s} \leq \int_{\mathbb{R}^{3}}\left|\nabla h_{1}(s, t)\right|^{2}+\left|\nabla h_{2}(s, t)\right|^{2} \leq 2 \alpha^{2} e^{2 s} \\
a_{1}^{2} \leq \int_{\mathbb{R}^{3}} h_{1}^{2}(s, t) \leq 2 a_{1}^{2} \quad \text { and } \quad a_{2}^{2} \leq \int_{\mathbb{R}^{3}} h_{2}^{2}(s, t) \leq 2 a_{2}^{2}
\end{array}
$$

Thus, we can define for $(s, t) \in \mathbb{R} \times[0, \pi / 2]$ the function

$$
\hat{h}(s, t)(x):=\left(a_{1} \frac{h_{1}(s, t)}{\left\|h_{1}(s, t)\right\|_{L^{2}}}, a_{2} \frac{h_{2}(s, t)}{\left\|h_{2}(s, t)\right\|_{L^{2}}}\right) .
$$

Notice that $\hat{h}(s, t) \in S_{a_{1}} \times S_{a_{2}}$ for every (s, t). It results

$$
\begin{equation*}
\frac{\min \left\{a_{1}^{2}, a_{2}^{2}\right\} C e^{2 s}}{2 \max \left\{a_{1}^{2}, a_{2}^{2}\right\}} \leq \int_{\mathbb{R}^{3}}\left|\nabla \hat{h}_{1}(s, t)\right|^{2}+\left|\nabla \hat{h}_{2}(s, t)\right|^{2} \leq \frac{2 \alpha^{2} e^{2 s} \max \left\{a_{1}^{2}, a_{2}^{2}\right\}}{\min \left\{a_{1}^{2}, a_{2}^{2}\right\}} \tag{4.7}
\end{equation*}
$$

Furthermore, using again (4.6) (and replacing if necessary C with a smaller quantity), it is possible to check that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \hat{h}_{1}^{4}(s, t) \geq C e^{3 s} \quad \text { and } \quad \int_{\mathbb{R}^{3}} \hat{h}_{2}^{4}(s, t) \geq C e^{3 s} \tag{4.8}
\end{equation*}
$$

for all $(s, t) \in \mathbb{R} \times[0, \pi / 2]$.
These estimates permits to prove the desired result. Let $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in A^{+}$, and let \hat{h} de defined as in the previous discussion. By (4.7) there exists $s_{0}>0$ such that

$$
\int_{\mathbb{R}^{3}}\left|\nabla \hat{h}_{1}\left(-s_{0}, t\right)\right|^{2}+\left|\nabla \hat{h}_{2}\left(-s_{0}, t\right)\right|^{2} \leq K \quad \text { for all } t \in\left[0, \frac{\pi}{2}\right]
$$

where K has been defined in Lemma 4.2. For this choice of s_{0}, let

$$
\sigma_{1}(r):= \begin{cases}-r \star\left(u_{1}, v_{1}\right)=\hat{h}(-r, 0) & 0 \leq r \leq s_{0} \\ \hat{h}\left(-s_{0}, r-s_{0}\right) & s_{0}<r \leq s_{0}+\frac{\pi}{2} \\ \left(r-2 s_{0}-\frac{\pi}{2}\right) \star\left(u_{2}, v_{2}\right)=\hat{h}\left(r-2 s_{0}-\frac{\pi}{2}, \frac{\pi}{2}\right) & s_{0}+\frac{\pi}{2}<r \leq 2 s_{0}+\frac{\pi}{2}\end{cases}
$$

It is not difficult to check that σ is a continuous path connecting $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ and lying in A^{+}. To conclude that A^{+}is connected by arcs, it remains to analyse the cases when condition (4.6) is not satisfied. Suppose for instance

$$
\int_{\mathbb{R}^{3}}\left|\nabla u_{1}\right|^{2}+\left|\nabla v_{1}\right|^{2}>\int_{\mathbb{R}^{3}}\left|\nabla u_{2}\right|^{2}+\left|\nabla v_{2}\right|^{2}
$$

Then, by Lemma 4.1, there exists $s_{1}<0$ such that

$$
\int_{\mathbb{R}^{3}}\left|\nabla\left(s_{1} \star u_{1}\right)\right|^{2}+\left|\nabla\left(s_{1} \star v_{1}\right)\right|^{2}=\int_{\mathbb{R}^{3}}\left|\nabla u_{2}\right|^{2}+\left|\nabla v_{2}\right|^{2} .
$$

Therefore, to connect $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ by a path in A^{+}we can at first connect $\left(u_{1}, v_{1}\right)$ with $s_{1} \star\left(u_{1}, v_{1}\right)$, and then connect this point with $\left(u_{2}, v_{2}\right)$.

In order to prove that also C^{+}is connected by arcs, let us fix $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in$ C^{+}, and suppose that (4.6) holds (as before, we can always reduce to this case). By (4.7) and (4.8), there exists $s_{0}>0$ such that

$$
\int_{\mathbb{R}^{3}}\left|\nabla \hat{h}_{1}\left(s_{0}, t\right)\right|^{2}+\left|\nabla \hat{h}_{2}\left(s_{0}, t\right)\right|^{2} \geq 3 K \quad \text { and } \quad J\left(\hat{h}\left(s_{0}, t\right)\right) \leq 0
$$

for all $t \in[0, \pi / 2]$. For this choice of s_{0}, we set

$$
\sigma_{2}(r):= \begin{cases}r \star\left(u_{1}, v_{1}\right)=\hat{h}(r, 0) & 0 \leq r \leq s_{0} \\ \hat{h}\left(s_{0}, r-s_{0}\right) & s_{0}<r \leq s_{0}+\frac{\pi}{2} \\ \left(2 s_{0}+\frac{\pi}{2}-r\right) \star\left(u_{2}, v_{2}\right)=\hat{h}\left(2 s_{0}+\frac{\pi}{2}-r, \frac{\pi}{2}\right) & s_{0}+\frac{\pi}{2}<r \leq 2 s_{0}+\frac{\pi}{2}\end{cases}
$$

which is the desired continuous path connecting $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ in C^{+}.
As we shall see, the previous lemma will be the key in proving the variational characterization of (\bar{u}, \bar{v}). Let us recall the set

$$
V:=\left\{(u, v) \in T_{a_{1}} \times T_{a_{2}}: G(u, v)=0\right\}
$$

from (1.7), and its radial subset

$$
\begin{equation*}
V_{\mathrm{rad}}:=\left\{(u, v) \in S_{a_{1}} \times S_{a_{2}}: G(u, v)=0\right\} \tag{4.9}
\end{equation*}
$$

where

$$
G(u, v)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\nabla v|^{2}\right)-\frac{3}{4} \int_{\mathbb{R}^{3}}\left(\mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}\right) .
$$

Lemma 4.6. If (u, v) is a solution of (1.1)-(1.2) for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, then $(u, v) \in$ V.

Proof. The Pohozaev identity for system (1.1) reads

$$
\begin{equation*}
\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}=\int_{\mathbb{R}^{3}} \frac{3}{2}\left(\lambda_{1} u^{2}+\lambda_{2} v^{2}\right)+\frac{3}{4}\left(\mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}\right) \tag{4.10}
\end{equation*}
$$

On the other hand, testing (1.1) with (u, v), we find

$$
\begin{aligned}
& \lambda_{1} \int_{\mathbb{R}^{3}} u^{2}=\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}}\left(\mu_{1} u^{4}+\beta u^{2} v^{2}\right) \\
& \lambda_{2} \int_{\mathbb{R}^{3}} v^{2}=\int_{\mathbb{R}^{3}}|\nabla v|^{2}-\int_{\mathbb{R}^{3}}\left(\beta u^{2} v^{2}+\mu_{2} v^{4}\right)
\end{aligned}
$$

which substituted into (4.10) give the desired result.
For $(u, v) \in T_{a_{1}} \times T_{a_{2}}$, let us set

$$
\Psi_{(u, v)}(s):=J(s \star(u, v))
$$

where as before $s \star(u, v)=(s \star u, s \star v)$ for short, and $s \star u$ is defined in (3.2).
It is not difficult to check that V, V_{rad} are not empty. Actually, directly from the definition, one has much more.

Lemma 4.7. For every $(u, v) \in T_{a_{1}} \times T_{a_{2}}$, there exists a unique $s_{(u, v)} \in \mathbb{R}$ such that $s_{(u, v)} \star(u, v) \in V$. Moreover, $s_{(u, v)}$ is the unique critical point of $\Psi_{(u, v)}$, which is a strict maximum.

Lemma 4.8. There holds $\inf _{V} J=\inf _{V_{\text {rad }}} J$.
Proof. In order to prove the lemma we assume by contradiction that there exists $(u, v) \in V$ such that

$$
\begin{equation*}
0<J(u, v)<\inf _{V_{\text {rad }}} J \tag{4.11}
\end{equation*}
$$

For $u \in H^{1}\left(\mathbb{R}^{3}\right)$ let u^{*} denotes its Schwarz spherical rearrangement. By the properties of Schwarz symmetrization we have that $J\left(u^{*}, v^{*}\right) \leq J(u, v)$ and $G\left(u^{*}, v^{*}\right) \leq$ $G(u, v)=0$. Thus there exists $s_{0} \leq 0$ such that $G\left(s_{0} \star\left(u^{*}, v^{*}\right)\right)=0$. We claim that

$$
J\left(s_{0} \star\left(u^{*}, v^{*}\right)\right) \leq e^{2 s_{0}} J\left(u^{*}, v^{*}\right)
$$

Indeed using that $G\left(s_{0} \star\left(u^{*}, v^{*}\right)\right)=G(u, v)=0$ we have

$$
\begin{align*}
J\left(s_{0} \star\left(u^{*}, v^{*}\right)\right) & =\frac{e^{2 s_{0}}}{6} \int_{\mathbb{R}^{3}}\left|\nabla u^{*}\right|^{2}+\left|\nabla v^{*}\right|^{2} \tag{4.12}\\
& \leq \frac{e^{2 s_{0}}}{6} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}=e^{2 s_{0}} J(u, v)
\end{align*}
$$

Thus

$$
0<J(u, v)<\inf _{V_{\mathrm{rad}}} J \leq J\left(s_{0} \star\left(u^{*}, v^{*}\right)\right) \leq e^{2 s_{0}} J(u, v)
$$

which contradicts $s_{0} \leq 0$.
Conclusion of the proof of Theorem 1.2. Recalling that any solution of (1.1)-(1.2) stays in V, if we have

$$
\begin{equation*}
J(\bar{u}, \bar{v})=d \leq \inf \left\{J(u, v):(u, v) \in V_{\mathrm{rad}}\right\} \tag{4.13}
\end{equation*}
$$

the equality $J(\bar{u}, \bar{v})=\inf _{V} J$ follows in view of Lemma 4.8. In order to prove (4.13) we choose an arbitrary $(u, v) \in V_{\text {rad }}$ and show that $J(u, v) \geq d$. At first, since $(u, v) \in V_{\text {rad }}$ implies $(|u|,|v|) \in V_{\text {rad }}$ and $J(u, v)=J(|u|,|v|)$, it is not restrictive to
suppose that $u, v \geq 0$ a.e. in \mathbb{R}^{3}. Let us consider the function $\Psi_{(u, v)}$. By Lemma 4.1 there exists $s_{0} \gg 1$ such that $\left(-s_{0}\right) \star(u, v) \in A^{+}$and $s_{0} \star(u, v) \in C^{+}$. Therefore, the continuous path

$$
\gamma(t):=\left((2 t-1) s_{0}\right) \star(u, v) \quad t \in[0,1]
$$

connects A^{+}with C^{+}, and by Lemmas 4.5 and 4.7 we infer that

$$
d \leq \max _{t \in[0,1]} J(\gamma(t))=J(u, v)
$$

Since this holds for all the elements in $V_{\text {rad }}$, inequality (4.13) follows. It remains to prove that

$$
\begin{equation*}
\inf _{V} J=\inf _{T_{a_{1}} \times T_{a_{2}}} \mathcal{R} \tag{4.14}
\end{equation*}
$$

If $(u, v) \in V$, then

$$
\frac{4 \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}}{3 \int_{\mathbb{R}^{3}} \mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}}=1 \quad \text { and } \quad J(u, v)=\frac{1}{6} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}
$$

Therefore

$$
J(u, v)=\frac{1}{6} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) \cdot\left(\frac{4 \int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla v|^{2}}{3 \int_{\mathbb{R}^{3}} \mu_{1} u^{4}+2 \beta u^{2} v^{2}+\mu_{2} v^{4}}\right)^{2}=\mathcal{R}(u, v),
$$

which proves that $\inf _{V} J \geq \inf _{T_{a_{1}} \times T_{a_{2}}} \mathcal{R}$. On the other hand, it is easy to check that

$$
\mathcal{R}(s \star(u, v))=\mathcal{R}(u, v) \quad \text { for all } s \in \mathbb{R},(u, v) \in T_{a} \times T_{a_{2}}
$$

By Lemma 4.7, we conclude that

$$
\mathcal{R}(u, v)=\mathcal{R}\left(s_{(u, v)} \star(u, v)\right)=J\left(s_{(u, v)} \star(u, v)\right) \geq \inf _{V} J
$$

for every $(u, v) \in T_{a_{1}} \times T_{a_{2}}$.

5. Systems with many components

In this section we prove Theorem 1.5. The problem under investigation is (1.11)(1.12): we search for solutions to

$$
\left\{\begin{array}{l}
-\Delta u_{i}-\lambda_{i} u_{i}=\sum_{j=1}^{k} \beta_{i j} u_{j}^{2} u_{i} \quad \text { in } \mathbb{R}^{3} \\
u_{i} \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array} \quad i=1, \ldots, k,\right.
$$

satisfying

$$
\int_{\mathbb{R}^{3}} u_{i}^{2}=a_{i}^{2} \quad i=1, \ldots, k .
$$

Dealing with multi-components systems, we adopt the notation $\mathbf{u}:=\left(u_{1}, \ldots, u_{k}\right)$. The first part of the proof is similar to the one of Theorem 1.2, therefore, we only sketch it. For $\mathbf{u} \in S_{a_{1}} \times \cdots \times S_{a_{k}}$ (recall definition (3.1)) and $s \in \mathbb{R}$, we consider

$$
J(s \star \mathbf{u})=\frac{e^{2 s}}{2} \int_{\mathbb{R}^{3}} \sum_{i}\left|\nabla u_{i}\right|^{2}-\frac{e^{3 s}}{4} \int_{\mathbb{R}^{3}} \sum_{i, j} \beta_{i j} u_{i}^{2} u_{j}^{2} .
$$

It is not difficult to extend Lemma 4.2 for $k>2$, proving the following:

Lemma 5.1. There exists $K>0$ small enough such that

$$
\sup _{A} J<\inf _{B} J \quad \text { and } \quad J(\mathbf{u})>0 \quad \forall \mathbf{u} \in A,
$$

where

$$
A:=\left\{\mathbf{u} \in S_{a_{1}} \times S_{a_{k}}: \int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2} \leq K\right\}
$$

and

$$
B:=\left\{\mathbf{u} \in S_{a_{1}} \times S_{a_{k}}: \int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}=2 K\right\} .
$$

We also introduce the set

$$
\begin{equation*}
C:=\left\{\mathbf{u} \in S_{a_{1}} \times \cdots \times S_{a_{k}}: \int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2} \geq 3 K \text { and } J(\mathbf{u}) \leq 0\right\} \tag{5.1}
\end{equation*}
$$

and we recall the definition of $w_{a, \mu}$, given in Proposition 2.2. Let

$$
\hat{\mathbf{u}}:=\left(w_{a_{1}, C_{0} / a_{1}^{2}}, \ldots, w_{a_{k}, C_{0} / a_{k}^{2}}\right)
$$

It is clear that there exist $s_{1}<0$ and $s_{2}>0$ such that $s_{1} \star \hat{\mathbf{u}} \in A$ and $s_{2} \star \hat{\mathbf{u}} \in C$. Setting

$$
\Gamma:=\left\{\gamma \in \mathcal{C}\left([0,1], S_{a_{1}} \times \cdots \times S_{a_{k}}\right): \gamma(0)=s_{1} \star \hat{\mathbf{u}}, \gamma(1)=s_{2} \star \hat{\mathbf{u}}\right\}
$$

by Lemma 5.1, it is possible to argue as in Lemma 4.3, showing that there exists a Palais-Smale sequence $\left(\mathbf{u}_{n}\right)$ for J at level

$$
d:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)),
$$

satisfying the additional condition

$$
\begin{equation*}
G(\mathbf{u})=\int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}-\frac{3}{4} \int_{\mathbb{R}^{3}} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2}=o(1), \tag{5.2}
\end{equation*}
$$

with $o(1) \rightarrow 0$ as $n \rightarrow \infty$. Moreover $u_{i, n}^{-} \rightarrow 0$ a.e. in \mathbb{R}^{3} as $n \rightarrow \infty$, for any i. Notice that the value d depends on all the masses a_{i} and on all the couplings $\beta_{i j}$.

It remains to show that $\mathbf{u}_{n} \rightarrow \overline{\mathbf{u}}$ strongly in H^{1}, and the limit is a solution of (1.11)-(1.12). In order to do this, we argue as for the 2 -components system: thanks to (5.2), up to a subsequence $\mathbf{u}_{n} \rightarrow \overline{\mathbf{u}}$ weakly in $H^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{k}\right)$, strongly in $L^{4}\left(\mathbb{R}^{3}, \mathbb{R}^{k}\right)$, a.e. in \mathbb{R}^{3}. As before we arrive at the conclusion that $\overline{\mathbf{u}}$ is a solution of (1.11) for some $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$. We can also suppose that one of these parameters, say λ_{1}, is strictly negative. Thus, Lemma 3.9 implies that $u_{1, n} \rightarrow \bar{u}_{1}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$. If by contradiction $u_{j, n} \nrightarrow \bar{u}_{j}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$ for some j, then $\lambda_{j} \geq 0$, and by Lemma A. 2 in [17] we deduce that $\bar{u}_{j} \equiv 0$. To complete the proof, we aim at showing that $\bar{u}_{i} \not \equiv 0$ for every i, and to do this it is necessary to substantially modify the argument used for Theorem 1.1.

We divide the set of indexes $\{1, \ldots, k\}$ in two subsets:

$$
\mathcal{I}_{1}:=\left\{i \in\{1, \ldots, k\}: \lambda_{i}<0\right\} \quad \text { and } \quad \mathcal{I}_{2}:=\left\{i \in\{1, \ldots, k\}: \lambda_{i} \geq 0\right\} .
$$

Notice that $1 \in \mathcal{I}_{1}$, so that the cardinality of \mathcal{I}_{2} is at most $k-1$, and that the absurd assumption can be written as $\mathcal{I}_{2} \neq \emptyset$. Up to a relabelling, we can suppose for the sake of simplicity that $\mathcal{I}_{1}=\{1, \ldots, m\}$ and $\mathcal{I}_{2}=\{m+1, \ldots, k\}$ for some $1 \leq m<k$.

As a consequence of strong convergence (and of the maximum principle) we obtain for every $i \in \mathcal{I}_{1}$:

$$
\begin{cases}-\Delta \bar{u}_{i}-\lambda_{i} \bar{u}_{i}=\sum_{j \in \mathcal{I}_{1}} \beta_{i j} \bar{u}_{i} \bar{u}_{j}^{2} & \text { in } \mathbb{R}^{3}, \\ \bar{u}_{i}>0 & \text { in } \mathbb{R}^{3}, \\ \int_{\mathbb{R}^{3}} \bar{u}_{i}^{2}=a_{i}^{2} & \end{cases}
$$

while $\bar{u}_{i} \equiv 0$ for every $i \in \mathcal{I}_{2}$. As in Lemma 4.6 , this implies that $\left(\bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in$ $V_{\text {rad }}^{\mathcal{I}_{1}}$, where

$$
V_{\mathrm{rad}}^{\mathcal{I}_{1}}:=\left\{\mathbf{u} \in S_{a_{1}} \times \cdots \times S_{a_{m}}: \int_{\mathbb{R}^{3}} \sum_{i=1}^{m}\left|\nabla u_{i}\right|^{2}=\frac{3}{4} \int_{\mathbb{R}^{3}} \sum_{i, j=1}^{m} \beta_{i j} u_{i}^{2} u_{j}^{2}\right\}
$$

Therefore

$$
\begin{equation*}
J(\overline{\mathbf{u}})=J\left(\bar{u}_{1}, \ldots, \bar{u}_{m}, 0, \ldots, 0\right) \geq \inf _{V_{\mathrm{rad}}^{I_{1}}} J \tag{5.3}
\end{equation*}
$$

Notice that in the last term we used J to denote the functional associated to a system with m components, while in the previous terms J is used for the functional associated to the full system having k components. This should not be a source of misunderstanding.

The value $J(\mathbf{u})$ can also be characterized in a different way: by (5.2), strong L^{4}-convergence, and recalling that $\left(\bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in V_{\text {rad }}^{\mathcal{I}_{1}}$, we have also

$$
\begin{align*}
d & =\lim _{n \rightarrow \infty} J\left(\mathbf{u}_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{8} \int_{\mathbb{R}^{3}} \sum_{i, j=1}^{k} \beta_{i j} u_{i, n}^{2} u_{j, n}^{2} \tag{5.4}\\
& =\frac{1}{8} \int_{\mathbb{R}^{3}} \sum_{i, j=1}^{m} \beta_{i j} \bar{u}_{i}^{2} \bar{u}_{j}^{2}=J\left(\bar{u}_{1}, \ldots \bar{u}_{m}, 0, \ldots, 0\right)=J(\overline{\mathbf{u}}) .
\end{align*}
$$

A comparison between (5.3) and (5.4) reveals that

$$
\begin{equation*}
d \geq \inf _{V_{\mathrm{rad}}^{\mathcal{I}_{1}}} J \tag{5.5}
\end{equation*}
$$

To find a contradiction, we shall provide an estimate from above on d, an estimate from below on $\inf _{V_{\text {rad }}^{\tau_{1}}} J$, and show that these are not compatible with (5.5).
Upper estimate on d. The upper estimate on d can be obtained generalizing the proof of Lemma 4.4.

Lemma 5.2. With C_{0} and C_{1} defined in (2.2), there holds

$$
d \leq \frac{C_{0} C_{1}\left(\sum_{i} a_{i}^{2}\right)^{3}}{8\left(\sum_{i, j} \beta_{i j} a_{i}^{2} a_{j}^{2}\right)^{2}}
$$

Proof. We observe that, as in (4.4),

$$
\int_{\mathbb{R}^{3}}\left(s \star w_{a_{i}, C_{0} / a_{i}^{2}}\right)^{2}\left(s \star w_{a_{j}, C_{0} / a_{j}^{2}}\right)^{2}=e^{3 s} \frac{C_{1} a_{i}^{2} a_{j}^{2}}{C_{0}^{2}}
$$

for every i, j. Thus, using Proposition 2.2, we have

$$
J\left(s \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, \ldots, w_{a_{k}, C_{0} / a_{k}^{2}}\right)\right)=\frac{3 e^{2 s}}{8} \sum_{i=1}^{k} \frac{C_{1} a_{i}^{2}}{C_{0}}-\frac{e^{3 s}}{4} \sum_{i, j=1}^{k} \beta_{i j} \frac{C_{1} a_{i}^{2} a_{j}^{2}}{C_{0}^{2}} .
$$

Computing the maximum in s of the previous quantity, the thesis is a direct consequence of the fact that, by definition

$$
d \leq \sup _{s \in \mathbb{R}} J\left(s \star\left(w_{a_{1}, C_{0} / a_{1}^{2}}, \ldots, w_{a_{k}, C_{0} / a_{k}^{2}}\right)\right)=\frac{C_{0} C_{1}\left(\sum_{i} a_{i}^{2}\right)^{3}}{8\left(\sum_{i, j} \beta_{i j} a_{i}^{2} a_{j}^{2}\right)^{2}}
$$

Lower estimate for $\inf _{V_{\text {rad }}^{I_{1}}} J$. Recall that we supposed, for the sake of simplicity, that $\mathcal{I}_{1}=\{1, \ldots, m\}$ for some $1 \leq m<k$.
Lemma 5.3. It results

$$
\inf _{V_{\mathrm{rad}}^{I_{1}}} J \geq \frac{C_{0} C_{1}}{8\left[\max _{1 \leq j \leq m}\left\{\beta_{j j} a_{j}\right\}+\frac{m-1}{m} \max _{1 \leq i \neq j \leq m}\left\{\beta_{i j} a_{i}^{1 / 2} a_{j}^{1 / 2}\right\}\right]^{2}} .
$$

Proof. We notice first that, if $\mathbf{u} \in V_{\text {rad }}^{\mathcal{I}_{1}}$, then

$$
\begin{equation*}
J(\mathbf{u})=\frac{8\left(\sum_{i=1}^{m}\left|\nabla u_{i}\right|^{2}\right)^{3}}{27\left(\int_{\mathbb{R}^{3}} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2}\right)^{2}} \tag{5.6}
\end{equation*}
$$

We also recall that

$$
\sum_{1 \leq i \neq j \leq m} x_{i} x_{j} \leq \frac{m-1}{m}\left(\sum_{i=1}^{m} x_{i}\right)^{2} \quad \text { for all } m \in \mathbb{N}, x_{1}, \ldots, x_{m}>0
$$

Thus, by the Young's and the Gagliardo-Nirenberg's inequalities we have

$$
\begin{aligned}
& \sum_{i, j=1}^{m} \int_{\mathbb{R}^{3}} \beta_{i j} u_{i}^{2} u_{j}^{2} \leq \sum_{i, j=1}^{m} \frac{\beta_{i j}}{2}\left(\int_{\mathbb{R}^{3}} u_{i}^{4}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}} u_{j}^{4}\right)^{\frac{1}{2}} \\
& \leq S \sum_{i, j=1}^{m} \beta_{i j} \sqrt{a_{i} a_{j}}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{i}\right|^{2}\right)^{\frac{3}{4}}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{j}\right|^{2}\right)^{\frac{3}{4}} \\
& \leq S {\left[\max _{1 \leq j \leq m}\left\{\beta_{j j} a_{j}\right\} \sum_{i=1}^{m}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{i}\right|^{2}\right)^{\frac{3}{2}}\right.} \\
&\left.\quad \max _{1 \leq i \neq j \leq m}\left\{\beta_{i j} \sqrt{a_{i} a_{j}}\right\} \sum_{i \neq j}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{i}\right|^{2}\right)^{\frac{3}{4}}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{j}\right|^{2}\right)^{\frac{3}{4}}\right] \\
& \leq S\left[\max _{1 \leq j \leq m}\left\{\beta_{j j} a_{j}\right\}+\frac{m-1}{m} \max _{1 \leq i \neq j \leq m}\left\{\beta_{i j} \sqrt{a_{i} a_{j}}\right\}\right]\left(\sum_{i=1}^{m} \int_{\mathbb{R}^{3}}\left|\nabla u_{i}\right|^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

for every $\left(u_{1}, \ldots, u_{m}\right) \in S_{a_{1}} \times \cdots \times S_{a_{m}}$. Recalling the characterization of S in terms of C_{0} and C_{1}, Lemma 2.4, and equation (5.6), this completes the proof.

Conclusion of the proof of Theorem 1.5. We want to show that, under assumption (1.14), inequality (5.5) cannot be satisfied. If

$$
\begin{equation*}
\frac{C_{0} C_{1}\left(\sum_{i=1}^{k} a_{i}^{2}\right)^{3}}{8\left(\sum_{i, j=1}^{k} \beta_{i j} a_{i}^{2} a_{j}^{2}\right)^{2}}<\frac{C_{0} C_{1}}{8\left[\max _{1 \leq j \leq m}\left\{\beta_{j j} a_{j}\right\}+\frac{m-1}{m} \max _{1 \leq i \neq j \leq m}\left\{\beta_{i j} a_{i}^{1 / 2} a_{j}^{1 / 2}\right\}\right]^{2}} \tag{5.7}
\end{equation*}
$$

then this follows by Lemmas 5.2 and 5.3. A condition which implies the validity of (5.7) is assumption (1.14). Concerning the variational characterizations of the solution $\overline{\mathbf{u}}$, it is possible to adapt the proofs in the previous section with minor changes.

Remark 5.4. We emphasize the main difference between the concluding arguments in Theorem 1.2 and 1.5. In the former case, in order to obtain a contradiction one has to compare the value d with two fixed quantities $\ell\left(a_{1}, \mu_{1}\right)$ and $\ell\left(a_{2}, \mu_{2}\right)$, which do not depend on β. On one hand, arguing by contradiction one has $d=\ell\left(a_{i}, \mu_{i}\right)$ for some i; on the other hand, we have seen that it is sufficient to take β very large to have $d<\min \left\{\ell\left(a_{1}, \mu_{1}\right), \ell\left(a_{2}, \mu_{2}\right)\right\}$, which gives a contradiction. For systems with many components the situation is much more involved: the crucial equality for Theorem 1.5 is (5.5), which involves two quantities both depending on the coupling parameters. It is tempting to think that the natural assumption in Theorem 1.5 is $\beta_{i j} \geq \bar{\beta}$ for every $i \neq j$. But if we make some $\beta_{i j}$ too large, than both sides in (5.5) become very small. Hence without any condition on the other parameters ($\beta_{i j}$ and $\left.a_{i}\right)$ it seems hard to obtain a contradiction. Notice also that we do not have any control on the set \mathcal{I}_{1}, which makes the problem even more involved and imposes an assumption involving all the possible choices of \mathcal{I}_{1}.

6. Orbital stability

This section is devoted to the proof of Theorem 1.8, and we focus on a general k components system. Let $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}, \bar{u}_{1}, \ldots, \bar{u}_{k}\right)$ be the solution of (1.11) found in Theorem 1.5. The crucial fact is that by Theorem 1.5 we have $J(\overline{\mathbf{u}})=\inf _{V} J$, with V defined by (1.13). The dynamics of (1.15) takes place in $H^{1}\left(\mathbb{R}^{3}, \mathbb{C}^{k}\right)$. By using similar arguments as in the proof of Lemma 4.8, with $\left(u^{*}, v^{*}\right)$ replaced by $(|u|,|v|)$, one can show that $\inf _{V_{\mathrm{C}}} J=\inf _{V} J$, where

$$
V_{\mathbb{C}}:=\left\{\mathbf{u} \in T_{a_{1}}^{\mathbb{C}} \times \cdots \times T_{a_{k}}^{\mathbb{C}}: G(\mathbf{u})=0\right\}
$$

and

$$
T_{a}^{\mathbb{C}}:=\left\{u \in H^{1}\left(\mathbb{R}^{3}, \mathbb{C}^{k}\right): \int_{\mathbb{R}^{3}}|u|^{2}=a^{2}\right\}
$$

Let us introduce the function

$$
g_{\mathbf{u}}(t):=\frac{t^{2}}{2} \int_{\mathbb{R}^{3}} \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}-\frac{t^{3}}{4} \int_{\mathbb{R}^{3}} \sum_{i, j=1}^{k} \beta_{i j}\left|u_{i}\right|^{2}\left|u_{j}\right|^{2},
$$

defined for $t>0$. Notice that $g_{\mathbf{u}}(t)=J(\log t \star \mathbf{u})$. It is clear that for any $\mathbf{u} \in$ $H^{1}\left(\mathbb{R}^{3}, \mathbb{C}^{k}\right)$ there exists a unique critical point $t_{\mathbf{u}}>0$ for $g_{\mathbf{u}}$, which is a strict maximum, and that $\log t_{\mathbf{u}} \star \mathbf{u} \in V_{\mathbb{C}}$. Moreover, the function $g_{\mathbf{u}}$ is concave in $\left(t_{\mathbf{u}},+\infty\right)$.

Lemma 6.1. Let $d:=\inf \left\{J(\mathbf{u}): \mathbf{u} \in V_{\mathbb{C}}\right\}$. Then

$$
G(\mathbf{u})<0 \quad \Longrightarrow \quad G(\mathbf{u}) \leq J(\mathbf{u})-d
$$

Proof. By a direct computation $G(\mathbf{u})=g_{\mathbf{u}}^{\prime}(1)$. Thus, the condition $G(\mathbf{u})<0$ implies that $t_{\mathbf{u}}<1$, and $g_{\mathbf{u}}$ is concave in $\left(t_{\mathbf{u}},+\infty\right)$. As a consequence,

$$
g_{\mathbf{u}}(1) \geq g_{\mathbf{u}}\left(t_{\mathbf{u}}\right)+\left(1-t_{\mathbf{u}}\right) g_{\mathbf{u}}^{\prime}(1) \geq g_{\mathbf{u}}\left(t_{\mathbf{u}}\right)+G(\mathbf{u}) \geq d+G(\mathbf{u})
$$

and since $g_{\mathbf{u}}(1)=J(\mathbf{u})$ the thesis follows.

Conclusion of the proof of Theorem 1.5. Let $\mathbf{u}_{s}:=s \star \overline{\mathbf{u}}$. Since $\overline{\mathbf{u}} \in V_{\mathbb{C}}$, it follows that $G\left(\mathbf{u}_{s}\right)<0$ for every $s>0$. Let $\Phi^{s}=\left(\Phi_{1}^{s}, \ldots, \Phi_{k}^{s}\right)$ be the solution of system (1.15) with initial datum \mathbf{u}_{s}, defined on the maximal interval ($T_{\min }, T_{\max }$). By continuity, provided $|t|$ is sufficiently small we have $G\left(\Phi^{s}(t)\right)<0$. Therefore, by Lemma 6.1 and recalling that the energy is conserved along trajectories of (1.15), we have

$$
G\left(\Phi^{s}(t)\right) \leq J\left(\Phi^{s}(t)\right)-d=J\left(\mathbf{u}_{s}\right)-d=:-\delta<0
$$

for any such t, and by continuity again we infer that $G\left(\Phi^{s}(t)\right) \leq-\delta$ for every $t \in\left(T_{\min }, T_{\max }\right)$. To obtain a contradiction, we recall that the virial identity (see Proposition 6.5.1 in [11] for the identity associated to the scalar equation; dealing with a gradient-type system, the computations are very similar) establishes that

$$
f_{s}^{\prime \prime}(t)=8 G\left(\Phi^{s}(t)\right) \leq-8 \delta<0 \quad \text { for } \quad f_{s}(t):=\int_{\mathbb{R}^{3}}|x|^{2} \sum_{i=1}^{k}\left|\Phi_{i}^{s}(t, x)\right|^{2} d x
$$

and as a consequence

$$
0 \leq f_{s}(t) \leq-\delta t^{2}+O(t) \quad \text { for all } t \in\left(-T_{\min }, T_{\max }\right)
$$

Since the right hand side becomes negative for $|t|$ sufficiently large, it is necessary that both $T_{\min }$ and $T_{\max }$ are bounded. This proves that, for a sequence of initial data arbitrarily close to $\overline{\mathbf{u}}$, we have blow-up in finite time, implying orbital instability.

Acknowledgements: Nicola Soave is partially supported through the project ERC Advanced Grant 2013 n. 339958 "Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT". This work has been carried out in the framework of the project NONLOCAL (ANR-14-CE25-0013), funded by the French National Research Agency (ANR).

References

[1] A. Ambrosetti and E. Colorado. Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1) (2007), 67-82.
[2] T. Bartsch. Bifurcation in a multicomponent system of nonlinear Schrödinger equations. J. Fixed Point Theory Appl. 13(1) (2013), 37-50.
[3] T. Bartsch, N. Dancer and Z.-Q. Wang. A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differential Equations 37 (2010) (3-4), 345-361.
[4] T. Bartsch and S. De Valeriola. Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100(1) (2013), 75-83.
[5] T. Bartsch and L. Jeanjean. Normalized solutions for nonlinear Schrödinger systems. Preprint 2015, ArXiv: 1507.04649.
[6] T. Bartsch and Z.-Q. Wang. Note on ground states of nonlinear Schrödinger systems. J. Partial Differential Equations 19(3) (2006), 200-207.
[7] T. Bartsch, Z.-Q. Wang and J. Wei. Bound states for a coupled Schrdinger system. J. of Fixed Point Theory Appl. 2 (2007), 353-367.
[8] J. Bellazzini and L. Jeanjean. On dipolar quantum gases in the unstable regime. Preprint 2014, ArXiv: 1410.4767.
[9] J. Bellazzini, L. Jeanjean and T-J. Luo. Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. London Math. Soc. 107(3) (2013), 303-339.
[10] H. Berestycki and T. Cazenave. Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9) (1981), 489-492.
[11] T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
[12] Z. Chen and W. Zou. An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differential Equations 48(3-4) (2013), 695711.
[13] S. Correia. Stability of ground states for a system of m coupled semilinear schrödinger equations. Preprint 2015, ArXiv: 1502.07913.
[14] B. D. Esry, C. H. Greene, J. P. Burke Jr. and J. L. Bohn. Hartree-Fock theory for double condensates. Phys. Rev. Lett. 78 (1997), 3594.
[15] N. Ghoussoub. Duality and perturbation methods in critical point theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, With appendices by David Robinson, 1993.
[16] N. Ikoma. Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA Nonlinear Differential Equations Appl. 16(5) (2009), 555-567.
[17] N. Ikoma. Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14(1) (2014), 115-136.
[18] L. Jeanjean. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10) (1997), 1633-1659.
[19] L. Jeanjean, T.-J. Luo and Z.-Q. Wang. Multiple normalized solutions for quasi-linear Schrödinger equations. J. Differential Equations. 259(8) (2015), 3894-3928.
[20] M. K. Kwong. Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in \mathbf{R}^{n}. Arch. Rational Mech. Anal. 105(3) (1989), 243-266.
[21] S. Le Coz. A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations. Adv. Nonlinear Stud. 8(3) (2008), 455-463.
[22] T.-C. Lin and J. Wei. Ground state of N coupled nonlinear Schrödinger equations in \mathbb{R}^{n}, $n \leq 3$. Comm. Math. Phys. 255(3) (2005), 629-653.
[23] T.-C. Lin and J. Wei. Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4) (2005), 403-439.
[24] P.L Lions. The concentration-compactness principle in the calculus of variation. The locally compact case, part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2) (1984), 109-145.
[25] P.L. Lions. The concentration-compactness principle in the calculus of variation. The locally compact case, part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4) (1984), 223-283.
[26] Z. Liu and Z.-Q. Wang. Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10(1) (2010), 175-193.
[27] T.-J. Luo Multiplicity of normalized solutions for a class of nonlinear Schrödinger-PoissonSlater equations. J. Math. Anal. Appl. 416(1) (2014), 195-204.
[28] L. A. Maia, E. Montefusco, and B. Pellacci. Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differential Equations 229(2) (2006), 743-767.
[29] L. d. A. Maia, E. Montefusco, and B. Pellacci. Orbital stability property for coupled nonlinear Schrödinger equations. Adv. Nonlinear Stud. 10(3) (2010), 681-705.
[30] B. Malomed. Multi-component Bose-Einstein condensates: Theory. In: P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzalez (Eds.), Emergent Nonlinear Phenomena in BoseEinstein Condensation, Springer-Verlag, Berlin, 2008, 287-305.
[31] R. Mandel. Minimal energy solutions for cooperative nonlinear Schrödinger systems. NoDEA Nonlinear Differential Equations Appl. 22(2) (2015), 239-262.
[32] N. V. Nguyen and Z.-Q. Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete Contin. Dynam. Syst. 36(2) (2016), 1005-1021.
[33] N. V. Nguyen and Z.-Q. Wang. Orbital stability of solitary waves for a nonlinear Schrödinger system. Adv. Differential Equations 16(9-10) (2011), 977-1000.
[34] N. V. Nguyen and Z.-Q. Wang. Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system. Nonlinear Analysis 90 (2013), 1-26.
[35] B. Noris, H. Tavares, S. Terracini, and G. Verzini. Convergence of minimax structures and continuation of critical points for singularly perturbed systems. J. Eur. Math. Soc. (JEMS) 14(4) (2012), 1245-1273.
[36] B. Noris, H. Tavares, and G. Verzini. Existence and orbital stability of the ground states with prescribed mass for the L^{2}-critical and supercritical NLS on bounded domains. Anal. PDE 7(8) (2014), 1807-1838.
[37] B. Noris, H. Tavares, and G. Verzini. Stable solitary waves with prescribed L^{2}-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst.-A 35(12) (2015), 6085-6112.
[38] M. Ohta. Stability of solitary waves for coupled nonlinear Schrödinger equations. Nonlinear Anal. 26(5) (1996), 933-939.
[39] Y. Sato and Z.-Q. Wang. Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings. Adv. Nonlinear Stud. 15(1) (2015), 1-22.
[40] B. Sirakov. Least energy solitary waves for a system of nonlinear Schrödinger equations in \mathbb{R}^{n}. Comm. Math. Phys. 271(1) (2007), 199-221.
[41] N. Soave. On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. Partial Differential Equations 53(3-4) (2015), 689-718.
[42] N. Soave and H. Tavares. New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms. Preprint 2014, ArXiv: 1412.4336.
[43] H. Tavares and S. Terracini. Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(2) (2012), 279-300.
[44] S. Terracini and G. Verzini. Multipulse phases in k-mixtures of Bose-Einstein condensates. Arch. Ration. Mech. Anal. 194(3) (2009), 717-741.
[45] J. Wei and T. Weth. Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190(1) (2008), 83-106.

[^0]: 2010 Mathematics Subject Classification. 35J50 (primary) and 35J15, 35J60 (secondary) .

