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Abstract. We study properties of solutions of the initial value problem for
the nonlinear and nonlocal equation ut+(−∂2

x)α/2u+uux = 0 with α ∈ (0, 1],

supplemented with an initial datum approaching the constant states u± (u− <

u+) as x → ±∞, respectively. It was shown by Karch, Miao & Xu (SIAM
J. Math. Anal. 39 (2008), 1536–1549) that, for α ∈ (1, 2), the large time

asymptotics of solutions is described by rarefaction waves. The goal of this

paper is to show that the asymptotic profile of solutions changes for α ≤ 1.
If α = 1, there exists a self-similar solution to the equation which describes

the large time asymptotics of other solutions. In the case α ∈ (0, 1), we show

that the nonlinearity of the equation is negligible in the large time asymptotic
expansion of solutions.

1. Introduction

In this work, we continue the study of asymptotic properties of solutions of the
Cauchy problem for the following nonlocal conservation law

ut + Λαu+ uux = 0, x ∈ R, t > 0,(1.1)
u(0, x) = u0(x),(1.2)

where Λα = (−∂2/∂x2)α/2 is the pseudodifferential operator defined via the Fourier
transform (̂Λαv)(ξ) = |ξ|α v̂(ξ). This equation is referred to as the fractal Burgers
equation.

The initial datum u0 ∈ L∞(R) is assumed to satisfy:

(1.3) ∃u− < u+ with u0 − u− ∈ L1(−∞, 0) and u0 − u+ ∈ L1(0,+∞)

(where u± are real numbers). An interesting situation is where u0 ∈ BV (R), that
is to say

(1.4) u0(x) = c+
∫ x

−∞
m(dy)
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with c ∈ R and a finite signed measure m on R. In that case Jourdain, Méléard,
and Woyczyński [11, 12] have recently given a probabilistic interpretation to prob-
lem (1.1)–(1.2). Assumption (1.3) holds true when

(1.5) u− = c and u+ − u− =
∫

R
m(dx) > 0.

If c = 0 and if m is a probability measure, the function u0 defined in (1.4) is
the cumulative distribution function and this property is shared by the solution
u(t) ≡ u(·, t) for every t > 0 (see [11, 12]). As a consequence of our results, we
describe the asymptotic behavior of the family {u(t)}t≥0 of probability distribution
functions as t→ +∞ (see the summary at the end of this section).

It was shown in [14] that, under assumptions (1.3)–(1.5) and for 1 < α ≤ 2,
the large time asymptotics of solution to (1.1)–(1.2) is described by the so-called
rarefaction waves. The goal of this paper is to complete these results and to obtain
universal asymptotic profiles of solutions for 0 < α ≤ 1.

1.1. Known results. Let us first recall the results obtained in [14]. For α ∈
(1, 2], the initial value problem for the fractal Burgers equation (1.1)–(1.2) with
u0 ∈ L∞(R) has a unique, smooth, global-in-time solution (cf. [8, Thm. 1.1], [9,
Thm. 7]). If, moreover, the initial datum is of the form (1.4) and satisfies (1.3)–
(1.5), the corresponding solution u behaves asymptotically when t → +∞ as the
rarefaction wave (cf. [14, Thm. 1.1]). More precisely, for every p ∈ ( 3−α

α−1 ,+∞]
there exists a constant C > 0 such that for all t > 0,

(1.6) ‖u(t)− wR(t)‖p ≤ Ct−
1
2 [α−1− 3−α

p ] log(2 + t)

(‖ · ‖p is the standard norm in Lp(R)). Here, the rarefaction wave is the explicit
(self-similar) function

(1.7) wR(x, t) = wR
(x
t
, 1
)
≡


u− ,

x

t
≤ u−,

x

t
, u− ≤

x

t
≤ u+,

u+ ,
x

t
≥ u+.

It is well-known that wR is the unique entropy solution of the Riemann problem
for the nonviscous Burgers equation wRt + wRwRx = 0.

The goal of the work is to show that, for α ∈ (0, 1], one should expect completely
different asymptotic profiles of solutions. Let us notice that the initial value problem
(1.1)–(1.2) has a unique global-in-time entropy solution for every u0 ∈ L∞(R) and
α ∈ (0, 1] due to the recent work by the first author [1]. We recall this result in
Section 2.

1.2. Main results. Our two main results are Theorems 1.3 and 1.6, stated below.
Both of them are a consequence of the following Lp-estimate of the difference of
two entropy solutions.

Theorem 1.1. Let 0 < α ≤ 1. Assume that u and ũ are two entropy solutions of
(1.1)–(1.2) with initial conditions u0 and ũ0 in L∞(R). Suppose, moreover, that ũ0

is non-decreasing and u0− ũ0 ∈ L1(R). Then there exists a constant C = C(α) > 0
such that for all p ∈ [1,+∞] and all t > 0

(1.8) ‖u(t)− ũ(t)‖p ≤ Ct−
1
α (1− 1

p )‖u0 − ũ0‖1.

Remark 1.2. (1) It is worth mentioning that this estimate is sharper than the
one obtained by interpolating the L1-contraction principle and L∞-bounds
on the solutions.
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(2) Mention also that this result holds true for α ∈ (1, 2] without additionalBV -
assumption on u0. Consequently, as an immediate corollary of (1.6) and (1.8),
one can slightly complete the results from [14]. More precisely, let α ∈
(1, 2], u0 ∈ L∞(R) satisfying (1.3) and u be the solution to (1.1)–(1.2).
Then for every p ∈ ( 3−α

α−1 ,+∞] there exists a constant C > 0 such that for
all t > 0

‖u(t)− wR(t)‖p ≤ Ct−
1
2 [α−1− 3−α

p ] log(2 + t) + Ct−
1
α (1− 1

p ),

even if u0 /∈ BV (R).

In the case α < 1, the linear part of the fractal Burgers equation dominates the
nonlinear one for large times. In the case α = 1, both parts are balanced; indeed,
self-similar solutions exist. Let us be more precise now.

For α < 1, the Duhamel principle (see equation (3.3) below) shows that the
nonlinearity in equation (1.1) is negligible in the asymptotic expansion of solutions.

Theorem 1.3. (Asymptotic behavior as the linear part)
Let 0 < α < 1 and u0 ∈ L∞(R) satisfying (1.3). Let u be the entropy solution to
(1.1)–(1.2). Denote by {Sα(t)}t>0 the semi-group of linear operators whose infini-
tesimal generator is −Λα. Consider the initial condition

(1.9) U0(x) ≡
{
u− , x < 0,
u+ , x > 0.

Then, there exists a constant C = C(α) > 0 such that for all p ∈
(

1
1−α ,+∞

]
and

all t > 0,

‖u(t)− Sα(t)U0‖p ≤Ct−
1
α (1− 1

p )‖u0 − U0‖1
+ C(u+ − u−) max{|u+|, |u−|} t1−

1
α (1− 1

p ).
(1.10)

Remark 1.4. (1) It follows from the proof of Theorem 1.3 that inequality (1.10)
is valid for every p ∈ [1,+∞]. However, its right-hand-side decays only for
p ∈

(
1

1−α ,+∞
]
.

(2) Let us recall here the formula Sα(t)U0 = pα(t) ∗ U0 where pα = pα(x, t)
denotes the fundamental solution of the equation ut + Λαu = 0 (cf. the
beginning of Section 3 for its properties). Hence, changing variables in the
convolution pα(t) ∗ U0, one can write the asymptotic term in (1.10) in the
self-similar form (Sα(t)U0)(x) = Hα(xt−1/α) where Hα(x) = (pα(1)∗U0)(x)
is a smooth and non-decreasing function satisfying limx→±∞Hα(x) = u±
and ∂xHα(x) = (u+ − u−)pα(x, 1).

In the case α = 1, we use the uniqueness result from [1] combined with a stan-
dard scaling technique to show that equation (1.1) has self-similar solutions. In
Section 4, we recall this well-known reasoning which leads to the proof of the fol-
lowing theorem.

Theorem 1.5. (Existence of self-similar solutions)
Assume α = 1. The unique entropy solution U of the initial value problem (1.1)–
(1.2) with the initial condition (1.9) is self-similar, i.e. it has the form U(x, t) =
U
(
x
t , 1
)

for all x ∈ R and all t > 0.

Our second main convergence result states that the self-similar solution describes
the large time asymptotics of other solutions to (1.1)–(1.2).

Theorem 1.6. (Asymptotic behavior as the self-similar solution)
Let α = 1 and u0 ∈ L∞(R) satisfying (1.3). Let u be the entropy solution to problem
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(1.1)–(1.2). Denote by U the self-similar solution from Theorem 1.5. Then there
exists a constant C = C(α) > 0 such that for all p ∈ [1,+∞] and all t > 0,

‖u(t)− U(t)‖p ≤ Ct−(1− 1
p )‖u0 − U0‖1.(1.11)

1.3. Properties of self-similar solutions. Let us complete the result stated in
Theorem 1.6 by listing main qualitative properties of the profile U(1).

Theorem 1.7. (Qualitative properties of the self-similar profile)
The self-similar solution from Theorem 1.5 enjoys the following properties:

p1. (Regularity) The function U(1) = U(·, 1) is Lipschitz-continuous.
p2. (Monotonicity and limits) U(1) is increasing and satisfies

lim
x→±∞

U(x, 1) = u±.

p3. (Symmetry) For all y ∈ R, we have

U (c+ y, 1) = 2c− U (c− y, 1) where c ≡ u− + u+

2
.

p4. (Convex/concave) U(1) is convex (resp. concave) on (−∞, c] (resp. on
[c,+∞)).

p5. (Decay at infinity) We have

Ux(x, 1) ∼ u+ − u−
2π2

|x|−2 as |x| → +∞.

Actually, the profile U(1) is expected to be C∞b or analytic, due to recent regu-
larity results [16, 7, 18] for the critical fractal Burgers equation with α = 1. It was
shown that the solution is smooth whenever u0 is either periodic or from L2(R) or
from a critical Besov space. Unfortunately, we do not know if those results can be
adapted to any initial condition from L∞(R).

Property p3 implies that U(x(t), t) is a constant equal to c along the character-
istic x(t) = ct, with the symmetry

U (ct+ y, t) = 2c− U (ct− y, t)

for all t > 0 and y ∈ R. Thus, the real number c can be interpreted as a mean
celerity of the profile U(t), which is the same mean celerity as for the rarefaction
wave in (1.7).

In property p5, we obtain the decay at infinity which is the same as for the
fundamental solutions p1(x, t) = t−1p1

(
xt−1, 1

)
of the linear equation ut+Λ1u = 0,

given by the explicit formula

(1.12) p1(x, 1) =
2

1 + 4π2x2
.

Following the terminology introduced in [6], one may say that property p5 expresses
a far field asymptotics and is somewhere in relation with the results in [6] for fractal
conservation laws with α ∈ (1, 2), where the Duhamel principle plays a crucial role.
This principle is less convenient in the critical case α = 1, and our proof of p5 does
not use it.

Finally, if u− = 0 and u+−u− = 1, property p2 means that U(1) is the cumula-
tive distribution function of some probability law L with density Ux(1). Property p3
ensures that L is symmetrically distributed around its median c; notice that any
random variable with law L has no expectation, because of property p5. Proper-
ties p4-p5 make precise that the density of L decays around c with the same rate
at infinity as for the Cauchy law with density p1(x, 1).

The probability distributions of both laws around their respective medians can
be compared as follows.
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Theorem 1.8. (Comparison with the Cauchy law)
Let L be the probability law with density Ux(1), where U is the self-similar solution
defined in Theorem 1.5, with u− = 0 and u+ = 1. Let X (resp. Y ) be a real
random variable on some probability space (Ω,A,P) with law L (resp. the Cauchy
law (1.12) (with zero median)). Then, we have for all r > 0

P(|X − c| < r) < P(|Y − 0| < r)

where c denotes the median of X.

Remark 1.9. More can be said in order to compare random variables X − c and
Y . Indeed, their cumulative distribution functions satisfy FX−c(x) = FY (x)− g(x)
where g is an explicit positive function (on the positive axis) depending the self-
similar solution of (1.1) (see equation (6.26)).

1.4. Probabilistic interpretation of results for α ∈ (0, 2]. To summarize, let
us emphasize the probabilistic meaning of the complete asymptotic study of the
fractal Burgers equation we have now in hands. We have already mentioned that
the solution u of (1.1)–(1.2) supplemented with the initial datum of the form (1.4)
with c = 0 and with a probability measure m on R is the cumulative distribution
function for every t ≥ 0. This family of probabilities defined by problem (1.1)-(1.2)
behaves asymptotically when t→ +∞ as

• the uniform distribution on the interval [0, t] if 1 < α ≤ 2 (see the result
from [14] recalled in inequality (1.6) above);
• the family of laws {Lt}t≥0 constructed in Theorem 1.5 if α = 1 (see Theo-

rem 1.6);
• the symmetric α-stable laws pα(t) if 0 < α < 1 (cf. Theorem 1.3 and

Remark 1.4).

1.5. Organization of the article. The remainder of this paper is organized as
follows. In the next section, we recall the notion of entropy solutions to (1.1)-
(1.2) with α ∈ (0, 1]. Results on the regularized equation (i.e. equation (1.1)
with an additional term −εuxx on the left-hand-side) are gathered in Section 3.
The convergence of solutions as ε → 0 to the regularized problem is discussed in
Section 4. The main asymptotic results for (1.1)-(1.2) are proved in Section 5 by
passage to the limit as ε goes to zero. Section 6 is devoted to the qualitative study
of the self-similar profile for α = 1. For the reader’s convenience, sketches of proofs
of a key estimate from [14] and Theorem 4.1 are given in appendices; the technical
lemmata are also gathered in appendices.

2. Entropy solutions for 0 < α ≤ 1

2.1. Lévy-Khintchine’s representation of Λα. It is well-known that the oper-
ator Λα = (−∂2/∂x2)α/2 for α ∈ (0, 2) has an integral representation: for every
Schwartz function ϕ ∈ S(R) and each r > 0, we have

(2.1) Λαϕ = Λ(α)
r ϕ+ Λ(0)

r ϕ,

where the integro-differential operators Λ(α)
r and Λ(0)

r are defined by

Λ(α)
r ϕ(x) ≡ −Gα

∫
|z|≤r

ϕ(x+ z)− ϕ(x)− ϕx(x)z
|z|1+α

dz,(2.2)

Λ(0)
r ϕ(x) ≡ −Gα

∫
|z|>r

ϕ(x+ z)− ϕ(x)
|z|1+α

dz,(2.3)

where Gα ≡
αΓ( 1+α

2 )
2π

1
2 +αΓ(1−α2 )

> 0 and Γ is Euler’s function. On the basis of this

formula, we can extend the domain of definition of Λα and consider Λ(0)
r and Λ(α)

r
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as the operators

Λ(0)
r : Cb(R)→ Cb(R) and Λ(α)

r : C2
b (R)→ Cb(R);

hence, Λα : C2
b (R)→ Cb(R).

Let us recall some properties on these operators. First, the so-called Kato in-
equality can be generalized to Λα for each α ∈ (0, 2]: let η ∈ C2(R) be convex and
ϕ ∈ C2

b (R), then

(2.4) Λαη(u) ≤ η′(u)Λαu.

Note that for α = 2 we have

−(η(u))xx = −η′′(u)u2
x − η′(u)uxx ≤ −η′(u)uxx since η′′ ≥ 0.

If α ∈ (0, 2), inequality (2.4) is the direct consequence of the integral representation
(2.1)–(2.3) and of the following inequalities

(2.5) Λ(0)
r η(u) ≤ η′(u)Λ(0)

r u and Λ(α)
r η(u) ≤ η′(u)Λ(α)

r u,

resulting from the convexity of the function η.
Finally, these operators satisfy the integration by parts formula: for all u ∈

C2
b (R) and ϕ ∈ D(R), we have

(2.6)
∫

R
ϕΛu dx =

∫
R
uΛϕdx,

where Λ ∈ {Λ(0)
r ,Λ(α)

r ,Λα} for every α ∈ (0, 2] and all r > 0. Notice that Λϕ ∈
L1(R), since it is obvious from (2.2)-(2.3) that Λ(α)

r : W 2,1(R)→ L1(R) and Λ(0)
r :

L1(R)→ L1(R).
Detailed proofs of all these properties are based on the representation (2.1)–(2.3)

and are written e.g. in [1].

2.2. Existence and uniqueness of entropy solutions. It was shown in [2] (see
also [16]) that solutions of the initial value problem for the fractal conservation law

ut + Λαu+ (f(u))x = 0, x ∈ R, t > 0,(2.7)
u(0, x) = u0(x),(2.8)

where f : R → R is locally Lipschitz-continuous, can become discontinuous in
finite time if 0 < α < 1. Hence, in order to deal with discontinuous solutions,
the notion of entropy solution in the sense of Kruzhkov was extended in [1] to
fractal conservation laws (2.7)–(2.8) (see also [15] for the recent generalization to
Lévy mixed hyperbolic/parabolic equations). Here, the crucial role is played by the
Lévy-Khintchine’s representation (2.1)–(2.3) of the operator Λα.

Definition 2.1. Let 0 < α ≤ 1 and u0 ∈ L∞(R). A function u ∈ L∞(R×(0,+∞))
is an entropy solution to (2.7)–(2.8) if for all ϕ ∈ D(R×[0,+∞)), ϕ ≥ 0, η ∈ C2(R)
convex, φ : R→ R such that φ′ = η′f ′, and r > 0, we have∫

R

∫ +∞

0

(
η(u)ϕt + φ(u)ϕx − η(u)Λ(α)

r ϕ− ϕη′(u) Λ(0)
r u

)
dxdt

+
∫

R
η(u0(x))ϕ(x, 0) dx ≥ 0.

Note that, due to formula (2.3), the quantity Λ(0)
r u in the above inequality is

well-defined for any bounded function u.
The notion of entropy solutions allows us to solve the fractal Burgers equation

for the range of exponent α ∈ (0, 1].
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Theorem 2.2 ([1]). Assume that 0 < α ≤ 1 and u0 ∈ L∞(R). There exists
a unique entropy solution u to problem (2.7)–(2.8). This solution u belongs to
C([0,+∞);L1

loc(R)) and satisfies u(0) = u0. Moreover, we have the following max-
imum principle: ess infu0 ≤ u ≤ ess supu0.

If α ∈ (1, 2], all solutions to (2.7)–(2.8) with bounded initial conditions are
smooth and global-in-time (see [8, 16, 17]). On the other hand, the occurrence of
discontinuities in finite time of entropy solutions to (2.7)–(2.8) with α = 1 seems
to be unclear. As mentioned in the introduction, regularity results have recently
been obtained [16, 7, 18] for a large class of initial conditions which, unfortunately,
does not include general L∞-initial data. Nevertheless, Theorem 2.2 provides the
existence and the uniqueness of a global-in-time entropy solution even for the critical
case α = 1.

3. Regularized problem

In this section, we gather properties of solutions to the Cauchy problem for the
regularized fractal Burgers equation with ε > 0

uεt + Λαuε − εuεxx + uεuεx = 0, x ∈ R, t > 0,(3.1)
uε(x, 0) = u0(x).(3.2)

Our purpose is to derive asymptotic stability estimates of a solution uε = uε(x, t)
(uniform in ε) that will be valid for (1.1)–(1.2) after passing to the limit ε→ 0. Most
of the results of this section are based on a key estimate from [14]; unfortunately,
this estimate is not explicitely stated as a lemma in [14]. Hence, for the sake of
completeness, we have recalled this key estimate in Lemma A.1 in Appendix A as
well as the main lines of its proof.

Below, we will use the following integral formulation of the initial value prob-
lem (3.1)-(3.2)

(3.3) uε(t) = Sεα(t)u0 −
∫ t

0

Sεα(t− τ)uε(τ)uεx(τ) dτ,

where {Sεα(t)}t>0 is the semi-group generated by −Λα + ε∂2
x.

If, for each α ∈ (0, 2], the function pα denotes the fundamental solution of the
linear equation ut + Λαu = 0, then

(3.4) Sεα(t)u0 = pα(t) ∗ p2(εt) ∗ u0.

It is well-known that pα = pα(x, t) can be represented via the Fourier transform
(w.r.t. the x-variable) p̂α(ξ, t) = e−t|ξ|

α

. In particular,

(3.5) pα(x, t) = t−
1
αPα(xt−

1
α ),

where Pα is the inverse Fourier transform of e−|ξ|
α

. For every α ∈ (0, 2] the function
Pα is smooth, non-negative,

∫
R Pα(y) dy = 1, and satisfies the estimates (optimal

for α 6= 2)

(3.6) 0 < Pα(x) ≤ C(1 + |x|)−(α+1) and |∂xPα| ≤ C(1 + |x|)−(α+2)

for a constant C and all x ∈ R.

One can see that problem (3.1)–(3.2) admits a unique global-in-time smooth
solution.

Theorem 3.1 ([8]). Let α ∈ (0, 2], ε > 0 and u0 ∈ L∞(R). There exists a unique
solution uε to problem (3.1)–(3.2) in the following sense:

• uε ∈ Cb(R× (0,+∞)) ∩ C∞b (R× (a,+∞)) for all a > 0,
• uε satisfies equation (3.1) on R× (0,+∞),
• limt→0 u

ε(t) = u0 in L∞(R) weak-∗ and in Lploc(R) for all p ∈ [1,+∞).
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Moreover, the following maximum principle holds true:

(3.7) ess infu0 ≤ uε ≤ ess supu0.

Proof. Here, the results from [8] can be easily modified in order to get the existence
and the regularity of solutions to (3.1)–(3.2) with ε > 0. �

Here are some elementary properties (comparison principle, L1-contraction prin-
ciple and non-increase of the BV -semi-norm) of fractal conservation laws that will
be needed.

Proposition 3.2 ([8]). Let ε > 0 and uε and ũε be solutions to (3.1)–(3.2) with
respective initial data u0 and ũ0 in L∞(R). Then:

• if u0 ≤ ũ0 then uε ≤ ũε,
• if u0 − ũ0 ∈ L1(R) then ‖uε − ũε‖L∞(0,+∞,L1) ≤ ‖u0 − ũ0‖1,
• if u0 ∈ BV (R) then ‖uεx(t)‖L∞(0,+∞,L1) ≤ |u0|BV

where ‖·‖L∞(0,+∞,L1) and | · |BV denote respectively the norm in L∞(0,+∞, L1(R))
and the semi-norm in BV (R).

Sketch of the proof. As explained in [8, Remarks 1.2 & 6.2], these properties are
immediate consequences of the splitting method developped in [8] and the facts that
both the hyperbolic equation ut+uux = 0 and the fractal equation ut+Λαu−εuxx =
0 satisfy these properties. �

The next proposition provides an estimate on the gradient of uε.

Proposition 3.3. Let 0 < α ≤ 1 and u0 ∈ L∞(R) be non-decreasing. For each ε >
0, denote by uε the solution to (3.1)–(3.2). Then:

• uεx(x, t) ≥ 0 for all x ∈ R and t > 0,
• there exists a constant C = C(α) > 0 such that for all ε > 0, p ∈ [1,+∞]

and t > 0,

(3.8) ‖uεx(t)‖p ≤ Ct−
1
α (1− 1

p )|u0|BV .

Proof. For any fixed real h, the function uε(·+h, ·) is the solution to (3.1)–(3.2) with
the initial datum u0(·+ h). Consequently, for non-decreasing u0 and for h > 0, the
inequality u0(·+h) ≥ u0(·) and the comparison principle imply uε(·+h, ·) ≥ uε(·, ·)
which gives uεx ≥ 0.

To show the decay of the Lp-norm, one slightly modifies the arguments from [14,
Proof of Lemma 3.1]. One shall use Lemma A.1 with v ≡ uεx. It is clear that v
satisfies the required regularity: for all a > 0

v ∈ C∞b (R× (a,+∞)) ∩ L∞(0,+∞, L1(R)),

thanks to Proposition 3.2 ensuring that

‖v‖L∞(0,+∞,L1) = ‖uεx‖L∞(0,+∞,L1) ≤ |u0|BV .
It thus rests to show that v satisfies (A.1). By interpolation of the inequality above
and the L∞-bound on v from Theorem 3.1, one sees that for all p ∈ [1,+∞] and
all t > 0,

v(t) ∈ Lp(R) and vt(t),Λαv(t), vx(t), vxx(t) ∈ L∞(R).

Hence, for p ∈ [2,+∞), one can multiply the equation for v

vt + Λαv − εvxx + (uεuεx)x = 0,

by vp−1 to obtain after integration:

(3.9)
∫

R
vtv

p−1 dx+
∫

R
vp−1Λαv dx− ε

∫
R
vxxv

p−1 dx+
p− 1
p

∫
R
vp+1 dx = 0;
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here one has used that lim|x|→+∞ v(x, t) = 0 (since v(t) ∈ C∞b (R) ∩ L1(R)) to
drop the boundary terms providing from integration by parts. Integrating again by
parts, one sees that

−ε
∫

R
vxxΦ(v) dx = ε

∫
R
v2
xΦ′(v) dx ≥ 0

for all non-decreasing function Φ ∈ C1(R) with Φ(0) = 0; Choosing Φ(v) = |v|p−2v,
one gets

(3.10) −ε
∫

R
vxx|v|p−2 v dx ≥ 0.

We deduce from (3.9), (3.10) and the non-negativity of v that∫
R
vt|v|p−2v dx+

∫
R
|v|p−2vΛαvdx ≤ 0

for all p ∈ [2,+∞) and t > 0. This is exactly the required differential inequation
in (A.1). Lemma A.1 thus completes the proof. �

We can now give asymptotic stability estimates uniform in ε.

Theorem 3.4. Let α ∈ (0, 2]. Consider two initial data u0 and ũ0 in L∞(R) such
that ũ0 is non-decreasing and u0 − ũ0 ∈ L1(R). For each ε > 0, denote by uε

and ũε the corresponding solutions to (3.1)–(3.2). Then, there exists a constant
C = C(α) > 0 such for all ε > 0, p ∈ [1,+∞] and t > 0

(3.11) ‖uε(t)− ũε(t)‖p ≤ Ct−
1
α (1− 1

p )‖u0 − ũ0‖1 .

Proof. The proof follows the arguments from [14, Proof of Lemma 3.1] by skip-
ping the additional term providing from −εuεxx. That is to say, one uses again
Lemma A.1 with v = uε − ũε. First, the L1-contraction principle (see Proposi-
tion 3.2) ensures that v satisfies the required regularity with

‖uε − ũε‖L∞(0,+∞,L1) ≤ ‖u0 − ũ0‖1.

In particular, once again the interpolation of the L1- and L∞-norms implies that v
is Lp in space for all time and all p ∈ [1,+∞]. Second, one takes p ∈ [2,+∞) (so
that all the integrands below are integrable) and one multiplies the difference of
the equations satisfied by uε and ũε by |v|p−2v. One gets after integration:

(3.12)
∫

R
vt|v|p−2v dx+

∫
R
|v|p−2vΛαv dx

− ε
∫

R
vxx|v|p−2v dx+

1
2

∫
R

(
v2 + 2vũε

)
x
|v|p−2v dx = 0.

The last term of the left-hand side of this equality is non-negative, since integrations
by parts give ∫

R

(
v2 + 2vũε

)
x
|v|p−2v dx

=
∫

R
2vx|v|p dx+

∫
R

2ũεvx|v|p−2v dx+
∫

R
2ũεx|v|p dx,

= 2
(

1− 1
p

)∫
R

2ũεx|v|p dx ≥ 0

(once again the boundary terms can be skipped since v vanishes for large x). More-
over the third term of (3.12) is also non-negative by (3.10). One easily deduces the
desired inequality (A.1) and completes the proof by Lemma A.1. �
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Theorem 3.5. Let 0 < α < 1 and u0 ∈ L∞(R) be non-decreasing. For each ε > 0,
denote by uε the solution to (3.1)–(3.2). Then, there exists C = C(α) > 0 such
that for all ε > 0, p ∈ [1,+∞] and t > 0

‖uε(t)− Sεα(t)u0‖p ≤ C‖u0‖∞|u0|BV t1−
1
α (1− 1

p )

(where {Sεα(t)}t>0 is generated by −Λα + ε∂2
x).

Proof. Using the integral equation (3.3) we immediately obtain

(3.13) ‖uε(t)− Sεα(t)u0‖p ≤
∫ t

0

‖Sεα(t− τ)uε(τ)uεx(τ)‖p dτ.

Now, we estimate the integral in the right-hand side of (3.13) using the Lp-decay of
the semi-group Sεα(t) as well as inequalities (3.7) and (3.8). Indeed, it follows from
(3.5)-(3.6) that

‖p2(εt)‖1 = 1 and ‖pα(t)‖r = t−
1
α (1− 1

r )‖pα(1)‖r
for every r ∈ [1,+∞]. Hence, by the Young inequality for the convolution and
inequalities (3.7), (3.8), we obtain

‖Sεα(t− τ)uε(τ)uεx(τ)‖p
≤ ‖pα(t− τ) ∗ (uε(τ)uεx(τ))‖p,

≤ C(t− τ)−
1
α ( 1

q−
1
p )‖uε(τ)‖∞‖uεx(τ)‖q,

≤ C(t− τ)−
1
α ( 1

q−
1
p )‖u0‖∞|u0|BV τ−

1
α (1− 1

q ),

(3.14)

for all 1 ≤ q ≤ p ≤ +∞, t > 0, τ ∈ (0, t), where the constant C only depends
on maxr∈[1,+∞] ‖pα(1)‖r and the constant in (3.8).

Next, we decompose the integral on the right-hand side of (3.13) as follows∫ t
0
... dτ =

∫ t/2
0

... dτ +
∫ t
t/2

... dτ and we bound both integrands by using inequality
(3.14) either with q = 1 or with q = p. This leads to the following inequality

‖uε(t)− Sεα(t)u0‖p

≤ C‖u0‖∞|u0|BV

(∫ t/2

0

(t− τ)−
1
α (1− 1

p ) dτ +
∫ t

t/2

τ−
1
α (1− 1

p ) dτ

)
,

= C‖u0‖∞|u0|BV
2β − 1
β2β−1

tβ ,

(3.15)

where β ≡ 1 − 1
α

(
1− 1

p

)
. It is readily seen that β ∈ R → 2β−1

β2β−1 is positive and

continuous and that p ∈ [1,+∞)→ 1− 1
α

(
1− 1

p

)
is bounded. This completes the

proof of Theorem 3.5. �

4. Entropy solution: parabolic approximation and self-similarity

In this section, we state the result on the convergence, as ε→ 0, of solutions uε of
(3.1)–(3.2) toward the entropy solution u of (1.1)–(1.2). We also prove Theorem 1.5
about self-similar entropy solutions in the case α = 1.

Together with the general fractal conservation law (2.7)–(2.8), we study the
associated regularized problem

uεt + Λαuε − εuεxx + (f(uε))x = 0, x ∈ R, t > 0,(4.1)
uε(x, 0) = u0(x)(4.2)

where f ∈ C∞(R). Hence, by results of [8] (see also Theorem 3.1), problem (4.1)-
(4.2) admits a unique, global-in-time, smooth solution uε.
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Theorem 4.1. Let u0 ∈ L∞(R). For each ε > 0, let uε be the solution to (4.1)–
(4.2) and u be the entropy solution to (2.7)–(2.8). Then, for every T > 0, uε → u
in C([0, T ];L1

loc(R)) as ε→ 0.

The proof of Theorem 4.1 is given in Appendix B.

Remark 4.2. This result actually holds true for only locally Lipschitz-continuous
fluxes f . More generally, multidimensional fractal conservation laws with source
terms h = h(u, x, t) and fluxes f = f(u, x, t) (see [9, 8]) can be considered.

Proof of Theorem 1.5. The existence of the solution U to equation (1.1) with α = 1
supplemented with the initial condition (1.9) is provided by Theorem 2.2. To obtain
the self-similar form of U , we follow a standard argument based on the uniqueness
result from Theorem 2.2. Observe that if U is the solution to (1.1), the rescaled
function Uλ(x, t) = U(λx, λt) is the solution for every λ > 0, too. Since, the initial
datum (1.9) is invariant under the rescaling Uλ0 (x) = U0(λx), by the uniqueness,
we obtain that for all λ > 0, U(x, t) = U(λx, λt) for a.e. (x, t) ∈ R× (0,+∞). �

5. Passage to the limit ε→ 0 and asymptotic study

In this section, we prove Theorems 1.1, 1.3 and 1.6.

Proof of Theorem 1.1. Denote by uε and ũε the solutions to the regularized equa-
tion (3.1) with the initial conditions u0 and ũ0. By Theorem 4.1 and the maximum
principle (3.7), we know that limε→0 u

ε(t) = u(t) and limε→0 ũε(t) = ũ(t) in Lploc(R)
for every p ∈ [1,+∞) and in L∞(R) weak-∗. Hence, for each R > 0 and p ∈ [1,+∞],
using Theorem 3.4 we have

‖u(t)− ũ(t)‖Lp((−R,R)) ≤ lim inf
ε→0

‖uε(t)− ũε(t)‖Lp((−R,R))

≤ Ct−
1
α (1− 1

p )‖u0 − ũ0‖1.

Since R > 0 is arbitrary and the right-hand side of this inequality does not depend
on R, we complete the proof of inequality (1.8). �

Proof of Theorem 1.3. In view of Theorem 1.1, it suffices to show the following
inequality

‖ũ(t)− Sα(t)u0‖p ≤ C‖U0‖∞|U0|BV t1−
1
α (1− 1

p ),

where ũ is the solution to (1.1) with U0 as the initial condition. Notice that
‖U0‖∞ = u+ − u− and |U0|BV = max{|u+|, |u−|} in this case.

Here, we argue exactly as in the proof of Theorem 1.1, since we can assume
that limε→0 ũ

ε(t) = ũ(t) in Lploc(R) for every p ∈ [1,+∞) and in L∞(R) weak-∗.
Moreover, it is well-known that for fixed t > 0

lim
ε→0

Sεα(t)U0 = lim
ε→0

p2(εt) ∗
(
pα(t) ∗ U0

)
= Sα(t)U0 in Lp(R)

for all p ∈ [1,+∞]. Hence, for every R > 0 and p ∈ [1,+∞], by Theorem 3.5, we
obtain

‖ũ(t)− Sα(t)U0‖Lp((−R,R)) ≤ lim inf
ε→0

‖ũε(t)− Sεα(t)U0‖Lp((−R,R))

≤ C‖U0‖∞|U0|BV t1−
1
α (1− 1

p ).

The proof is completed by letting R→ +∞. �

Proof of Theorem 1.6. Apply Theorem 1.1 with α = 1 and ũ0 = U0. �

6. Qualitative study of the self-similar profile for α = 1

This section is devoted to the proof of Theorems 1.7 and 1.8.
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6.1. Proof of properties p1–p4 from Theorem 1.7. The Lipschitz-continuity
stated in p1 is an immediate consequence of Proposition 3.3 and Theorem 4.1.
Indeed, U(1) is the limit in L1

loc(R) of uε(1) as ε→ 0, where uε is solution to (3.1)–
(3.2) with u0 = U0 defined in (1.9). Moreover, by (3.8), the family {uε(1) : ε > 0} is
equi-Lipschitz-continuous, which implies that the limit U(1) is Lipschitz-continuous.

Before proving properties p2–p4, let us reduce the problem to a simpler one. We
remark that equation (1.1) is invariant under the transformation

(6.1) V (x, t) ≡ U (x+ ct, t)− c where c ≡ u− + u+

2
;

that is to say, if U is a solution to (1.1) with U(x, 0) = U0(x) defined in (1.9), then
V is a solution to (1.1) with the initial datum

(6.2) V (x, 0) = V0(x) ≡
{
v+, x < 0,
v−, x > 0,

where v− = −v+ and v+ ≡ |c| ≥ 0. It is clear that U satisfies p2–p4, whenever V
enjoys these properties. In the sequel, we thus assume without loss of generality
that u− = −u+ and u+ > 0.

It has been shown in [2, Lemma 3.1] that if u0 ∈ L∞(R) is non-increasing, odd
and convex on (0,+∞), then the solution u of (1.1)-(1.2) shares these properties
w.r.t. x, for all t > 0. The proof is based on a splitting method and on the
fact that the “odd, concave/convex” property is conserved by both the hyperbolic
equation ut + uux and the fractal equation ut + Λ1u = 0. The same proof works
with minor modifications to show that if u0 is non-decreasing, odd and convex
on (−∞, 0), then these properties are preserved by problem (1.1)–(1.2). Details are
left to the reader since in that case, no shock can be created by the Burgers part
and the proof is even easier. By the hypothesis u− = −u+ < 0 made above, the
initial datum in (1.9) is non-decreasing, odd and convex on (−∞, 0). We conclude
that so is the profile U(1). The proof of properties p3–p4 is now complete.

What is left to prove is the limit in property p2. By Theorem 2.2, we have U(t)→
U0 in L1

loc(R) as t → 0. In particular, the convergence holds true a.e. along a
subsequence tn → 0 as n→ +∞ and there exists ±x± > 0 such that U(x±, tn)→
u±. By the self-similarity of U , we get U

(
x±
tn
, 1
)
→ u± as n→ +∞. Since x±

tn
→

±∞ and U(1) is non-decreasing, we deduce property p2.

6.2. Some technical lemmata. The last property of Theorem 1.7 is the most
difficult part to prove. In this preparatory subsection, we state and prove technical
results that shall be needed in our reasoning.

Lemma 6.1. Let v ∈ L∞(R) be non-negative, even and non-increasing on (0,+∞).
Assume that there exists ` > 0 such that for all x0 > 1/2,

(6.3) lim
n→+∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

y2v(y)dy = `.

Then, we have y2v(y)→|y|→+∞ `.

Proof. For all x0 > 1/2, we have

n−1

∫ n(x0+1/2)

n(x0−1/2)

y2v(y)dy ≥ n2(x0 − 1/2)2v(n(x0 + 1/2)),

thanks to the fact that v is non-increasing on (0,+∞). Hence, we have

n2(x0 + 1/2)2v(n(x0 + 1/2)) ≤ n2(x0 + 1/2)2

n2(x0 − 1/2)2
n−1

∫ n(x0+1/2)

n(x0−1/2)

y2v(y)dy.
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Taking the upper semi-limit, we get for all x0 > 1/2

(6.4) lim sup
n→+∞

n2(x0 + 1/2)2v(n(x0 + 1/2)) ≤ `
(
x0 + 1/2
x0 − 1/2

)2

,

thanks to (6.3). In the same way, one can show that for all x0 > 1/2,

(6.5) `

(
x0 − 1/2
x0 + 1/2

)2

≤ lim inf
n→+∞

n2(x0 − 1/2)2v(n(x0 − 1/2)).

Moreover, for fixed x0 > 1/2 and all y ≥ x0 +1/2, there exists an unique integer ny
such that

ny(x0 + 1/2) ≤ y < (ny + 1)(x0 + 1/2).

Using again that v is non-increasing on [0,+∞), we infer that

y2v(y) ≤ (ny + 1)2(x0 + 1/2)2 v(ny(x0 + 1/2)),

=
(ny + 1)2(x0 + 1/2)2

n2
y(x0 + 1/2)2

n2
y(x0 + 1/2)2 v(ny(x0 + 1/2)).

Notice that ny → +∞ as y → +∞. Therefore, passing to the upper semi-limit
as y → +∞ in the inequality above, one can show that for all x0 > 1/2

lim sup
y→+∞

y2v(y) ≤ `
(
x0 + 1/2
x0 − 1/2

)2

,

thanks to (6.4). In the same way, we deduce from (6.5) that for all x0 > 1/2

`

(
x0 − 1/2
x0 + 1/2

)2

≤ lim inf
y→+∞

y2v(y).

Letting finally x0 → +∞ in both inequalities above implies that

` ≤ lim inf
y→+∞

y2v(y) ≤ lim sup
y→+∞

y2v(y) ≤ `.

Since v is even, we have completed the proof of the lemma. �

For all r > 0, the operator Λ1 is the sum of Λ(0)
r and Λ(1)

r . As far as Λ(1)
r is

concerned, we have the following lemma.

Lemma 6.2. Let u ∈ L∞(R) be non-decreasing, odd and convex on (−∞, 0). Then,
for the operator defined in (2.2), we have Λ(1)

r u ∈ L1
loc(R∗) together with the in-

equality ∫
|x|>R

|Λ(1)
r u(x)| dx ≤ 4G1r

R− r
‖u‖∞(6.6)

for all R > r > 0.

Proof. The proof is divided into a sequence of steps.

Step 1: estimates of ux. The convex function u on (−∞, 0) is locally Lipschitz-
continuous on (−∞, 0) and a fortiori a.e. differentiable. Since u(0) = 0, we have
for x < 0

(6.7) |ux(x)| ≤ ‖u‖∞ |x|−1;

Remark that this estimate holds true for x ∈ R since u is odd.

Step 2: estimates of uxx. By convexity of u, uxx is a non-negative Radon mea-
sure on (−∞, 0) in the distribution sense. Hence, ux ∈ BVloc((−∞, 0)) satisfies
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(ex,x]

uyy(dy) = ux(x)−ux(x̃), for a.e. x̃ < x < 0. Using (6.7) and letting x̃→ −∞,
we conclude that for a.e. x < 0

(6.8)
∫

(−∞,x]

uyy(dy) = ux(x),

thanks to the sup-continuity of non-negative measures. Again by (6.7) and oddity
of uxx, this shows for a.e. x 6= 0

(6.9)
∫
|y|≥|x|

|uyy|(dy) ≤ 2‖u‖∞|x|−1;

notice that by the inf-continuity of non-negative measures, this inequality holds for
all x 6= 0.

Step 3: estimate of Λ(1)
r u. Let us prove that Λ(1)

r u is well-defined by formula
(2.2) for a.e. x 6= 0. By the preceding steps, we know that u ∈ L∞(R)∩W 1,∞

loc (R∗)
and ux ∈ BVloc(R∗). By Taylor’s formula (see Lemma C.2 in Appendix C), we
infer that for all R > r > 0

I ≡
∫
|x|>R

∫
|z|≤r

|u(x+ z)− u(x)− ux(x)z|
|z|2

dx dz

≤
∫
|x|>R

∫
|z|≤r

|z|−2

∣∣∣∣∣
∫
Ix,z

|x+ z − y|uyy(dy)

∣∣∣∣∣ dx dz,
where Ix,z ≡ (x, x+z) if z > 0 and Ix,z ≡ (x+z, x) in the opposite case. Therefore,
we see that

I ≤
∫
|x|>R

∫
|z|≤r

|z|−1

∫
Ix,z

|uyy|(dy) dx dz

=
∫

R∗

∫
R
|z|−11{|z|≤r}

∫
|x|>R

1Ix,z (y) dx |uyy|(dy) dz,

by integrating first w.r.t x; notice that all the integrands are measurable by Fubini’s
theorem, since the Radon measure |uyy|(dy) is σ-finite on R∗. For fixed (y, z) ∈
R∗ × R, we have

1{|z|≤r}

∫
|x|>R

1Ix,z (y) dx ≤ |z| 1{|z|≤r} 1{|y|≥R−r},

because the measure of the set {x : y ∈ Ix,z} can be estimated by |z|, and if |z| ≤ r,
then 1Ix,z (y) = 0 for all |x| > R whenever |y| < R− r. It follows that

I ≤
∫

R∗

∫
R

1{|z|≤r} 1{|y|≥R−r} |uyy|(dy) dz = 2r
∫
|y|≥R−r

|uyy|(dy).

Recalling the definition of I above and estimate (6.9), we have shown that

(6.10)
∫
|x|>R

∫
|z|≤r

|u(x+ z)− u(x)− ux(x)z|
|z|2

dx dz ≤ 4r‖u‖∞(R− r)−1.

Fubini’s theorem then implies that Λ(1)
r u(x) is well-defined by (2.2) for a.e. |x| >

R > r by satisfying the desired estimate (6.6).

Step 4: local integrability on R∗. Estimate (6.6) implies that Λ(1)
r u ∈ L1

loc(R \
[−r, r]). In fact, Λ(1)

r u is locally integrable on all R∗. Indeed, simple computations
show that for all r > r̃ > 0

(6.11) Λ(1)
r u+ Λ(0)

r u = Λ(1)er u+ Λ(0)er u,
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since their difference evaluated at some x is equal to
∫er≤|z|≤r −ux(x)z

|z|2 , which is

null by oddity of the function z → −ux(x)z. By Step 3, it follows that Λ(1)
r u =

Λ(1)er u+ Λ(0)er u− Λ(0)
r u ∈ L1

loc(R \ [−r̃, r̃]), which completes the proof. �

It is clear that Λ(0)
r maps L∞(R) into L∞(R) and if {un}n∈N is uniformly es-

sentially bounded and un → u in L1
loc(R), then Λ(0)

r un → Λ(0)
r u in L1

loc(R) as
n→ +∞.

Remark 6.3. Lemma 6.2 implies that Λ1u ∈ L1
loc(R∗) whenever u ∈ L∞(R) is

non-decreasing, odd and convex on (−∞, 0). This sum does not depend on r > 0
by (6.11). Moreover, one sees from (6.10), Fubini’s theorem and (2.1), that for
all ϕ ∈ D(R∗),

∫
R ϕΛ1u dx =

∫
R uΛ1ϕ dx. This means that this sum corresponds

to the distribution fractional Laplacian of u on R∗.

We deduce from the previous lemma the following one

Lemma 6.4. Let u ∈ Cb(R) be non-decreasing, odd and convex on (−∞, 0). Then,
the function Λ1u ∈ L1

loc(R∗) satisfies for all x0 > 1/2,

lim
n→+∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

|Λ1u(y)|dy = 0.

Proof. By Remark 6.3, one has Λ1u ∈ L1
loc(R∗). Let r > 0 be fixed. One has

In ≡ n−1

∫ n(x0+1/2)

n(x0−1/2)

|Λ1u(y)|dy

≤ n−1

∫ n(x0+1/2)

n(x0−1/2)

|Λ(1)
r u(y)|dy + n−1

∫ n(x0+1/2)

n(x0−1/2)

|Λ(0)
r u(y)|dy

≤ 4G1r

n2(x0 − 1/2)− nr
‖u‖∞ + sup

{
|Λ(0)
r (y)| : n(x0 − 1/2) < y < n(x0 + 1/2)

}
,

thanks to (6.6). Moreover, Λ(0)
r u is continuous, hence the supremum above is

achieved at some yn ≥ n(x0 − 1/2); hence, one has

In ≤
4G1r

n2(x0 − 1/2)− nr
‖u‖∞ +G1

∫
|z|>r

|u(yn + z)− u(yn)|
|z|2

dz,

where limn→+∞ yn = +∞. Since u is non-decreasing and bounded, it has a limit
at infinity; the dominated convergence theorem then implies that the integral term
above tends to zero as n→ +∞. It follows that limn→+∞ In = 0. �

6.3. Proof of property p5 from Theorem 1.7. We assume again without loss
of generality that u− = −u+ < 0, thanks to the transformation (6.1); hence, U0 ∈
L∞(R) is non-decreasing, odd and convex on (−∞, 0) and so is U(t) for all t > 0
by properties p2–p4 of Theorem 1.7. We proceed again in several steps.

Step 1: study of Λ1U . Before deriving the equation satisfied by U(1), we study
Λ1U .

Lemma 6.5. Let α = 1 and U be the self-similar solution from Theorem 1.5
with initial datum U0 in (1.9) for some u− = −u+ < 0. Then, for all t ≥ 0,
one has Λ1U(t) ∈ L1

loc(R∗). Moreover, Λ1U(t) converges toward Λ1U0 in L1
loc(R∗)

as t→ 0, where for all x 6= 0

Λ1U0(x) =
u+ − u−

2π2
x−1.
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Proof. By properties p2–p4 of Theorem 1.7, U(t) ∈ L∞(R) is non-decreasing, odd
and convex on (−∞, 0) for all t ≥ 0. By Remark 6.3, Λ1U(t) and Λ1U0 belong
to L1

loc(R∗). By taking 0 < r < |x|, simple computations show that

(6.12) Λ(1)
r U0(x) = 0 and Λ(0)

r U0(x) =
u+ − u−

2π2
x−1,

so that

Λ1U0(x) =
u+ − u−

2π2
x−1;

here, we have used the equalities Γ(1) = 1 and Γ(1/2) =
√
π in order to get

G1 = (2π2)−1 in (2.2)–(2.3). Moreover, Theorem 2.2 implies that U(t) → U0

as t → 0 in L1
loc(R) with ‖U(t)‖∞ ≤ ‖U0‖∞. We remark that for fixed r >

0, Λ(0)
r U(t)→ Λ(0)

r U0 in L1
loc(R) as t→ 0. It follows that for all R̃ > R > r,

lim sup
t→0

∫
R<|x|< eR |Λ

1U(t)− Λ1U0| dx

≤ lim sup
t→0

∫
R<|x|< eR |Λ

(1)
r U(t)− Λ(1)

r U0| dx,

= lim sup
t→0

∫
R<|x|< eR |Λ

(1)
r U(t)| dx by (6.12),

≤ lim sup
t→0

4G1r‖U(t)‖∞(R− r)−1 by (6.6) in Lemma 6.2,

≤ 4G1r‖U0‖∞(R− r)−1.

The proof is completed by letting r → 0. �

Step 2: equation satisfied by U(1). By using η(r) = ±r in Definition 2.1, we
obtain (in a classical way) that entropy solutions to (1.1) are distribution solu-
tions, i.e.

(6.13) Ut + UUx + Λ1U = 0 in D′(R× (0,+∞)).

By property p1 of Theorem 1.7, one has U(1) ∈ W 1,∞(R). By the self-similarity
U(x, t) = U

(
x
t , 1
)
, one has at least Ut, Ux ∈ L∞loc(R × (0,+∞)) together with the

following equalities for a.e. t > 0 and x ∈ R

Ut(x, t) = −xt−2Ux

(x
t
, 1
)
, Ux(x, t) = t−1Ux

(x
t
, 1
)
.

By Lemma 6.5, we have also Λ1U(1) ∈ L1
loc(R∗). Using again the self-similarity,

it is easy to deduce from (2.1) that Λ1U ∈ L1
loc(R∗ × (0,+∞)) with for a.e. t > 0

and x ∈ R∗,

Λ1U(x, t) = t−1Λ1U
(x
t
, 1
)

(in fact, Λ1U ∈ L∞loc(R × (0,+∞)) by (6.13) so that Λ1U(1) ∈ L∞loc(R)). Putting
these formulas into (6.13), we get for a.e. t > 0 and x ∈ R,

−xt−2Ux

(x
t
, 1
)

+ t−1U
(x
t
, 1
)
Ux

(x
t
, 1
)

+ t−1Λ1U
(x
t
, 1
)

= 0.

Multiplying by t and changing the variable by y = t−1x, one infers that the pro-
file U(y) ≡ U(y, 1) satisfies for a.e y ∈ R

(6.14) (U(y)− y)Uy(y) + Λ1U(y) = 0.

Step 3: reduction of the problem. By properties p1–p4, the function Uy ∈ L∞(R)
is non-negative, even and non-decreasing on (−∞, 0). Then, Lemma 6.1 shows that
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the proof of p5 can be reduced to the proof of the following property:

(6.15) ∀x0 > 1/2 lim
n→+∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

y2Uy(y)dy =
u+ − u−

2π2
.

Moreover, equality (6.14) implies that Uy(y) = Λ1U(y)
y−U(y) (for a.e. y > ‖U‖∞) and

Lemma 6.4 implies that

lim
n→+∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

|Λ1U(y)| dy = 0;

hence, since y2

y−U(y) = y+O(1) as |y| → +∞, one deduces that (6.15) is equivalent
to the following property:

(6.16) ∀x0 > 1/2 lim
n→+∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

yΛ1U(y) dy =
u+ − u−

2π2
.

Conclusion: proof of (6.16). Let us change the variable by y = nx. Easy
computations show that

n−1

∫ n(x0+1/2)

n(x0−1/2)

yΛ1U(y) dy = n−1

∫ x0+1/2

x0−1/2

nxΛ1U
( x

n−1
, 1
)
ndx,

=
∫ x0+1/2

x0−1/2

xΛ1U(x, n−1) dx.

Since lemma 6.5 implies that {Λ1U(x, n−1)}n∈N converges in L1((x0−1/2, x0+1/2))
toward u+−u−

2π2 as n → +∞, the proofs of (6.16) and thus of property p5 are
complete.

6.4. Duhamel’s representation of the self-similar profile. It remains to prove
Theorem 1.8, for which we need the following result.

Proposition 6.6. Let α = 1 and let U be the self-similar solution of Theorem 1.5
with u± = ±1/2. Then, for all x ∈ R, we have

(6.17) U(x, 1) = −1/2 +H1(x, 1)

−
∫ 1/2

0

∂xp1(1− τ) ∗ U
2(·/τ, 1)

2
(x) dτ

−
∫ 1

1/2

τ−1 p1(1− τ) ∗ (U(·/τ, 1)Ux(·/τ, 1)) (x) dτ

(where H1(x, 1) =
∫ x
−∞ p1(y, 1)dy).

Proof. The proof proceeds in several steps.
Step 1: Duhamel’s representation of the approximate solution. Notice that for-

mula (6.17) makes sense. Indeed, by the homogeneity property (3.5), we have for
all t > 0

(6.18) ‖∂xp1(t)‖1 = C0t
−1,

where C0 ≡ ‖∂xP1(1)‖1 is finite by (3.6). Hence, the integral
∫ 1/2

0
. . . dτ in (6.17) is

well-defined since the integration variable τ is far from the singularity at τ = 1. In
the same way, since U(1) ∈W 1,∞(R), the integral

∫ 1

1/2
. . . dτ is also well-defined.

Let now uε be the solution to the regularized equation (3.1), with initial da-
tum U0 in (1.9). The goal is to pass to the limit in formula (3.3) at time t = 1,
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namely

(6.19) uε(x, 1) = Sε1(1)U0(x)

−
∫ 1/2

0

p2(ε(1− τ)) ∗ ∂xp1(1− τ) ∗ (uε(τ))2

2
(x) dτ

−
∫ 1

1/2

p2(ε(1− τ)) ∗ p1(1− τ) ∗ (uε(τ)uεx(τ)) (x) dτ,

for all x ∈ R.
Step 2: pointwise limits and bounds of the integrands. We first remark that

lim
x→±∞

uε(x, t) = u± .

Indeed, we know that uε is non-decreasing and it can be shown for instance that
uε − U0 ∈ L1(R). This fact can be proved by splitting methods for instance.

Hence, thanks to Dini theorem for cumulative distribution functions, we know
that for fixed t > 0, limε→0 u

ε(t) converges toward U(t) uniformly on R.
Let us next recall that ∂xp1(t) ∈ L1(R), so that for fixed τ ∈ (0, 1)

lim
ε→0

∂xp1(1− τ) ∗ (uε(τ))2

2
= ∂xp1(1− τ) ∗ (U(τ))2

2
uniformly on R.

It follows from classical approximate unit properties of the heat kernel p2(x, t) that
for all τ ∈ (0, 1),

(6.20) lim
ε→0

p2(ε(1 − τ)) ∗ ∂xp1(1 − τ) ∗ (uε(τ))2

2
= ∂xp1(1 − τ) ∗ (U(τ))2

2
uniformly on R. In particular, for all τ ∈ (0, 1), we have also

(6.21) lim
ε→0

p2(ε(1 − τ)) ∗ p1(1 − τ) ∗ (uε(τ)uεx(τ)) = p1(1 − τ) ∗ (U(τ)Ux(τ))

uniformly on R, since

p2(ε(1− τ)) ∗ ∂xp1(1− τ) ∗ (uε(τ))2

2
= p2(ε(1− τ)) ∗ p1(1− τ) ∗ (uε(τ)uεx(τ))

and ∂xp1(1− τ) ∗ U
2(τ)
2 = p1(1− τ) ∗ (U(τ)Ux(τ)).

Moreover, by (3.7), (3.8) with p = +∞ and (6.18), one can see that the integrands
of (6.19) are pointwise bounded by

(6.22)
∥∥∥p2(ε(1− τ)) ∗ ∂xp1(1− τ) ∗ (uε(τ))2

2

∥∥∥
∞
≤ C0(1− τ)−1 ‖u0‖2∞

2
,

and

(6.23)
∥∥∥p2(ε(1− τ)) ∗ p1(1− τ) ∗ (uε(τ)uεx(τ))

∥∥∥
∞
≤ τ−1‖u0‖∞.

Step 3: passage to the limit. Recall that

lim
ε→0

Sε1(1)U0 = S1(1)U0 = p1(1) ∗ U0

in Lp(R) for all p ∈ [1,+∞]. Let us recall that U0(x) = ±1/2 for ±x ≥ 0 and∫
R p1(y, 1)dy = 1, so that for all x ∈ R

1/2 + p1(1) ∗ U0(x) = p1(1) ∗ (U0 + 1/2)(x) =
∫ x

−∞
p1(y, 1)dy = H1(x, 1).

We have proved in particular that limε→0 S
ε
1(1)U0 = −1/2 +H1(1) pointwise on R.
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In order to pass to the limit in the integral terms of (6.19), we use the Lebesgue
dominated convergence theorem. We deduce from (6.20) and (6.22) that for all x ∈
R, the first integral term converges toward∫ 1/2

0

∂xp1(1− τ) ∗ (U(τ))2

2
(x) dτ

as ε→ 0. In the same way, we deduce from (6.21) and (6.23) that the last integral
term converges toward ∫ 1

1/2

p1(1− τ) ∗ (U(τ)Ux(τ)) (x) dτ.

The limit as ε→ 0 in (6.19) then implies that for all x ∈ R,

U(x, 1) = −1/2 +H1(x, 1)−
∫ 1/2

0

∂xp1(1− τ) ∗ U
2(τ)
2

(x) dτ

−
∫ 1

1/2

p1(1− τ) ∗ (U(τ)Ux(τ)) (x) dτ.

This completes the proof of (6.17), thanks to the self-similarity of U . �

Proof of Theorem 1.8. We have to prove that for all r > 0

(6.24) P(|X − c| < r) < P(|Y − 0| < r).

Let us verify that c and 0 are the medians of X and Y , respectively. First, a simple
computation allows to see that p1(x, 1), defined by Fourier transform by p̂1(ξ, 1) =
e−|ξ|, also satisfies formula (1.12). This density of probability is even and the
median of Y is null. Second, by property p3 of Theorem 1.7, Ux(1) is symmetric
w.r.t. to the axis {x = c} and the median of X is c = u−+u+

2 .
In particular, the centered random variable X − c admits a density being the

even function
fX−c(x) = Ux(x+ c, 1).

It becomes clear that (6.24) is equivalent to the following property

(6.25) ∀x > 0 FX−c(x) < FY (x),

where FX−c and FY are the cumulative distribution functions of X − c and Y ,
respectively.

Let us compute these functions. First, we have seen above that fX−c(x) =
Vx(x, 1), where V is defined by the transformation (6.1). Let us recall that V is
the self-similar solution to (1.1) with initial datum V (x, 0) = ±1/2 for ±x > 0.
Hence, FX−c is equal to V (·, 1) up to an additive constant, which has to be 1/2 by
property p2 of Theorem 1.7; that is to say, we have FX−c(x) = 1/2 + V (x, 1) for
all x ∈ R. Second, we defined H1 in Proposition 6.6 such that FY (x) = H1(x, 1).
By this proposition, we have for all x ∈ R,

FX−c(x) = FY (x)− g(x),

where g(x) is defined by

(6.26) g(x) ≡
∫ 1/2

0

∂xp1(1− τ) ∗ V
2(·/τ, 1)

2
(x) dτ

+
∫ 1

1/2

τ−1 p1(1− τ) ∗ (V (·/τ, 1)Vx(·/τ, 1)) (x) dτ.
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One concludes that the proof of (6.25), and thus of (6.24), is equivalent to the proof
of the positivity of g(x) for positive x. But, by definition of g, it suffices to prove
that for each τ ∈ (0, 1) and x > 0,

(6.27) p1(1− τ) ∗ (V (·/τ, 1)Vx(·/τ, 1)) (x) > 0.

Indeed, the second integral term in (6.26) would be positive, and the first integral
term also, since for fixed τ ,

∂xp1(1− τ) ∗ V
2(·/τ, 1)

2
(x) = τ−1 p1(1− τ) ∗ (V (·/τ, 1)Vx(·/τ, 1)) (x).

Let us end by proving inequality (6.27), thus concluding Theorem 1.8. It is
clear that the function V (·/τ, 1)Vx(·/τ, 1) is odd, since V (1) is odd. Moreover,
we already know that Vx(1) is non-negative, even and non-increasing on (0,+∞),
since V (1) is non-decreasing, odd and concave on [0,+∞). By property p5, we
conclude that Vx(1) is positive a.e. on (0,+∞), and thus on R as even function. In
particular, V (1) is increasing and for all x > 0, V (x, 1) > V (0, 1) = 0.

To summarize, V (·/τ, 1)Vx(·/τ, 1) is odd and positive on (0,+∞). Moreover, it
is clear that p1(1 − τ) is positive, even and decreasing on (0,+∞), see (1.12). A
simple computation then implies that the convolution product in (6.27) is effectively
positive for positive x. The proof of Theorem 1.8 is complete. �

Appendix A. A key estimate

Here is an estimate from the lines of [14, Proof of Lemma 3.1].

Lemma A.1 (inspired from [14]). Let α ∈ (0, 2] and let us consider a function v
such that for all a > 0, v ∈ C∞b (R × (a,+∞)) ∩ L∞(0,+∞;L1(R)). Assume that
for all p ∈ [2,+∞) and t > 0,

(A.1)
∫

R
vt|v|p−2v dx+

∫
R
|v|p−2vΛαvdx ≤ 0.

Then there is a constant C = C(α) > 0 such that for all p ∈ [1,+∞] and all t > 0

(A.2) ‖v(t)‖p ≤ Ct−
1
α (1− 1

p )‖v‖L∞(0,+∞;L1).

The proof is based on the so-called Nash and Strook-Varopoulos inequalities.

Lemma A.2 (Nash inequality). Let α > 0. There exists a constant CN > 0 such
that for all w ∈ L1(R) satisfying Λα/2w ∈ L2(R), one has

‖w‖2(1+α)
2 ≤ CN‖Λα/2w‖22‖w‖2α1 .

Lemma A.3 (Strook-Varopoulos inequality). Let α ∈ (0, 2]. For all p ∈ [2,+∞)
and w ∈ Lp−1(R) satisfying Λαw ∈ L∞(R), one has∫

R
|w|p−2wΛαw dx ≥ 4(p− 1)

p2

∫
R

(
Λα/2|w|p/2

)2

dx.

Remark A.4. (1) In the case α = 2, simple computations show that one has an
equality in place of an inequality.

(2) As suggested by the proof below, the second lemma is valid for all p ∈
[1,+∞) with w,Λαw ∈ Lp(R), as well as in the muldimensional case and for
more general operator Λα satisfies the postive maximum principle (see [10]).

Proofs and references for these results can be found in [14, 13]. Let us give them
for the sake of completeness.
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Proof of Lemma A.2. Let us first prove the result for ϕ ∈ D(R). By Plancherel
equality, one has

‖ϕ‖22 = ‖ϕ̂‖22 ≤
∫
|ξ|<r

|ϕ̂(ξ)|dξ + r−α
∫
|ξ|≥r

|ξ|α|ϕ̂(ξ)|2dξ,

for all r > 0. Then, one gets

‖ϕ‖22 ≤ 2r‖ϕ̂‖2∞ + r−α‖Λα/2ϕ‖22 ≤ 2r‖ϕ‖21 + r−α‖Λα/2ϕ‖22.

Now an optimization w.r.t. r > 0 gives the result for ϕ smooth. The result for w
as in the lemma is deduced by approximation. �

Proof of Lemma A.3. Let us proceed in several steps.

Step 1: a first inequality. Let us prove that for all β, γ > 0 such that β + γ = 2,
one has for all non-negative reals a, b

(A.3) (aβ − bβ)(aγ − bγ) ≥ βγ(a− b)2.

Let us assume without loss of generality that a > b > 0 and β ≤ γ. Developping
each members of (A.3), one sees that this equation is equivalent to

(1− βγ)
(
a2 + b2

)
?
≥ aβbγ + aγbβ − 2βγab = (ab)β

(
a2(1−β) + b2(1−β) − 2βγ(ab)1−β

)
.

Since one has 1− βγ = (1− β)2 and

a2(1−β) + b2(1−β) − 2βγ(ab)1−β =
(
a1−β − b1−β

)2
+ 2(1− βγ)(ab)1−β ,

one deduces that (A.3) is equivalent to

(1− β)2
(
a2 + b2 − 2ab

)
= (1− β)2(a− b)2

?
≥ (ab)β

(
a1−β − b1−β

)2
;

that is to say, one has to prove that for all β ∈ (0, 1] and a > b > 0

(1− β)(a− b)
?
≥ (ab)β/2

(
a1−β − b1−β

)
.

Dividing by b > 0 and denoting x the variable a
b , one has to prove that for all β ∈

(0, 1] and x > 1

g(x) ≡ (1− β)(x− 1)− x1−β/2 + xβ/2
?
≥ 0.

Since g is continuous w.r.t. x ∈ [1,+∞) with g(1) = 0, it suffices to prove that g′(x) ≥
0 for all x > 1. One has

g′(x) = 1− β − (1− β/2)x−β/2 +
β

2
x−1+β/2.

Again g′ is continuous with g(1) = 0, so that the proof of (A.3) reduces finally to
the proof of the non-negativity of g′′(x) for all x > 1. One has

g′′(x) =
β

2
(1− β/2)x−1−β/2 +

β

2
(−1 + β/2)x−2+β/2,

so that g′′(x) ≥ 0 is equivalent to x1−β ?
≥ 1, which is true for β ∈ (0, 1] and x > 1.

The proof of (A.3) is complete.
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Conclusion. Take ψ ∈ Cc(R) and assume ψ ≥ 0. For all r > 0 and β, γ > 0, one
has ∫

R
ψγΛ(0)

r ψβ dx

= Gα

∫ ∫
|x−y|>r

(ψβ(x)− ψβ(y))ψγ(x)
|x− y|1+α

dxdy,

= Gα

∫ ∫
|x−y|>r

(ψβ(y)− ψβ(x))ψγ(y)
|x− y|1+α

dxdy

by changing the variable (x, y)→ (y, x) and using the fact that the measure dxdy
|x−y|

is symmetric. It follows that∫
R
ψγΛ(0)

r ψβ dx =
Gα
2

∫ ∫
|x−y|>r

(ψβ(y)− ψβ(x))(ψγ(y)− ψγ(x))
|x− y|1+α

dxdy.

On using Step 1, one deduces that for all ψ ∈ Cc(R), ψ ≥ 0, all β, γ > 0, β + γ = 2
and all t > 0, one has

(A.4)
∫

R
ψγΛ(0)

r ψβ dx ≥ βγ
∫

R
ψΛ(0)

r ψ dx.

Take now ϕ ∈ D(R), ϕ ≥ 0 and p > 1. Let us choose ψ = ϕp/2, β = 2/p
and γ = 2− β = 2

(
1− 1

p

)
. Equation (A.4) gives:∫

R
ϕp−1Λ(0)

r ϕdx ≥ 4(p− 1)
p2

∫
R
ϕp/2Λ(0)

r ϕp/2 dx.

Hence, for ϕ ∈ D(R) not necessarily non-negative, Kato inequality (with η(·) ≡
| · | convex) implies∫

R
|ϕ|p−2ϕΛ(0)

r ϕdx

≥
∫

R
|ϕ|p−1Λ(0)

r |ϕ| dx,

≥ 4(p− 1)
p2

∫
R
|ϕ|p/2Λ(0)

r |ϕ|p/2 dx,

=
4(p− 1)
p2

Gα
2

∫ ∫
|x−y|>r

(|ϕ|p/2(y)− |ϕ|p/2(x))2

|x− y|1+α
dxdy.

Passing to the limit as r → 0, one concludes that∫
R
|ϕ|p−2ϕΛαϕdx

≥ Gα
2

∫
R

∫
R

(|ϕ|p/2(y)− |ϕ|p/2(x))2

|x− y|1+α
dxdy,

=
4(p− 1)
p2

∫
R

(
Λα/2|ϕ|p/2

)2

dx.

This proves the result for ϕ ∈ D(R) non-negative. The proof for w as in the lemma
is complete by approximation. �

Before proving Lemma A.1, one needs to establish a relationship between the
differential inequality (A.1) and the Lp-norm in space of v:
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Lemma A.5. Let v such that v ∈ C∞b (R × (a,+∞)) ∩ L∞((0,+∞);L1(R)) for
all a > 0. Then for all p ∈ [2,+∞), the function t > 0 → ‖v(t)‖pp is locally
Lipschitz-continuous with for a.e. t > 0

(A.5)
1
p

d

dt
‖v(t)‖pp =

∫
R
vt(x, t)|v(x, t)|p−2v(x, t) dx.

Proof. Let {ϕn}n∈N ∈ D(R× (0,+∞)) be a sequence such that
limn ϕn = v in Ck(K) for all compact K ⊂ R× (0,+∞) and k ∈ N,
{ϕn}n∈N is bounded in Ck(R× (a,+∞)) for all a > 0 and k ∈ N,
|ϕn| ≤ |v| for all n ∈ N.

(such a sequence is easily constructed by taking ϕn ≡ vθn, with 0 ≤ θn ≤ 1, θn → 1
in Ck(K) and {θn}n∈N bounded in Ck(R× (a,+∞))). One has for all p ∈ [2,+∞)
and t, s > 0,

‖ϕn(t)‖pp − ‖ϕn(s)‖pp
p

=
∫

R

∫ t

s

|ϕn|p−2ϕn∂τϕn dxdτ.

By the dominated convergence theorem, one gets

lim
n→+∞

‖ϕn(t)‖pp − ‖ϕn(s)‖pp
p

= lim
n→+∞

∫
R

∫ t

s

|ϕn|p−2ϕn∂τϕn dxdτ,

=
∫

R

∫ t

s

vτ |v|p−2v dxdτ.

But the dominated convergence theorem also allows to prove that

lim
n→+∞

‖ϕn(t)‖pp − ‖ϕn(s)‖pp
p

=
‖v(t)‖pp − ‖v(s)‖pp

p
.

By uniqueness of the limit, one deduces that

‖v(t)‖pp − ‖v(s)‖pp
p

=
∫ t

s

(∫
R
vτ |v|p−2v dx

)
dτ.

Since τ →
∫

R vτ (x, τ)|v(x, τ)|p−2v(x, τ) dx is bounded outside all neighborhood
of τ = 0, the proof is complete. �

Proof of Lemma A.1. The proof follows [14, Proof of Lemma 3.1]. One deduces
from (A.1) and Lemmata A.3 and A.5 that for all p ∈ [2,+∞) and a.e. t > 0,

(A.6)
d

dt
‖v(t)‖pp + 4

(
1− 1

p

)∫
R

(
Λα/2|v|p/2

)2

dx ≤ 0.

Let us now prove (A.2) for p = 2n by induction on n ≥ 1. In the sequel, C0 denotes
the constant ‖v‖L∞(0,+∞,L1). For p = 2, one uses (A.6) and Lemma A.2 to get:

d

dt
‖v(t)‖22 + 2C−1

N C−2α
0 ‖v(t)‖2(1+α)

2 ≤ 0,

which leads to

‖v(t)‖2 ≤ C1C0t
− 1

2α with C1 ≡
(
CN
2α

) 1
2α

.

Suppose now that for n ≥ 2 there is a constant Cn such that for all t > 0

‖v(t)‖2n ≤ CnC0t
− 1
α (1−2−n).
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Then, for p = 2n+1, (A.6) and Lemma A.2 applied to w = v2n gives:

d

dt
‖v(t)‖2

n+1

2n+1 + 4
(
1− 2−n−1

)
C−1
N ‖v‖

−2n+1α
2n ‖v(t)‖2

n+1(1+α)
2n+1 ≤ 0.

By the inductive hypothesis, one gets

d

dt
‖v(t)‖2

n+1

2n+1 + 4
(
1− 2−n−1

)
C−1
N (CnC0)−2n+1α

t2
n+1−2

(
‖v(t)‖2

n+1

2n+1

)(1+α)

≤ 0,

which leads to

‖v(t)‖2n+1 ≤ Cn+1C0t
− (1−2−n−1)

α with Cn+1 = Cn

(
CN
2α

) 2−n−1
α (

2n2−n−1
) 1
α

.

Now it rests to prove that lim supn→+∞ Cn < +∞; indeed, the limit n → +∞ in
the inequality above will gives (A.2) for p = +∞ and the proof of the lemma will
be complete by interpolation of the L1- and L∞-norms.

One has

lnCn+1 − lnCn = ln
(
Cn+1

Cn

)
=

2−n−1

α
ln
(
CN
2α

)
+
n2−n−1

α
ln 2 ≡ un,

where the serie Σun is convergent. Summing up all these inequalities for n =
1, . . . , N , one gets for all N ≥ 1, lnCN+1 = lnC1 + ΣNn=1un. The limit N → +∞
then gives:

lim
n→+∞

lnCn = lnC1 + Σ+∞
k=1uk ∈ R,

so that limn→+∞ Cn exits in R. �

Appendix B. Proof of Theorem 4.1

Inequality from the following proposition is the starting point to prove Theorem
4.1.

Proposition B.1. Let u0, ũ0 ∈ L∞(R) and ε > 0. Let uε and ũε be the solutions
to (4.1)–(4.2) with the initial data u0 and ũ0, resp. Then

(B.1)
∫ R

−R
|uε(x, t)− ũε(x, t)| dx ≤

∫ R+Lt

−R−Lt
Sεα(t)|u0 − ũ0|(x) dx

for all t > 0 and R > 0, where

(B.2) L = max
z∈[−M,M ]

|f ′(z)| and M = max {‖u0‖∞, ‖ũ0‖∞} .

Even if this result does not appear in [1], its proof is based on ideas introduced
in [1, Thm 3.2]. This is the reason why we only sketch the proof of Proposition B.1;
the reader is referred to [1] for more details.

Sketch of proof of Proposition B.1. The solution uε of (4.1)–(4.2) satisfies

(B.3)
∫

R

∫ +∞

a

(
η(uε)ϕt + φ(uε)ϕx

)
dxdt

+
∫

R

∫ +∞

a

(
− η(uε)Λ(α)

r ϕ− ϕη′(uε) Λ(0)
r uε

)
dxdt

− ε
∫

R

∫ +∞

a

(η(uε))x ϕx dxdt+
∫

R
η(uε(x, a))ϕ(x, a) dx ≥ 0,

for all ϕ ∈ D(R × [0,+∞)) non-negative, η ∈ C2(R) convex, φ′ = η′f ′ and a, r >
0. To show this inequality, it suffices to mutliply (4.1) by η′(uε)ϕ, use the Kato
inequalities (2.4) and integrate by parts over the domain R× [a,+∞). Now, let us
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introduce the so-called Kruzhkov entropy-flux pairs (ηk, φk) defined for fixed k ∈ R
and all u ∈ R by

ηk(u) ≡ |u− k| and φk(u) ≡ sign(u− k) (f(u)− f(k)) ,

where “sign” denotes the sign function defined by

sign(u) ≡


1, u > 0,
−1, u < 0,
0, u = 0.

Consider a sequence {ηnk }n∈N ⊂ C2(R) of convex functions converging toward ηk
locally uniformly on R and such that (ηnk )′ → sign(· − k) pointwise on R by being
bounded by 1, as n → +∞. The associated fluxes φnk (u) ≡

∫ u
k
η′k(τ)f ′(τ)dτ then

converge toward φk pointwise on R, as n → +∞, by being pointwise bounded
by |φnk (u)| ≤ sign(u− k)

∫ u
k
|f ′(τ)|dτ . By the dominated convergence theorem, the

passage to the limit in (B.3) with (η, φ) = (ηnk , φ
n
k ) gives

(B.4)
∫

R

∫ +∞

a

(
|uε − k|ϕt + sign(uε − k) (f(uε)− f(k))ϕx

)
dxdt

+
∫

R

∫ +∞

a

(
− |uε − k|Λ(α)

r ϕ− ϕ sign(uε − k) Λ(0)
r uε

)
dxdt

− ε
∫

R

∫ +∞

a

sign(uε − k)uεx ϕx dxdt+
∫

R
|uε(x, a)− k|ϕ(x, a) dx ≥ 0,

for all ϕ ∈ D(R × [0,+∞)) non-negative, a, r > 0 and k ∈ R. In the same way,
similar inequalities hold true for ũε.

On the basis of these inequalities, we claim that the well-known doubling vari-
able technique of Kruzhkov allows us to compare uε and ũε. To do so, we have
to copy almost the same computations from [1], since the beginning of [1, Sub-
section 4.1] until [1, equation (4.11)] with u = uε and v = ũε. The only dif-
ference comes from the term −ε

∫
R
∫ +∞
a

sign(uε − k)uεx ϕx dxdt in (B.4) and the
term −ε

∫
R
∫ +∞
a

sign(ũε−k) ũεx ϕx dxdt in the entropy inequalities of ũε. But, these
new terms do not present any particular difficulty, since uε and ũε are smooth. Ar-
guing as in [1], one can show that for all φ ∈ D(R×[0,+∞)) non-negative and a > 0,∫

R

∫ +∞

a

|uε − ũε| (φt + L|φx| − Λαφ) dxdt

− ε
∫

R

∫ +∞

a

sign(uε − ũε) (uε − ũε)x φx dxdt

+
∫

R
|uε(x, a)− ũε(x, a)|φ(x, a) dx ≥ 0,

where L is defined in (B.2). Since |uε−ũε| is Lipschitz-continuous on R×[a,+∞), its
a.e. derivative is equal to its distribution derivative with sign(uε− ũε) (uε− ũε)x =(
|uε − ũε|

)
x
. By integrating by parts, we deduce that∫

R

∫ +∞

a

|uε − ũε| (φt + L|φx| − g[φ]) dxdt

+
∫

R
|uε(x, a)− ũε(x, a)|φ(x, a) dx ≥ 0,

where g[φ] ≡
(
Λα − ε∂2

x

)
φ. Passing to the limit as a→ 0, thanks to the continuity

with values in L1
loc(R) of uε and ũε in Theorem 3.1, one can prove that for all
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non-negative φ ∈ D(R× [0,+∞))

(B.5)
∫

R

∫ +∞

0

|uε − ũε| (φt + L|φx| − g[φ]) dxdt

+
∫

R
|u0(x)− ũ0(x)|φ(x, 0) dx ≥ 0.

This is almost the same equation as that in [1, equation (4.11)] with the diffusive
operator g = Λα − ε∂2

x instead of g = Λα. Hence, we can argue exactly as in [1,
Subsection 4.2] replacing the kernel of Λα by the kernel of the new operator Λα −
ε∂2
x. This gives the desired inequality (B.1) in place of the inequality [1, equation

(3.1)]. �

Proof of Theorem 4.1. Now, we are in a position to prove the convergence result in
Theorem 4.1. The proof follows two steps: first we show the relative compactness
of the family of functions F ≡ {uε : ε ∈ (0, 1]} and, next, we pass to the limit in
entropy inequalities.

Step 1: compactness. Let us prove that

(B.6) F is relatively compact in F ≡ C([0, T ];L1([−R,R]))

for all T,R > 0. The space F being a Banach space, the statement (B.6) is equiv-
alent to the precompactness of F :

∀µ > 0 ∃Fµ ⊆ F relatively compact such that

lim
µ→0

sup
uε∈F

distF (uε,Fµ) = 0.(B.7)

To construct Fµ, we consider an approximation of the Dirac mass

ρµ(x) ≡ µ−1ρ(µ−1x)

with a smooth, non-negative function ρ = ρ(x), supported in [−1, 1] and such that∫
R ρ(x) dx = 1. Then we define

Fµ ≡
{
uεµ : ε ∈ (0, 1]

}
,

where uεµ ≡ uε ∗x ρµ and ∗x denotes the convolution product with respect to the
space variable.

First, we have to prove that Fµ is relatively compact in F . By estimate (3.7), it
is clear that

(B.8) ‖uεµ‖∞ ≤ ‖u0‖∞ and ‖∂xuεµ‖∞ ≤ ‖u0‖∞‖∂xρµ‖1.
Moreover, using equation (4.1) satisfied by uε we obtain

(B.9) ∂tu
ε
µ = −Λαuεµ + ε∂2

xu
ε
µ − (f(uε))x ∗x ρµ = 0.

Applying the equalities Λαuεµ = Λα(uε ∗x ρµ) = uε ∗x (Λαρµ) we see that

‖Λαuεµ‖∞ ≤ ‖uε‖∞‖Λαρµ‖1 ≤ ‖u0‖∞‖Λαρµ‖1.
The same way, one can prove that

‖∂xuεµ‖∞ ≤ ‖u0‖∞‖∂2
xρµ‖1 and ‖(f(uε))x ∗x ρµ‖∞ ≤ C(‖u0‖∞)‖∂xρµ‖1.

Consequently, it follows from equation (B.9) that for every fixed µ > 0, the time
derivative of uεµ is bounded independently of ε ∈ (0, 1]. By (B.8) and the Ascoli-
Arzelà Theorem, we infer that Fµ is relatively compact in Cb([−R,R]× [0, T ]) and,
a fortiori, in F .

Next, we have to prove that limµ→0 supuε∈F distF (uε,Fµ) = 0. Applying Theo-
rem B.1 to the following simple inequality

‖uε(t)− uεµ(t)‖L1([−R,R]) ≤
∫ R

−R

∫ µ

−µ
|uε(x, t)− uε(x− y, t)|ρµ(y) dxdy
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we get

‖uε(t)− uεµ(t)‖L1([−R,R]) ≤ sup
|y|≤µ

∫ R

−R
|uε(x, t)− uε(x− y, t)| dx,

≤ sup
|y|≤µ

∫ R+Lt

−R−Lt
Sεα(t)vy0 (x) dx,

where vy0 (x) = |u0(x)−u0(x−y)|. Consequently, by Lemma C.1 in Appendix C, we
see that there exists a modulus of continuity ω such that for all r > 0 and ε ∈ (0, 1]

‖uε − uεµ‖F ≤ sup
|y|≤µ

∫ R+LT+r

−R−LT−r
vy0 (x) dx+ ‖vy0‖∞ω(1/r).

The continuity of the translation in L1 implies that

lim
µ→0

sup
|y|≤µ

∫ R+LT+r

−R−LT−r
vy0 (x) dx = 0.

Hence, it is clear that limµ→0 supε∈(0,1] ‖uε − uεµ‖F = 0, which proves (B.7) and
thus (B.6).

Conclusion: passage to the limit. It follows from the first step that there
exists v ∈ C([0,+∞);L1

loc(R)) such that limε→0 u
ε = v (up to a subsequence)

in C([0, T ];L1
loc(R)) for all T > 0. Passing to another subsequence, if neces-

sary, we can assume that uε → v a.e. From inequality (3.7), we deduce that
v ∈ L∞(R × (0,+∞)). What we have to prove is that v = u, however, by the
uniqueness of entropy solutions (cf. Theorem 2.2), it suffices to show that v is an
entropy solution to (2.7)–(2.8).

Let η ∈ C2(R) be convex, φ′ = η′f ′ and r > 0. Integrating by parts the
term −ε

∫
R
∫ +∞
a

(η(uε))x ϕx dxdt in (B.3) and passing to the limit a → 0 in this
inequality, we get∫

R

∫ +∞

0

(
η(uε)ϕt + φ(uε)ϕx − η(uε)Λ(α)

r ϕ− ϕη′(uε) Λ(0)
r uε

)
dxdt

+
∫

R
η(u0(x))ϕ(x, 0) dx ≥ −ε

∫
R

∫ +∞

0

η(uε)ϕxx dxdt.

Finally, let us recall that uε → v a.e. as ε→ 0 and that uε is bounded in L∞-norm
by ‖u0‖∞. Hence, the Lebesgue dominated convergence theorem allows us to pass
to the limit, as ε→ 0, in the inequality above and to deduce that∫

R

∫ +∞

0

(
η(v)ϕt + φ(v)ϕx−η(v)Λ(α)

r ϕ− ϕη′(v) Λ(0)
r v

)
dxdt

+
∫

R
η(u0(x))ϕ(x, 0) dx ≥ 0.

Hence, according to Definition 2.1 and Theorem 2.2, the function v is the unique
entropy solution to (2.7)–(2.8). The proof of Theorem 4.1 is complete. �

Appendix C. Additional technical lemmata

Lemma C.1. There exists a modulus of continuity ω such that for all v0 ∈ L∞(R),
all T,R, r > 0, and all ε ∈ (0, 1], we have

sup
t∈[0,T ]

∫ R+Lt

−R−Lt
Sεα(t)|v0|(x) dx ≤

∫ R+LT+r

−R−LT−r
|v0(x)| dx+ ‖v0‖∞ω (1/r) .
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Proof. First, we write

sup
t∈[0,T ]

∫ R+Lt

−R−Lt
Sεα(t)|v0|(x) dx

= sup
t∈[0,T ]

∫ R+Lt

−R−Lt
pα(t) ∗ p2(εt) ∗ |v0|(x) dx

≤ sup
s∈[0,T ]

sup
t∈[0,T ]

∫ R+Lt

−R−Lt
pα(t) ∗ p2(εs) ∗ |v0|(x) dx.

(C.1)

Now, for every s ∈ [0, T ], we estimate from above the following function

M(s) ≡ sup
t∈[0,T ]

∫ R+Lt

−R−Lt
pα(t) ∗ w0(x) dx,

where w0 ≡ p2(εs) ∗ |v0|. Using properties of the kernel pα and its self-similarity
(see (3.5)) we obtain∫ R+Lt

−R−Lt
pα(t) ∗ w0(x) dx =

∫
|x|≤R+Lt

∫
|y|≤r/2

pα(y, t)w0(x− y) dxdy

+
∫
|x|≤R+Lt

∫
|y|≥r/2

pα(y, t)w0(x− y) dxdy

≤‖pα(t)‖1
∫ R+Lt+r/2

−R−Lt−r/2
|w0(x)| dx

+ ‖w0‖∞2(R+ Lt)
∫
|y|≥r/2

pα(y, t) dy

=
∫ R+Lt+r/2

−R−Lt−r/2
|w0(x)| dx

+ ‖w0‖∞2(R+ Lt)
∫
|x|≥t−

1
α r/2

pα(x, 1) dx.

Computing the supremum with respect to t ∈ [0, T ] we infer that

M(s) ≤
∫ R+LT+r/2

−R−LT−r/2
|w0(x)| dx+ ‖w0‖∞ωα(1/r),

where ωα : [0,+∞)→ (0,+∞) is defined by

ωα(1/r) ≡ (2R+ 2LT )
∫
|x|≥T−

1
α r/2

pα(x, 1) dx.

It is clear that the modulus of continuity ωα is non-decreasing and satisfies

lim
r→+∞

ωα(1/r) = 0.

Finally, since ‖w0‖∞ = ‖p2(εs) ∗ |v0|‖∞ ≤ ‖v0‖∞, we obtain

M(s) ≤
∫ R+LT+r/2

−R−LT−r/2
|w0(x)| dx+ ‖v0‖∞ωα(1/r).
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Analogous computations show now that∫ R+LT+r/2

−R−LT−r/2
|w0(x)| dx =

∫ R+LT+r/2

−R−LT−r/2
p2(εs) ∗ |v0|(x) dx

≤
∫ R+LT+r

−R−LT−r
|v0(x)| dx+ ‖v0‖∞ω2(

√
ε/r)

≤
∫ R+LT+r

−R−LT−r
|v0(x)| dx+ ‖v0‖∞ω2(1/r),

because ε ≤ 1.
Finally, with the new modulus of continuity ω (1/r) ≡ ωα(1/r) + ω2(1/r), we

have

M(s) ≤
∫ R+LT+r

−R−LT−r
|v0(x)| dx+ ‖v0‖∞ω(1/r).

Coming back to inequality (C.1), we complete the proof of Lemma C.1. �

Lemma C.2. Let I be an open interval of R and u ∈ W 1,∞(I) be such that ux ∈
BV (I). Then, for a.e. x ∈ I and all z ∈ I − x, we have

u(x+ z) = u(x) + ux(x)z +
∫
Ix,z

|x+ z − y| uyy(dy),

where Ix,z ≡ (x, x+ z) if z > 0 and Ix,z ≡ (x+ z, x) if not.

Proof. We can reduce to the case I = (a, b) with a, b ∈ R. Let us assume with-
out loss of generality that z > 0. Since ux ∈ BV (I), the function ũx(x) ≡
c +

∫
(a,x]

uyy(dy) is an a.e. representative of ux, where c is the trace of ux on
the left boundary of I. The trace of ux ∈ BV (Ix,z) onto {x} is equal to ũx(x),
because {x} is the left boundary of Ix+z. Simple integration by parts formulas now
give

u(x+ z) = u(x) +
∫
Ix,z

uy(y)dy

= u(x)−
∫
Ix,z

(y − x− z)uyy(dy) + ũx(x)z.

The proof is complete. �
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