
CONTINUOUS DEPENDENCE ESTIMATES FOR NONLINEAR

FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
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Abstract. We develop a general framework for finding error estimates for

convection-diffusion equations with nonlocal, nonlinear, and possibly degener-

ate diffusion terms. The equations are nonlocal because they involve fractional
diffusion operators that are generators of pure jump Lévy processes (e.g. the

fractional Laplacian). As an application, we derive continuous dependence es-

timates on the nonlinearities and on the Lévy measure of the diffusion term.
Estimates of the rates of convergence for general nonlinear nonlocal vanishing

viscosity approximations of scalar conservation laws then follow as a corollary.
Our results both cover, and extend to new equations, a large part of the known

error estimates in the literature.

1. Introduction

This paper is concerned with the following Cauchy problem:

(1.1)

{
∂tu(x, t) + div (f(u)) (x, t) = Lµ[A(u(·, t))](x) in QT := Rd × (0, T ),

u(x, 0) = u0(x), in Rd,

where u is the scalar unknown function, div denotes the divergence with respect to
(w.r.t.) x, and the operator Lµ is defined for all φ ∈ C∞c (Rd) by

Lµ[φ](x) :=

ˆ
Rd\{0}

(
φ(x+ z)− φ(x)− z ·Dφ(x)1|z|≤1

)
dµ(z),(1.2)

where Dφ denotes the gradient of φ w.r.t. x and 1|z|≤1 = 1 for |z| ≤ 1 and = 0
otherwise. Throughout the paper, the data (f,A, u0, µ) is assumed to satisfy the
following assumptions:

f ∈W 1,∞(R,Rd) with f(0) = 0,(1.3)

A ∈W 1,∞(R) is nondecreasing with A(0) = 0,(1.4)

u0 ∈ L∞(Rd) ∩ L1(Rd) ∩BV (Rd),(1.5)

and

µ is a nonnegative Radon measure on Rd \ {0} satisfying(1.6)
ˆ
Rd\{0}

(|z|2 ∧ 1) dµ(z) < +∞,

where we use the notation a ∧ b = min{a, b}. The measure µ is a Lévy measure.

Remark 1.1.
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(1) Subtracting constants to f and A if necessary, there is no loss of generality
in assuming that f(0) = 0 and A(0) = 0.

(2) Our results also hold for locally Lipschitz-continuous nonlinearities f and A
since solutions will be bounded; see Remark 2.3 for more details.

(3) Assumption (1.6) and a Taylor expansion reveal that Lµ[φ] is well-defined
for e.g. bounded C2 functions φ:

|Lµ[φ](x)| ≤ max
|z|≤1

|D2φ(x+ z)|
ˆ
0<|z|≤1

1

2
|z|2dµ(z) + 2‖φ‖L∞

ˆ
|z|>1

dµ(z)

where D2φ is the Hessian of φ. If in addition D2φ is bounded on Rd, then
so is Lµ[φ].

Under (1.6), Lµ is the generator of a pure jump Lévy process, and reversely,
any pure jump Lévy process has a generator of like Lµ (see e.g. [6, 58]). This
class of diffusion processes contains e.g. the α-stable process whose generator is the

fractional Laplacian − (−4)
α
2 with α ∈ (0, 2). It can be defined for all φ ∈ C∞c (Rd)

via the Fourier transform as

(−4)
α
2 φ = F−1 (| · |αFφ) ,

or in the form (1.2) with the following Lévy measure (see e.g. [6, 34, 36]):

dµ(z) =
dz

|z|d+α
(up to a positive multiplicative constant).(1.7)

Many other Lévy processes/operators of practical interest can be found in e.g.
[6, 26]. Under assumption (1.4), Lµ[A(·)] is an example of a nonlinear nonlocal
diffusion operator. For recent studies of this and similar type of operators, we refer
the reader to [8, 9, 14, 19, 29] and the references therein.

Equation (1.1) appears in many different contexts such as overdriven gas detona-
tions [23], mathematical finance [26], flow in porous media [29], radiation hydrody-
namics [55, 56], and anomalous diffusion in semiconductor growth [61]. Equations
of the form (1.1) constitute a large class of nonlinear degenerate parabolic integro-
differential equations (integro-PDEs). Let us give some representative examples.

When A = 0 or µ = 0, (1.1) is the well-known scalar conservation law (see e.g.
[27] and references therein):

(1.8) ∂tu+ divf(u) = 0.

When A(u) = u and Lµ is the fractional Laplacian, (1.1) is the so-called frac-
tal/fractional conservation law:

(1.9) ∂tu+ divf(u) = − (−4)
α
2 u.

Equation (1.9) has been extensively studied since the nineties [1, 2, 4, 5, 7, 10, 11,
12, 16, 17, 21, 22, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 48, 53, 54]. The case of more
general Lévy diffusions, combined with nonlinear local diffusions,

(1.10) ∂tu+ divf(u) = div(a(u)∇u) + Lµ[u],

can be found in [45].
When A is nonlinear, (1.1) can be seen as a generalization of the following

classical convection-diffusion equation (possibly degenerate):

(1.11) ∂tu+ divf(u) = 4A(u);

see e.g. [13, 15, 18, 24, 44] for precise references on (1.11). Nonlinear nonlocal
diffusions have been invetigated in [29] in the setting of nonlocal porous media
equations and L1 semi-group methods, and in [19] where an L∞ ∩ L1 entropy
solution theory is developed for more general degenerate equations of the form
(1.1) along with connections to Hamilton-Jacobi-Bellman equations of stochastic
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control theory. Other interesting examples concern the class of nonsingular Lévy
measures satisfying

´
Rd\{0} dµ(z) < +∞. In that case, (1.1) can also be seen as a

generalization of Rosenau’s models [46, 47, 51, 52, 59, 60] and nonlinear radiation
hydrodynamics models [55] of the form

∂tu+ divf(u) = g ∗A(u)−A(u),(1.12)

where ∗ denotes the convolution product w.r.t. x and g ∈ L1(Rd) is nonnegative
with

´
Rd g(z) dz = 1.

Most of the results on these nonlocal equations concern Equation (1.9) with
the α-stable linear diffusions, and convolution models (1.12) with nonlinear but
nonsingular Lévy diffusions. It is known that shocks can occur in finite time [4,
30, 46, 47, 48, 52, 59], that weak solutions can be nonunique [2], and that the
Cauchy problem is well-posed with the notion of entropy solutions in the sense
of Kruzhkov [1, 51, 55]; see also the works [25, 39] for the related topic of time
fractional derivatives. The entropy solution theory has been generalized in [45]
to singular but linear Lévy diffusions along with nonlinear local diffusions. Very
recently, it has been extended in [19] to cover the full problem (1.1) for general
singular Lévy measures and nonlinear A.

The purpose of the present paper is to develop an abstract framework for find-
ing error estimates for entropy solutions of (1.1). As applications, we focus in this
paper on continuous dependence estimates and convergence rates for vanishing vis-
cosity approximations. We refer the reader to [13, 18, 24, 44, 50] and the references
therein for similar analysis on (1.11) and related local equations. As far as non-
local equations are concerned, continuous dependence estimates for fully nonlinear
integro-PDEs have already been derived in [38] in the context of viscosity solutions
of Bellman-Isaacs equations; see also [34, 36, 38] for error estimates on nonlocal
vanishing viscosity approximations.

To the best of our knowledge, the first and up to now only continuous depen-
dence estimate for nonlocal conservation laws can be found in [45]; see also [1,
25, 31, 34, 51, 59] for convergence rates for vanishing viscosity approximations of
Equations (1.9) and (1.12). The general estimate in [45] is established for Equa-
tion (1.10) for linear symmetric Lévy diffusions. Inspired by an early version of
the present paper, a formal discussion on possible extensions to nonlinear nonlocal
diffusions is also given. On the technical side, [45] employs so-called entropy defect
measures while we do not.

To finish with the bibliography, let us also refer the reader to [20, 21, 22, 28, 32,
55] for the related topic of error estimates for numerical approximations.

Our main result is stated in Lemma 3.1, and it compares the entropy solution u
of (1.1) with a general function v. Our main application consists in comparing u
with the entropy solution v of

(1.13)

{
∂tv + divg(v) = Lν [B(v)],

v(x, 0) = v0,

where the data set (g,B, v0, ν) is assumed to satisfy (1.3)–(1.6). We obtain explicit
continuous dependence estimates on the data stated in Theorems 3.3–3.4. Let
us recall that when B = 0 or ν = 0, (1.13) is the pure scalar conservation law
in (1.8). Equation (1.1) can thus be seen as a nonlinear nonlocal vanishing viscosity
approximation of (1.8) if A or µ vanishes. The rate of convergence is then obtained
as a consequence of Theorems 3.3–3.4, see Theorem 3.9.

It is natural to compare Theorems 3.3–3.4 and Theorem 3.9 with the known error
estimates for the different equations above. One can see that a quite important part
of them are particular cases of our general results. We discuss this point in Section 3
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by giving precise examples. Let us mention that we also give an example of a simple
Hamilton-Jacobi equation where we show that Theorems 3.3–3.4 are in some sense
the “conservation law version” of the results in [38]; see Example 3.2.

To finish, let us mention that in the case of fractional Laplacians of order α ≥ 1,
Theorems 3.3–3.4 can be improved by taking advantage of the homogeneity of the
measures in (1.7). In order not to make this paper too long, this special case
(including α < 1) is investigated in a second paper [3].

The rest of this paper is organized as follows. In Section 2 we recall the notion
of entropy solution to (1.1). In Section 3, we state and discuss our main results.
Sections 4–5 are devoted to the proofs of our main results; Section 4 states some
preliminary results on the nonlocal operator.

Notation. Hereafter, a ∨ b := max{a, b}, while · and | · | denote the Euclidean
inner product and norm. For A ∈ Rd×d, |A| := max{Aw : w ∈ Rd, |w| ≤ 1}. The
symbols ‖ · ‖ and | · | are used for norms and semi-norms of functions respectively.
The symbol supp is used for the support. The superscripts ± are used for the
positive and negative parts. The total variation of a Radon measure µ is denoted
by |µ|. Its tensor product with the Lebesgue measure dw is denoted by dµ(z) dw.

2. Entropy formulation and well-posedness

Let us recall the formal computations leading to the entropy formulation of (1.1).
First we split Lµ into 3 parts:

(2.1) Lµ[φ](x) = Lµr [φ](x) + div (bµr φ) (x) + Lµ,r[φ](x)

for φ ∈ C∞c (Rd), r > 0, and x ∈ Rd, where

Lµr [φ](x) :=

ˆ
0<|z|≤r

(
φ(x+ z)− φ(x)− z ·Dφ(x) 1|z|≤1

)
dµ(z),(2.2)

bµr := −
ˆ
|z|>r

z1|z|≤1 dµ(z),(2.3)

Lµ,r[φ](x) :=

ˆ
|z|>r

(φ(x+ z)− φ(x)) dµ(z).(2.4)

Consider then the Kruzhkov [49] entropies | · −k|, k ∈ R, and entropy fluxes

(2.5) qf (u, k) := sgn (u− k) (f(u)− f(k)) ∈ Rd,
where we always use the following everywhere representative of the sign function:

(2.6) sgn (u) :=

{
±1 if ±u > 0,

0 if u = 0.

By (1.4) it is readily seen that for all u, k ∈ R,

(2.7) sgn (u− k) (A(u)−A(k)) = |A(u)−A(k)|,
and we formally deduce from (2.1), (2.7), and the nonnegativity of µ that

sgn (u− k)Lµ[A(u)]

≤ Lµr [|A(u)−A(k)|] + div (bµr |A(u)−A(k)|) + sgn (u− k)Lµ,r[A(u)].

Let u be a solution of (1.1), and multiply (1.1) by sgn (u − k). Formal compu-
tations then reveal that

∂t|u− k|+ div (qf (u, k)− bµr |A(u)−A(k)|)
≤ Lµr [|A(u)−A(k)|] + sgn (u− k)Lµ,r[A(u)].

The entropy formulation in Definition 2.1 below consists in asking that u satisfies
this inequality for all entropy-flux pairs (i.e. for all k ∈ R) and all r > 0. Roughly
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speaking one can give a sense to sgn (u−k)Lµ,r[A(u)] for bounded discontinuous u
thanks to (1.6). But since µ may be singular at z = 0, see Remark 1.1 (3), the
other terms have to be interpreted in the sense of distributions: Multiply by test
functions φ and integrate by parts to move singular operators onto test functions.
For the nonlocal terms this can be done by change of variables: First take (z, x, t)→
(−z, x, t) to see (formally) thatˆ

QT

φdiv (bµr |A(u)−A(k)|) dxdt =

ˆ
QT

Dφ · bµ
∗

r |A(u)−A(k)|dxdt,

where µ∗ is the Lévy measure (i.e. it satisfies (1.6)) defined for all φ ∈ C∞c (Rd\{0})
by

(2.8)

ˆ
Rd\{0}

φ(z) dµ∗(z) :=

ˆ
Rd\{0}

φ(−z) dµ(z).

In view of (2.2), we can take (z, x, t)→ (−z, x+ z, t) to find thatˆ
QT

φLµr [|A(u)−A(k)|] dxdt =

ˆ
QT

|A(u)−A(k)| Lµ
∗

r [φ] dxdt.

This leads to the following definition introduced in [19].

Definition 2.1. (Entropy solutions) Assume (1.3)–(1.6). We say that a func-
tion u ∈ L∞(QT ) ∩ C

(
[0, T ];L1

)
is an entropy solution of (1.1) provided that for

all k ∈ R, all r > 0, and all nonnegative φ ∈ C∞c (Rd+1),

(2.9)

ˆ
QT

{
|u− k| ∂tφ+

(
qf (u, k) + bµ

∗

r |A(u)−A(k)|
)
·Dφ

}
dxdt

+

ˆ
QT

(
|A(u)−A(k)| Lµ

∗

r [φ] + sgn (u− k)Lµ,r[A(u)]φ
)

dxdt

−
ˆ
Rd
|u(x, T )− k|φ(x, T ) dx+

ˆ
Rd
|u0(x)− k|φ(x, 0) dx ≥ 0.

Remark 2.1.

(1) Under assumptions (1.3)–(1.6), the entropy inequality (2.9) is well-defined
independently of the a.e. representative of u. To see this, note that since
µ∗ satisfies (1.6), it easily follows that Lµ∗r [φ] ∈ C∞c (Rd+1). Since sgn (u−
k), qf (u, k), and A(u) belong to L∞ by (2.6) and (1.3)–(1.4), it is then
clear that all terms in (2.9) are well-defined except possibly the Lµ,r-term.
Here it may look like we are integrating Lebesgue measurable functions
w.r.t. a Radon measure µ. However, the integrand does have the right
measurability by a classical approximation procedure, see Remark 5.1 in
[19]. We therefore find that since A(u) belongs to C([0, T ];L1), so does
also Lµ,r[A(u)] and we are done.

(2) Another way to understand the measurability issue in (1), is simply to con-
sider only Borel measurable a.e. representatives of the solutions. The read-
ing of the paper would remain exactly the same, since our L1-continuous
dependence estimate do not depend on the representatives.

(3) In the definition of entropy solutions, it is possible to consider functions u
only defined for a.e. t ∈ [0, T ] by taking test functions with compact support
in QT and adding an explicit initial condition, see e.g. [19].

(4) One can check that classical solutions are entropy solutions, thus justifying
the formal computations leading to Definition 2.1. Moreover entropy so-
lution are weak solutions and hence smooth entropy solutions are classical
solutions. We refer the reader to [19] for the proofs.
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Here is a well-posedness result from [19].

Theorem 2.2. (Well-posedness) Assume (1.3)–(1.6). There exists a unique en-
tropy solution u of (1.1). This entropy solution belongs to L∞(QT )∩C

(
[0, T ];L1

)
∩

L∞ (0, T ;BV ) and

(2.10)


‖u‖L∞(QT ) ≤ ‖u0‖L∞(Rd),

‖u‖C([0,T ];L1) ≤ ‖u0‖L1(Rd),

|u|L∞(0,T ;BV ) ≤ |u0|BV (Rd).

Moreover, if v is the entropy solution of (1.1) with v(0) = v0 for another initial
data v0 satisfying (1.5), then

(2.11) ‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd).

Remark 2.3. By the L∞-estimate in (2.10), all the results of this paper also holds
for locally Lipschitz-continuous nonlinearities (f,A). Simply replace the data (f,A)
by (f,A)ψM , where ψM ∈ C∞c (R) is such that ψM = 1 in [−M,M ] for M =
‖u0‖L∞(Rd).

3. Main results

Our first main result is a Kuznetsov type of lemma that measures the distance
between the entropy solution u of (1.1) and an arbitrary function v.

Let ε, δ > 0 and φε,δ ∈ C∞(Q2
T ) be the test function

φε,δ(x, t, y, s) := θδ(t− s) θ̄ε(x− y),(3.1)

where θδ(t) := 1
δ θ̃1

(
t
δ

)
and θ̄ε(x) := 1

εd
θ̃d
(
x
ε

)
are, respectively, time and space

approximate units with kernel θ̃n with n = 1 and n = d satisfying

(3.2) θ̃n ∈ C∞c (Rn), θ̃n ≥ 0, supp θ̃n ⊆ {|x| < 1}, and

ˆ
Rn
θ̃n(x) dx = 1.

We also let ωu(δ) be the modulus of continuity of u ∈ C
(
[0, T ];L1

)
.

Lemma 3.1 (Kuznetsov type Lemma). Assume (1.3)–(1.6). Let u be the entropy
solution of (1.1) and v ∈ L∞(QT )∩C

(
[0, T ];L1

)
with v(0) = v0. Then for all r > 0,

ε > 0, and 0 < δ < T ,

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + εCθ̃ |u0|BV (Rd) + 2(ωu(δ) ∨ ωv(δ))

−
¨
Q2
T

|v(x, t)− u(y, s)| ∂tφε,δ(x, t, y, s) dw

−
¨
Q2
T

(
qf (v(x, t), u(y, s)) + bµ

∗

r |A(v(x, t))−A(u(y, s))|
)
·Dxφ

ε,δ(x, t, y, s) dw

+

¨
Q2
T

|A(v(x, t))−A(u(y, s))| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw

−
¨
Q2
T

sgn (v(x, t)− u(y, s))Lµ,r[A(u(·, s))](y)φε,δ(x, t, y, s) dw

+

¨
Rd×QT

|v(x, T )− u(y, s)|φε,δ(x, T, y, s) dxdy ds

−
¨

Rd×QT
|v0(x)− u(y, s)|φε,δ(x, 0, y, s) dxdy ds

(3.3)

where dw := dx dtdy ds, and Cθ̃ := 2
´
Rd |x|θ̃d(x) dx.
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Remark 3.2.

(1) The error in time only depends on the moduli of continuity of u and v
at t = 0 and t = T . Here we simply take the global-in-time moduli of
continuity ωu(δ) and ωv(δ), since this is sufficient in our settings.

(2) When A = 0 or µ = 0 this lemma reduces to the well-known Kuznetsov
lemma [50] for multidimensional scalar conservation laws.

(3) Notice that the Lµ∗r -term vanishes when r → 0, see Lemma 4.5.
(4) Lemma 3.1 has many applications. In this paper and in [3] we focus on

continuous dependence results and error estimates for the vanishing viscos-
ity method. Then in [20], we will use the lemma to obtain error estimates
for numerical approximations of (1.1).

In this paper we apply Lemma 3.1 to compare the entropy solution u of (1.1)
with the entropy solution v of (1.13). This is our second main result, and we
present it in the two theorems below. The first focuses on the dependence on the
nonlinearities (with µ = ν) and the second one on the Lévy measure (with A = B).

Theorem 3.3. (Continuous dependence on the nonlinearities) Let u and v be the
entropy solutions of (1.1) and (1.13) respectively with data sets (f,A, u0, µ) and
(g,B, v0, ν = µ) satisfying (1.3)–(1.6). Then for all T, r > 0,

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞(R,Rd)

+ |u0|BV (Rd)

√
cd T

ˆ
0<|z|≤r

|z|2 dµ(z) ‖A′ −B′‖L∞(R)

+ |u0|BV (Rd) T

∣∣∣∣∣
ˆ
r∧1<|z|≤r∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(R)

+ T

ˆ
|z|>r

‖u0(·+ z)− u0‖L1(Rd) dµ(z) ‖A′ −B′‖L∞(R),

(3.4)

where cd = 4d2

d+1 .

Theorem 3.4. (Continuous dependence on the Lévy measure) Let u and v be
the entropy solutions of (1.1) and (1.13) respectively with data sets (f,A, u0, µ)
and (g,B = A, v0, ν) satisfying (1.3)–(1.6). Then for all T, r > 0,

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞(R,Rd)

+ |u0|BV (Rd)

√
cd T ‖A′‖L∞(R)

ˆ
0<|z|≤r

|z|2 d|µ− ν|(z)

+ |u0|BV (Rd) T ‖A′‖L∞(R)

∣∣∣∣∣
ˆ
r∧1<|z|≤r∨1

z d(µ− ν)(z)

∣∣∣∣∣
+ T ‖A′‖L∞(R)

ˆ
|z|>r

‖u0(·+ z)− u0‖L1(Rd) d|µ− ν|(z),

(3.5)

where cd = 4d2

d+1 .

Remark 3.5. In the error estimates of Theorems 3.3 and 3.4, there are 3 terms
accounting for the dependence on the fractional diffusion term in (1.1): One term
accounts for the behavior near the singularity of µ at z = 0 (the integral over
0 < |z| ≤ r), another term accounts for the behavior near infinity (the integral over
|z| ≥ r), and the last term (the integral over r ∧ 1 < |z| ≤ r ∨ 1) is a drift term
that is only present for nonsymmetric measures µ. The square root estimate for
the singular term is similar to estimates for 2nd derivative terms in the local case
and for non-local equations with different structure, cf. e.g. [18, 38, 45].
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Remark 3.6. Since the initial data is L1 ∩BV , an application of Fubini’s theorem
shows that for any r̂ > r > 0,ˆ

|z|>r
‖u0(·+ z)− u0‖L1(Rd) dµ(z)

≤ |u0|BV (Rd)

ˆ
r<|z|≤r̂

|z|dµ(z) + 2‖u0‖L1(Rd)

ˆ
|z|>r̂

dµ(z).

From Theorems 3.3 and 3.4 we can easily find a general continuous dependence
estimate when both A and µ are different from B and ν, respectively. E.g. we can
take an intermediate solution w of wt + div f(w) = Lµ[B(w)] and w(0) = u0, and
use the triangle inequality. Using this idea we can show that the following estimates
always have to hold:

Corollary 3.7. Let u and v be the entropy solutions of (1.1) and (1.13) respectively
with data sets (f,A, u0, µ) and (g,B, v0, ν) satisfying (1.3)–(1.6). Then for all T >
0

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞(R,Rd)

+ C (T
1
2 ∨ T )

(√
‖A′ −B′‖L∞(R) +

√ˆ
Rd\{0}

(|z|2 ∧ 1) d|µ− ν|(z)
)

(3.6)

where C only depends on d and the data. Moreover, if in additionˆ
Rd\{0}

(|z| ∧ 1) dµ(z) +

ˆ
Rd\{0}

(|z| ∧ 1) dν(z) < +∞,

then we have the better estimate

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞(R,Rd)

+ CT

(
‖A′ −B′‖L∞(R) +

ˆ
Rd\{0}

(|z| ∧ 1) d|µ− ν|(z)
)
,

(3.7)

where C only depends on the data.

Outline of proof. To prove (3.6), we use Theorems 3.3 and 3.4 with r = 1 and

the triangle inequality. We also use estimates like |a − b| ≤
√
|a|+ |b|

√
|a− b|,

|µ − ν| ≤ |µ| + |ν| etc. To prove (3.7), we also use Remark 3.6 and set r = 0 and
r̂ = 1. �

Remark 3.8.

(1) All these estimates hold for arbitrary Lévy measures µ, ν and even for
strongly degenerate diffusions where A,B may vanish on large sets. They
are consistent (at least for the |µ−ν| term) with general results for nonlocal
Hamilton-Jacobi-Bellman equations in [38]. When µ, ν have the special
form (1.7) (with possibly different α’s), then it is possible to use the extra
symmetry and homogeneity properties to obtain better estimates, see [3].

(2) The optimal choice of the r, r̂ in Remark 3.6 depends on the behavior of
the Lévy measures at zero and infinity, see the discussion above and at the
end of this section for more details.

Let us now consider the nonlocal vanishing viscosity problem

(3.8)

{
∂tu

ε + divf(uε) = εLµ[A(uε)],

uε(0) = u0,

i.e. problem (1.8) with a perturbation term εLµ[A(uε)]. When ε > 0 tend to zero, uε

is expected to converge toward the solution u of (1.8). As an immediate application
of Theorem 3.3 or 3.4, we have the following result:
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Theorem 3.9 (Vanishing viscosity). Assume (1.3)–(1.6). Let u and uε be the
entropy solutions of (1.8) and (3.8) respectively. Then for every T, ε > 0 and
all r̂ > r > 0,

‖u− uε‖C([0,T ];L1) ≤ C min
r̂>r>0

{
d

1
2T

1
2 ε

1
2

√ˆ
0<|z|≤r

|z|2 dµ(z)

+ Tε

[ ˆ
r<|z|≤r̂

|z|dµ(z) +
∣∣∣ˆ
r∧1<|z|≤r∨1

z dµ(z)
∣∣∣+

ˆ
|z|>r̂

dµ(z)

]}
,

(3.9)

where C only depends on ‖u0‖L1(Rd)∩BV (Rd) and ‖A′‖L∞(R).

Outline of proof. Note that u can be seen as the entropy solution of (1.1) withA = 0
and µ as Lévy measure. Hence we can estimate ‖u−uε‖C([0,T ];L1) from Theorem 3.3.
The error coming from the difference of the derivatives of the nonlinearities is equal
to ε ‖A′‖L∞(R). Inequality (3.9) then follows from (3.4) and Remark 3.6. �

Corollary 3.10. Assume (1.3)–(1.6). Let u and uε be the entropy solutions of
(1.8) and (3.8) respectively. Then for all T, ε > 0

‖u− uε‖C([0,T ];L1) ≤ C (T
1
2 ∨ T ) ε

1
2 ,

where C only depends on d and the data. Moreover, if in addition

(3.10)

ˆ
Rd\{0}

(|z| ∧ 1) dµ(z) < +∞,

then we have the better estimate

‖u− uε‖C([0,T ];L1) ≤ CTε,

where C depends on the data.

This corollary follows immediately from Theorem 3.9 or Corollary 3.7.

Remark 3.11.

(1) Our estimates are just as good or better than the standard O(ε
1
2 ) estimate

for the classical vanishing viscosity method ((1.11) with A(u) = ε u).
(2) Our estimates hold for arbitrary Lévy measures µ and even for strongly

degenerate diffusions where A may vanish on a large set! This is consistent
with general results for nonlocal Hamilton-Jacobi-Bellman equations [38].

(3) As for the classical (local) vanishing viscosity method, better rates could
be obtained if the solutions are more regular. E.g. if A(uε) is uniformly (in
ε) bounded in W 2,1, then the error estimate should be O(ε) even without
assumption (3.10). Such a result can not be derived from (3.9), but should
be proved directly.

(4) Corollary 3.10 contains less information than Theorem 3.9; indeed, if µ
is as in (1.7), the additional symmetry and homogeneity can be used to
obtain better estimates which can be proved to be optimal. See Example
3.3 below.

(5) The error estimates above trivially also holds for the more general vanishing
viscosity equation{

∂tu
ε + divf(uε) = Lν [B(uε)] + εLµ[A(uε)],

uε(0) = u0.
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Further discussion. We now make a more precise comparison of the results above
with known estimates from the literature. We begin with continuous dependence
estimates and finish with convergence rates for vanishing viscosity approximations.

Let u and v denote the entropy solutions of (1.1) and (1.13), respectively. To
simplify, we take the same data sets (f,A, u0) = (g,B, v0) and we only allow the
Lévy measures µ and ν to be different. We also let C denote a constant only
depending on T, d and the data.

Example 3.1. Let us consider Equation (1.10) with a = 0. Let us also consider
the class of Lévy operators satisfying{´

Rd\{0}(|z|
2 ∧ |z|) dµ(z) < +∞,

µ = µ∗.

For such kind of equations, the following continuous dependence estimate on the
Lévy measure has been established in [45]:

‖u− v‖C([0,T ];L1) ≤ C
√ˆ

0<|z|≤1
|z|2 d|µ− ν|(z) + C

ˆ
|z|>1

|z|d|µ− ν|(z).

This estimate follows from Theorem 3.4 and Remark 3.6 by taking r = 1 and
r̂ = +∞ in (3.5).

Example 3.2. Consider the following one-dimensional Hamilton-Jacobi equation

Ut + f(Ux) = Lµ[U ]

with initial data U0(x) :=
´ x
−∞ u0(y) dy. This particular equation is related to the

nonlocal conservation law (1.8), since its solution is U(x, t) =
´ x
−∞ u(y, t) dy where

u solves (1.8), see [19]. It is also an example of an integro-PDE for which the
general theory of [38] applies, and this theory allows us to establish the following
continuous dependence estimate on the Lévy measure:

sup
R×[0,T ]

|U − V | ≤ C
√ˆ

R\{0}
(|z|2 ∧ 1) d|µ− ν|(z),

where V (x, t) :=
´ x
−∞ v(y, t) dy. (This result is a version of Theorem 4.1 in [38]

which follows from Theorem 3.1 by setting p0, . . . , p4, ps = 0 and ρ = |z| ∧ 1 in
(A0)). Since

sup
R×[0,T ]

|U − V | ≤ ‖u− v‖C([0,T ];L1),

this estimate also follows from (3.6) in Corollary 3.7 when (A, f, u0) = (B, g, v0).

Let us now compare Theorem 3.9 with known convergence rates. We keep the
same notation for u and uε as in Theorem 3.9.

Example 3.3. Let us consider the case where A(uε) = uε and Lµ = −(−4)
α
2 ,

α ∈ (0, 2). Then the following optimal rates have been derived in [1, 31]:

(3.11) ‖u− uε‖C([0,T ];L1) =


O
(
ε

1
α

)
if α > 1,

O (ε | ln ε|) if α = 1,

O (ε) if α < 1.

Let us explain how these results can be deduced from (3.9). First we use (1.7) to
explicitly compute the integrals in (3.9) and obtain

‖u− uε‖C([0,T ];L1) = O

(
min
r̂>r>0

{√
ε
r2−α

2− α
+ ε

ˆ r̂

r

dτ

τα
+ ε r̂−α

})
.
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We then deduce (3.11) by taking r = ε
1
α and r̂ = +∞ if α > 1, r = ε and r̂ = 1

if α = 1, and r = 0 and r̂ = 1 if α < 1.

Example 3.4. Let us finally consider the vanishing approximation (3.8) with the
viscous term

∂tu
ε + divf(uε) =

1

ε
(gε ∗ uε − uε) ,

where gε(z) := 1
εd
g
(
z
ε

)
with an even and nonnegative kernel g ∈ L1(Rd) such that

ˆ
Rd
|z|2 g(z) dz < +∞.

This is the Rosenau’s regularization of the Chapman-Enskog expansion for hydrody-
namics [56]; see also Equations (1.1) and (2.3) of [59]. Its convergence toward (1.8)
has been established in [51, 59]. In Corollary 5.2 of [59] the following rate of con-
vergence has been derived:

‖u− uε‖C([0,T ];L1) = O
(
ε

1
2

)
.

This result can be recovered from Theorems 3.3 or 3.4. Indeed, we can choose e.g.

A(uε) = uε, dµ(z) = gε(z)
ε dz and ν = 0, to get the desired equations. Next, we

apply (3.5) with r = +∞ and rescale the z-variable to show that the error term is
bounded above by

C

√ˆ
Rd\{0}

|z|2 d|µ− ν|(z) = C

√ˆ
Rd
|z|2

g
(
z
ε

)
εd+1

dz

= C ε
1
2

√ˆ
Rd
|z|2 g(z) dz.

4. Auxiliary results

Before proving our main results in the next section, we state several technical
lemmas.

Lemma 4.1. Assume (1.6) and r > 0. Then for all φ ∈ C∞c (Rd),

‖Lµr [φ]‖L1(Rd) ≤
ˆ
0<|z|≤r

|z|2 dµ(z) ‖φ‖W 2,1(Rd).

The proof easily follows from a Taylor expansion and Fubini’s theorem.

Remark 4.2. Similarly Lµ,r is (linear and) bounded from L1 into itself, thanks to
Remark 3.6 with r̂ = r.

In the next result, we establish a Kato type inequality for Lµ,r[A(u)].

Lemma 4.3. Assume (1.4) and (1.6). Then for all u ∈ L1(Rd), k ∈ R, r > 0, and
all 0 ≤ φ ∈ C∞c (Rd),

ˆ
Rd

sgn (u− k)Lµ,r[A(u)]φ dx ≤
ˆ
Rd
|A(u)−A(k)| Lµ

∗,r[φ] dx.
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Proof. Note first that A(u) is L1 by (1.4), and hence Lµ,r[A(u)] is well-defined in L1

by Remark 4.2. Easy computations then reveal that
ˆ
Rd

sgn (u− k)Lµ,r[A(u)]φ dx,

=

ˆ
Rd

ˆ
|z|>r

sgn (u(x)− k)
(
A(u(x+ z))−A(u(x))

)
φ(x) dµ(z) dx,

=

ˆ
Rd

ˆ
|z|>r

sgn (u(x)− k){
(A(u(x+ z))−A(k))− (A(u(x))−A(k))

}
φ(x) dµ(z) dx,

≤
ˆ
Rd

ˆ
|z|>r

(
|A(u(x+ z))−A(k)| − |A(u(x))−A(k)|

)
φ(x) dµ(z) dx by (2.7),

=

ˆ
Rd

ˆ
|z|>r

|A(u(x+ z))−A(k)|φ(x) dµ(z) dx︸ ︷︷ ︸
=:I

−
ˆ
Rd

ˆ
|z|>r

|A(u(x))−A(k)|φ(x) dµ(z) dx︸ ︷︷ ︸
=:J

.

Note that all these integrals are well-defined, thanks to (1.6) (1).
By the respective changes of variable (z, x)→ (−z, x+ z) and (z, x)→ (−z, x),

we find that

I =

ˆ
Rd

ˆ
|z|>r

φ(x+ z) |A(u(x))−A(k)|dµ∗(z) dx,

J =

ˆ
Rd

ˆ
|z|>r

φ(x) |A(u(x))−A(k)|dµ∗(z) dx.

Here the measure µ∗ in (2.8) appears because of the relabelling of z. This measure
has the same properties as µ. Hence we can conclude that

ˆ
Rd

sgn (u− k)Lµ,r[A(u)]φ dx ≤ I − J =

ˆ
Rd
|A(u)−A(k)| Lµ

∗,r[φ] dx,

and the proposition follows. �

The next lemma is a consequence of the Kato inequality, and it plays a key role
in the doubling of variables arguments throughout this paper and in the uniqueness
proof of [1, 19].

Lemma 4.4. Assume (1.4) and (1.6), and let u, v ∈ L∞(QT ) ∩ C([0, T ];L1),
0 ≤ ψ ∈ L1(Rd × (0, T )2), and r > 0. Then

¨
Q2
T

sgn (u(y, s)− v(x, t))

·
(
Lµ,r[A(u(·, s))](y)− Lµ,r[A(v(·, t))](x)

)
ψ(x− y, t, s) dw ≤ 0

(where dw = dx dtdy ds).

1The measurability is immediate if the reader only consider Borel measurable representatives
of u as suggested in Remark 2.1 (2).
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Proof. Note that

sgn (u(y, s)− v(x, t))
(
A(u(y + z, s))−A(u(y, s))

)
− sgn (u(y, s)− v(x, t))

(
A(v(x+ z, t))−A(v(x, t))

)
= sgn (u(y, s)− v(x, t))

·
{(
A(u(y + z, s))−A(v(x+ z, t))

)
−
(
A(u(y, s))−A(v(x, t))

)}
≤ |A(u(y + z, s))−A(v(x+ z, t))| − |A(u(y, s))−A(v(x, t))|

where these functions are both defined. By an integration w.r.t. 1|z|>r dµ(z), we

find that for all (t, s) ∈ (0, T )2 and a.e. (x, y) ∈ R2d,

sgn (u(y, s)− v(x, t))
(
Lµ,r[A(u(·, s))](y)− Lµ,r[A(v(·, t))](x)

)
≤
ˆ
|z|>r

(|A(u(y + z, s))−A(v(x+ z, t))| − |A(u(y, s))−A(v(x, t))|) dµ(z).

After another integration, this time w.r.t. ψ(x− y, t, s) dw, we then get that¨
Q2
T

sgn (u(y, s)− v(x, t))
(
Lµ,r[A(u(·, s))](y)− Lµ,r[A(v(·, t))](x)

)
ψ dw

≤
¨
Q2
T

ˆ
|z|>r

|A(u(y + z, s))−A(v(x+ z, t))| ψ(x− y, t, s) dµ(z) dw

−
¨
Q2
T

ˆ
|z|>r

|A(u(y, s))−A(v(x, t))| ψ(x− y, t, s) dµ(z) dw,

=: I + J.

Note that these integrals are finite since ‖A(u)‖C([0,T ];L1) ≤ ‖A′‖L∞‖u‖C([0,T ];L1)

(A is Lipschitz-continuous and 0 at 0) and by Fubini (note the convolution integrals
in x and y),

I, J ≤
(
‖A(u)‖C([0,T ];L1) + ‖A(v)‖C([0,T ];L1)

)
‖ψ‖L1(Rd×(0,T )2)

ˆ
|z|>r

dµ(z).

We then change variables (z, x, t, y, s)→ (z, x+ z, t, y + z, s) in I,

I =

¨
QT

ˆ
|z|>r

|A(u(y, s))−A(v(x, t))| ψ(x− z − (y − z), t, s) dµ(z) dw,

to find that I + J = 0 and the proof is complete. �

Lemma 4.5. Under the assumptions of Lemma 3.1,

I =

¨
Q2
T

|A(v(x, t))−A(u(y, s))| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw ≤ Cε
ˆ
0<|z|≤r

|z|2 dµ(z),

where Cε > 0 does not depend on r > 0.

Proof. Easy computations show that

Lµ
∗

r [φε,δ(x, t, ·, s)](y)

= θδ(t− s)
ˆ
0<|z|≤r

(
θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y) 1|z|≤1

)
dµ∗(z)

= θδ(t− s)
ˆ
0<|z|≤r

(
θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) 1|z|≤1

)
dµ(z)

= θδ(t− s)Lµr [θ̄ε](x− y),
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and by Fubini (there are again convolution integrals in I!),

I ≤
¨
Q2
T

|A(u(y, s))−A(v(x, t))| θδ(t− s)
∣∣Lµr [θ̄ε](x− y)

∣∣ dw

≤
(
‖A(u)‖L1(QT ) + ‖A(v)‖L1(QT )

)
‖θδ Lµr [θ̄ε]‖L1(Rd+1)

≤ T‖A′‖L∞
(
‖u‖C([0,T ];L1) + ‖v‖C([0,T ];L1)

)
‖θδ Lµr [θ̄ε]‖L1(Rd+1).

By classical properties of approximate units and Lemma 4.1,

‖θδ Lµr [θ̄ε]‖L1(Rd+1) = ‖θδ‖L1(R)︸ ︷︷ ︸
=1

‖Lµr [θ̄ε]‖L1(Rd)

≤ ‖θ̄ε‖W 2,1(Rd)

ˆ
0<|z|≤r

|z|2 dµ(z).

The proof is complete.
�

5. Proofs of the main results

The proofs of this section use the so-called doubling of variables technique of
Kruzhkov [49] along with ideas from [38, 50]; for other relevant references, see also
e.g. [1, 19, 45] for nonlocal equations. It consists in considering u as a function of the
new variables (y, s) and using the approximate units φε,δ in (3.1) as test functions.
For brevity, we do not specify anymore the variables of u = u(y, s), v = v(x, t)
and φε,δ = φε,δ(x, t, y, s) when the context is clear; recall also that dxdtdy ds is
denoted by dw.

5.1. Proof of Lemma 3.1. Let (x, t) ∈ QT be fixed and u = u(y, s), k = v(x, t),
and φ(y, s) := φε,δ(x, t, y, s). The entropy inequality for u (see (2.9)) then takes the
form

ˆ
QT

{
|u− v| ∂sφε,δ +

(
qf (u, v) + |A(u)−A(v)| bµ

∗

r

)
·Dyφ

ε,δ
}

dy ds

+

ˆ
QT

|A(u)−A(v)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dy ds

+

ˆ
QT

sgn (u− v)Lµ,r[A(u(·, s))](y)φε,δ dy ds

−
ˆ
Rd
|u(y, T )− v(x, t)|φε,δ(x, t, y, T ) dy

+

ˆ
Rd
|u0(y)− v(x, t)|φε,δ(x, t, y, 0) dy ≥ 0.

We integrate this inequality w.r.t. (x, t) ∈ QT , noting that qf in (2.5) is symmetric,
and that ∂sφ

ε,δ = −∂tφε,δ and Dyφ
ε,δ = −Dxφ

ε,δ by (3.1). Consequently we find
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that

I1 + · · ·+ I5

:= −
¨
Q2
T

{
|u− v| ∂tφε,δ +

(
qf (v, u) + |A(u)−A(v)| bµ

∗

r

)
·Dxφ

ε,δ

}
dw

+

¨
Q2
T

|A(u)−A(v)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw

+

¨
Q2
T

sgn (u− v)Lµ,r[A(u(·, s))](y)φε,δ dw

−
¨
QT×Rd

|u(y, T )− v(x, t)|φε,δ(x, t, y, T ) dxdtdy

+

¨
QT×Rd

|u0(y)− v(x, t)|φε,δ(x, t, y, 0) dx dtdy ≥ 0.

(5.1)

Note that the terms in the inequality above are well-defined since they are all
essentially of the form of convolution integrals of L1-functions. See Lemma 4.1,
Remark 4.2, and the discussions in the proofs of Lemmas 4.4 and 4.5 for more
details.

A classical computation from [50] reveals that

I4 + I5 −
¨

Rd×QT
|u(y, s)− v(x, T )|φε,δ(x, T, y, s) dx dy ds

+

¨
Rd×QT

|u(y, s)− v0(x)|φε,δ(x, 0, y, s) dxdy ds

≤ −‖u(T )− v(T )‖L1(Rd) + ‖u0 − v0‖L1(Rd)

+ εCθ̃ |u0|BV (Rd) + 2(ωu(δ) ∨ ωv(δ)),

where Cθ̃ is as in Lemma 3.1. Lemma 3.1 now follows from (5.1) and the above
estimates on I4 and I5.

5.2. Proof of Theorem 3.3. The proof uses the Kuznetsov lemma, and morally
speaking it amounts to subtracting the u(y, s) and v(x, t) equations, multiplying
by sgn (u − v), and then applying both new and classical tricks to arrive at an
L1-estimate of |u− v|. We expect to see terms involving

sgn (u− v)
(
Lµ,r[A(u)]− Lµ,r[B(v)]

)
,

and naively we can write this as

sgn (u− v)Lµ,r[(A−B)(u)] + sgn (u− v)Lµ,r[B(u)−B(v)].

These terms are estimated by Kato type inequalities (see Lemmas 4.3 and 4.4),
the first term should give the dependence on A − B while the second term is a
nonpositive term that also appears in the uniqueness proof. The problem with this
approach is that we can not apply Kato for the first term because A−B then have
to be monotone!

There are different ways to overcome this monotonicity problem, and we have
chosen to adapt ideas from [38] – a paper on continuous dependence estimates for
fully nonlinear Bellman-Isaacs type of equations via viscosity solution techniques.
We consider the region where A′ ≥ B′ and its complementary. Let E± be sets
satisfying:

(5.2)


E± ⊆ R are Borel sets;

∪±E± = R and ∩± E± = ∅;
R \ supp(A′ −B′)∓ ⊆ E±.
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For all u ∈ R, we define

A±(u) :=

ˆ u

0

A′(τ) 1E±(τ) dτ,

B±(u) :=

ˆ u

0

B′(τ) 1E±(τ) dτ,

C±(u) := ±(A±(u)−B±(u)).

(5.3)

These functions satisfy the following properties:

Lemma 5.1. Under the assumptions of Theorem 3.3,

(i) A = A+ +A− and B = B+ +B−;
(ii) A±, B±, C± satisfy (1.4), in particular, they are monotone;
(iii)

∑
± |C±(u)|L1(0,T ;BV ) ≤ ‖A′ −B′‖L∞(R) |u|L1(0,T ;BV );

(iv) for all z ∈ Rd \ {0},

∑
±
‖C±(u(·+ z, ·))− C±(u)‖L1(QT ) ≤ ‖A

′ −B′‖L∞(R) ‖u(·+ z, ·)− u‖L1(QT ).

The proofs of (i) and (ii) are immediate, whereas (iii) and (iv) follow from stan-
dard arguments for Lipschitz-continuous and BV -functions (see e.g. [13, 35, 57]);
the details are left to the reader.

In the proof below, A± − B± will be the monotone functions replacing the
nonmonotone function A−B of the formal argument above.

Proof of Theorem 3.3. Let us divide the proof into several steps.

1. We argue as in the beginning of the proof of Lemma 3.1 changing the roles of u
and v. We fix (y, s) and take k = u(y, s) and φε,δ = φε,δ(x, t, y, s) in the entropy
inequality for v = v(x, t) to find that

¨
Q2
T

{
|v − u| ∂tφε,δ +

(
qg(v, u) + |B(v)−B(u)| bµ

∗

r

)
·Dxφ

ε,δ
}

dw

+

¨
Q2
T

|B(v)−B(u)| Lµ
∗

r [φε,δ(·, t, y, s)](x) dw

+

¨
Q2
T

sgn (v − u)Lµ,r[B(v(·, t))](x)φε,δ dw

−
¨

Rd×QT
|v(x, T )− u(y, s)|φε,δ(x, T, y, s) dx dy ds

+

¨
Rd×QT

|v0(x)− u(y, s)|φε,δ(x, 0, y, s) dx dy ds ≥ 0.
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Then we add this inequality and inequality (3.3) in Lemma 3.1,

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + εCθ̃ |u0|BV (Rd) + 2(ωu(δ) ∨ ωv(δ))

+

¨
Q2
T

(qg − qf )(v, u) ·Dxφ
ε,δ dw︸ ︷︷ ︸

=:I1

+

¨
Q2
T

|B(v)−B(u)| Lµ
∗

r [φε,δ(·, y, t, s)](x) dw︸ ︷︷ ︸
=:I2

+

¨
Q2
T

|A(v)−A(u)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw︸ ︷︷ ︸
=:I′2

+

¨
Q2
T

(
|B(v)−B(u)| − |A(v)−A(u)|

)
bµ
∗

r ·Dxφ
ε,δ dw︸ ︷︷ ︸

=:I3

+

¨
Q2
T

sgn (v − u)
(
Lµ,r[B(v(·, t))](x)− Lµ,r[A(u(·, s))](y)

)
φε,δ dw︸ ︷︷ ︸

=:I4

,

(5.4)

where r, ε > 0, 0 < δ < T , and Cθ̃ > 0 only depends on the kernel θ̃d from (3.2).

2. It is standard to estimate I1 (cf. e.g. [27, 50]), and I2 + I ′2 can be estimated by
Lemma 4.5,

I1 ≤ |u0|BV (Rd) T ‖f ′ − g′‖L∞(R,Rd),(5.5)

I2 + I ′2 ≤ Cε
ˆ
0<|z|≤r

|z|2 dµ(z),(5.6)

where Cε does not depend on r > 0. Now we focus on I3 and I4.

3. Cutting w.r.t. E±. We split I3 and I4 into four new terms using the sets E±,
see (5.2)–(5.3). By Lemma 5.1 (i), I4 can be written as

I4 =
∑
±

¨
Q2
T

sgn (v − u)
(
Lµ,r[B±(v(·, t))](x)− Lµ,r[A±(u(·, s))](y)

)
φε,δ dw.

By Lemma 5.1 (ii), we can apply twice Lemma 4.4 with B+ and A− instead of A,
followed by the definitions of C±, see (5.3), to show that

I4 ≤
¨
Q2
T

sgn (v − u)Lµ,r
[
B+(u(·, s))−A+(u(·, s))

]
(y)φε,δ dw

+

¨
Q2
T

sgn (v − u)Lµ,r
[
B−(v(·, t))−A−(v(·, t))

]
(x)φε,δ dw

=

¨
Q2
T

sgn (u− v)Lµ,r
[
C+(u(·, s))

]
(y)φε,δ dw

+

¨
Q2
T

sgn (v − u)Lµ,r
[
C−(v(·, t))

]
(x)φε,δ dw

=: I+4 + I−4 .(5.7)

Note that it is crucial to have u in the first term and v in the second – otherwise
we will not be able to apply the Kato inequality later on!
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We now consider I3. By (2.7), Lemma 5.1 (i)–(ii), the formulaDxφ
ε,δ = −Dyφ

ε,δ,
and the definitions D+ = Dy and D− = Dx, it follows that(

|B(v)−B(u)| − |A(v)−A(u)|
)
Dxφ

ε,δ

= sgn (u− v)
{

(A(u)−B(u))− (A(v)−B(v))
}
Dyφ

ε,δ

=
∑
±

sgn (u− v)
{
± (A±(u)−B±(u))∓ (A±(v)−B±(v))

}
D±φ

ε,δ

=
∑
±
|C±(u)− C±(v)|D±φε,δ.

We can then rewrite I3 as

(5.8) I3 =
∑
±

¨
QT

|C±(u)− C±(v)| bµ
∗

r ·D±φε,δ dw︸ ︷︷ ︸
=:I±3

.

4. Cutting w.r.t. z. We decompose Lµ,r into two new terms using a new cutting
parameter r1 > r. Let µ = µ1 + µ||z|>r1 for

µ1 := µ|0<|z|≤r1 ,

and note that by (2.4), Lµ,r = Lµ1,r + Lµ,r1 . Then

I+4 =

¨
Q2
T

sgn (u− v)Lµ1,r[C+(u(·, s))](y)φε,δ dw︸ ︷︷ ︸
=:I+5

+

¨
Q2
T

sgn (u− v)Lµ,r1 [C+(u(·, s))](y)φε,δ dw.

(5.9)

Since C+ satisfies (1.4) by Lemma 5.1 (ii) and µ1 clearly satisfies (1.6), we can
apply the Kato type inequality in Lemma 4.3 (with k = v(x, t) and A = C+) to
show that

I+5 =

ˆ
QT

ˆ
QT

sgn (u(y, s)− v(x, t))Lµ1,r[C+(u(·, s))](y)φε,δ dy dsdxdt

≤
ˆ
QT

ˆ
QT

|C+(u(y, s))− C+(v(x, t))| Lµ
∗
1 ,r[φε,δ(x, t, ·, s)](y) dy dsdxdt.

Adding I+3 in the form (5.8) then gives
(5.10)

I+3 + I+5 ≤
¨
Q2
T

|C+(u)− C+(v)|
(
bµ
∗

r ·Dyφ
ε,δ + Lµ

∗
1 ,r[φε,δ(x, t, ·, s)](y)

)
dw.

Now easy computations show that

Dyφ
ε,δ = −θδ(t−s)Dθ̄ε(x−y), Lµ

∗
1 ,r[φε,δ(x, t, ·, s)](y) = θδ(t−s)Lµ1,r[θ̄ε](x−y).

Hence by adding and subtracting z ·Dθ̄ε(x− y), we get that

bµ
∗

r ·Dyφ
ε,δ + Lµ

∗
1 ,r[φε,δ(x, t, ·, s)](y)

= θδ(t− s)
ˆ
r<|z|≤r1

(
θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y)

)
dµ(z)

+ θδ(t− s)Dθ̄ε(x− y) ·

(
−bµ

∗

r +

ˆ
r<|z|≤r1

z dµ(z)

)
︸ ︷︷ ︸

=sgn (r1−1)
´
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

,

(5.11)
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where the last equality comes from (2.3) and the change of variable z → −z. We
insert (5.11) into (5.10) and combine the resulting inequality with (5.9),

I+3 + I+4 ≤¨
Q2
T

|C+(u)− C+(v)|

· θδ(t− s)
ˆ
r<|z|≤r1

(
θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y)

)
dµ(z) dw

+

¨
Q2
T

|C+(u)− C+(v)|

· θδ(t− s)Dθ̄ε(x− y) · sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z) dw

+

¨
Q2
T

sgn (u− v)Lµ,r1 [C+(u(·, s))](y)φε,δ dw

=: J+
1 + J+

2 + J+
3 .

(5.12)

Similar arguments show that we can bound I−3 + I−4 (see (5.7)–(5.8)) as follows,

I−3 + I−4 ≤¨
Q2
T

|C−(v)− C−(u)|

· θδ(t− s)
ˆ
r<|z|≤r1

(
θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y)

)
dµ(z) dw

−
¨
Q2
T

|C−(v)− C−(u)|

· θδ(t− s)Dθ̄ε(x− y) · sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z) dw

+

¨
Q2
T

sgn (v − u)Lµ,r1 [C−(v(·, t))](x)φε,δ dw︸ ︷︷ ︸
≤
˜
Q2
T

sgn (v−u)Lµ,r1 [C−(u(·,s))](y)φε,δ dw by Lemma 4.4

=: J−1 + J−2 + J−3 .

(5.13)

5. L1 ∩BV -regularity. It remains to estimate J±i for i = 1, . . . , 3 in (5.12)–(5.13).
For J±1 and J±2 , we integrate by parts to take advantage of the BV -regularity of u.
After some technical computations detailed in Appendix A, we find that

|J±1 | ≤
1

2ε

ˆ
Rd
|Dθ̃d|dx

ˆ
r<|z|≤r1

|z|2 dµ(z) |C±(u)|L1(0,T ;BV ),(5.14)

|J±2 | ≤

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ |C±(u)|L1(0,T ;BV ),(5.15)

and hence∑
±

(J±1 + J±2 ) ≤ 1

2ε

ˆ
Rd
|Dθ̃d|dx

ˆ
r<|z|≤r1

|z|2 dµ(z)
∑
±
|C±(u)|L1(0,T ;BV )

+

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣∑
±
|C±(u)|L1(0,T ;BV ).
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By Lemma 5.1 (iii) and a priori estimates for u, cf. (2.10), we see that∑
±

(J±1 + J±2 ) ≤ 1

2ε

ˆ
Rd
|Dθ̃d|dx |u|L1(0,T ;BV )︸ ︷︷ ︸

≤|u0|BV (Rd) T

ˆ
r<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(R)

+ |u|L1(0,T ;BV )︸ ︷︷ ︸
≤|u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(R).(5.16)

Let us now estimate J+
3 in (5.12). Easy computations (see the proofs of Lem-

mas 4.4–4.5) show that

J+
3 ≤ ‖θδ θ̄ε‖L1(Rd+1) ‖Lµ,r1 [C+(u)]‖L1(QT ).

Let us recall that ‖θδ θ̄ε‖L1(Rd+1) = ‖θδ‖L1(R) ‖θ̄ε‖L1(Rd) = 1, and then

J+
3 ≤

ˆ T

0

ˆ
|z|>r1

‖C+(u(·+ z, s))− C+(u(·, s))‖L1(Rd) dµ(z)ds.

Since C+(u) ∈ L∞∩C([0, T ];L1), (z, s)→ ‖C+(u(·+z, s))−C+(u(·, s))‖L1(Rd) is a
continuous function, hence Borel and dµ(z) ds-measurable. Thus, we may change
the order of the integration to find

J+
3 ≤

ˆ
|z|>r

‖C+(u(·+ z, ·))− C+(u)‖L1(QT ) dµ(z).

We get a similar estimates for J−3 and find by Lemma 5.1 (iii)–(iv) and (2.10) that∑
±
J±3 ≤

ˆ
|z|>r1

∑
±
‖C±(u(·+ z, ·))− C±(u)‖L1(QT ) dµ(z),

≤
ˆ
|z|>r1

‖u(·+ z, ·))− u‖L1(QT )︸ ︷︷ ︸
≤T ‖u0(·+z)−u0‖L1(Rd)

dµ(z) ‖A′ −B′‖L∞(Rd).(5.17)

The last inequality (under the bracket) comes from (2.11) applied to the solu-
tion u(·+ z, ·) of (1.1) with initial data u0(·+ z).

6. Conclusion. By (5.7)–(5.8) and (5.12)–(5.13), I3+I4 ≤
∑
±
∑3
i=1 J

±
i . Therefore

we may estimate (5.4) by (5.5)–(5.6) and (5.16)–(5.17). For all r1 > r > 0, ε > 0,
and T > δ > 0, we find that

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞(R,Rd)

+ εCθ̃ |u0|BV (Rd) + 2(ωu(δ) ∨ ωv(δ)) + Cε

ˆ
0<|z|≤r

|z|2 dµ(z)

+
1

2ε

ˆ
Rd
|Dθ̃d|dx |u0|BV (Rd) T

ˆ
r<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(Rd)

+ |u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(Rd)

+ T

ˆ
|z|>r1

‖u0(·+ z)− u0‖L1(Rd) dµ(z) ‖A′ −B′‖L∞(Rd),

(5.18)

where Cε > 0 does not depend on r > 0.
To finish, we first pass to the limit as r → 0 in (5.18). By the dominated

convergence theorem, the result is equivalent to setting r = 0 in each term, and in
particular the term Cε

´
0<|z|≤r |z|

2 dµ(z) vanishes. Secondly, we pass to the limit
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as δ → 0 to get rid of the term 2(ωu(δ)∨ωv(δ)). Finally, we optimize the remaining

terms w.r.t. ε > 0 by using the formula minε>0

(
ε a+ b

ε

)
= 2
√
ab (for a, b ≥ 0).

This gives us the following continuous dependence estimate: For all r1 > 0,

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖g′ − f ′‖L∞(R,Rd)

+ 2

√
1

2
Cθ̃

ˆ
Rd
|Dθ̃d|dx |u0|2BV (Rd) T

ˆ
0<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(R)

+ |u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧1<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(R)

+ T

ˆ
|z|≥r1

‖u0(·+ z)− u0‖L1(Rd) dµ(z) ‖A′ −B′‖L∞(R),

(5.19)

where θ̃d is an arbitrary approximate unit (3.2) and Cθ̃ = 2
´
Rd |x| θ̃d(x) dx by

Lemma 3.1.
Let θ̃d = θn where {θn}n∈N is a sequence of kernels s.t. θn satisfies (3.2), θn →

ωd
−11|·|<1 in L1, and

´
Rd |Dθn|dx→ ωd

−1|1|·|<1|BV (Rd). Here ωd is the volume of

the unit ball in Rd. Note that the BV -semi-norm of the indicator function of the
unit ball is equal to the surface area of the unit sphere, i.e. |1|·|<1|BV (Rd) = dωd.
Moreover, we have

ˆ
Rd
|x||θn(x)|dx→ 1

ωd

ˆ
|x|<1

|x|dx =
d

d+ 1
.

The proof of (3.4) is then complete after passing to the limit as n → +∞ in
(5.19). �

5.3. Proof of Theorem 3.4. We argue step by step as in the proof of Theorem 3.3.
This time, E± are taken such as

(5.20)


E± ⊆ Rd \ {0} are Borel sets;

∪±E± = Rd \ {0} and ∩± E± = ∅;(
Rd \ {0}

)
\ supp(µ− ν)∓ ⊆ E±.

Let µ± and ν± denote the restrictions of µ and ν to E±. It is clear that

(5.21)


µ =

∑
± µ± and ν =

∑
± ν±,

±(µ± − ν±) = (µ− ν)±,

µ±, ν±, and ± (µ± − ν±) all satisfy (1.6).

Proof of Theorem 3.4.
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1. We apply Lemma 3.1 with A = B, but different Lévy measures µ and ν, along
with the entropy inequality for v to show that for all r, ε > 0, 0 < δ < T

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + εCθ̃ |u0|BV (Rd) + 2(ωu(δ) ∨ ωv(δ))

+

¨
Q2
T

(qg − qf )(v, u) ·Dxφ
ε,δ dw

+

¨
Q2
T

|A(v)−A(u)| Lν
∗

r [φε,δ(·, y, t, s)](x) dw

+

¨
Q2
T

|A(v)−A(u)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw

+

¨
Q2
T

|A(v)−A(u)|
(
bν
∗

r − bµ
∗

r

)
·Dxφ

ε,δ dw︸ ︷︷ ︸
=:I3

+

¨
Q2
T

sgn (v − u)
(
Lν,r[A(v(·, t))](x)− Lµ,r[A(u(·, s))](y)

)
φε,δ dw︸ ︷︷ ︸

=:I4

,

(5.22)

where Cε > 0 does not depend on r > 0. Except for I3 and I4, the other terms
were estimated in the proof of Theorem 3.3.

2. Cutting w.r.t. E±. We use the notation introduced in (5.20). We apply
Lemma 4.4 twice with ν+ and µ− instead of µ, along with linearity of Lµ,r in
µ, see (2.2), to see that

I4 =
∑
±

¨
Q2
T

sgn (v − u)
(
Lν±,r[A(v(·, t))](x)− Lµ±,r[A(u(·, s))](y)

)
φε,δ dw

≤
¨
Q2
T

sgn (v − u)
(
Lν+,r[A(u(·, s))](y)− Lµ+,r[A(u(·, s))](y)

)
φε,δ dw

+

¨
Q2
T

sgn (v − u)
(
Lν−,r[A(v(·, t))](x)− Lµ−,r[A(v(·, t))](x)

)
φε,δ dw

=

¨
Q2
T

sgn (u− v)Lµ+−ν+,r[A(u(·, s))](y)φε,δ dw

+

¨
Q2
T

sgn (v − u)L−(µ−−ν−),r[A(v(·, t))](x)φε,δ dw

=: I+4 + I−4 .

Again, it is crucial to have u in I+4 and v in I−4 in order to use Kato’s inequality
later on.

Let us now consider I3. By (2.3) and (2.8), bµr and µ∗ are linear w.r.t µ. Easy
computations using (5.21) then leads to(

bν
∗

r − bµ
∗

r

)
·Dxφ

ε,δ =
∑
±
b±(µ±−ν±)

∗

r ·D±φε,δ

where D+ = Dy and D− = Dx, and hence

I3 =
∑
±

¨
QT

|A(u)−A(v)| b±(µ±−ν±)
∗

r ·D±φε,δ dw =: I+3 + I−3 .
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3. Cutting w.r.t. z. The computations of this step are similar to the ones in the
proof of Theorem 3.3. For the reader’s convenience, we estimate I−3 +I−4 , the terms
that was left to the reader in the preceding proof.

For any measure µ̃ we let µ̃1 = µ̃|0<|z|≤r1 and write µ̃ = µ̃1 + µ̃||z|>r1 for r1 > r.

Then

I−4 ≤
¨
QT

sgn (v − u)L−(µ−−ν−)1,r[A(v(·, t))](x)φε,δ dw︸ ︷︷ ︸
=:I−5

+

¨
QT

sgn (v − u)L−(µ−−ν−),r1 [A(v(·, t))](x)φε,δ dw.

Recall that −(µ− − ν−)1 is a positive Lévy measure by (5.21), so we can apply
Lemma 4.3 with −(µ− − ν−)1 instead of µ and k = u(y, s) to find that

I−5 ≤
¨
Q2
T

|A(v)−A(u)| L−(µ−−ν−)
∗
1 ,r[φε,δ(·, t, y, s)](x) dw

and

I−3 + I−5 ≤¨
Q2
T

|A(v)−A(u)|
(
b−(µ−−ν−)

∗

r ·Dxφ
ε,δ + L−(µ−−ν−)

∗
1 ,r[φε,δ(·, t, y, s)](x)

)
dw.

Easy computations then leads to

L−(µ−−ν−)
∗
1 ,r[φε,δ(·, t, y, s)](x)

= θδ(t− s)
ˆ
r<|z|≤r1

(
θ̄ε(x− y − z)− θ̄ε(x− y)

)
d(ν− − µ−)(z),

and we can rewrite the nonlocal operator as follows,

b−(µ−−ν−)
∗

r ·Dxφ
ε,δ + L−(µ−−ν−)

∗
1 ,r[φε,δ(·, t, y, s)](x)

= θδ(t− s)
ˆ
r<|z|≤r1

(
θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y)

)
d(ν− − µ−)(z)

− θδ(t− s)Dθ̄ε(x− y) ·

(
−b−(µ−−ν−)

∗

r +

ˆ
r<|z|≤r1

z d(ν− − µ−)(z)

)
︸ ︷︷ ︸

=sgn (r1−1)
´
r1∧(1∨r)<|z|≤r1∨1

z d(ν−−µ−)(z)

.

Compare this expression with (5.11) that appear when I+3 and I+4 are considered.
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We add the different estimates and find that for all r1 > r,

I−3 + I−4

≤
¨
Q2
T

|A(u)−A(v)| θδ(t− s)

·
ˆ
r<|z|≤r1

(
θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y)

)
d(ν− − µ−)(z) dw

−
¨
Q2
T

|A(u)−A(v)| θδ(t− s)Dθ̄ε(x− y)

· sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(ν− − µ−)(z) dw

+

¨
Q2
T

sgn (v − u)L−(µ−−ν−),r1 [A(v(·, t))](x)φε,δ dw︸ ︷︷ ︸
≤
˜
Q2
T

sgn (v−u)L−(µ−−ν−),r1 [A(u(·,s))](y)φε,δ dw by Lemma 4.4

= J−1 + J−2 + J−3 .

Similar arguments also lead to

I+3 + I+4

≤
¨
Q2
T

|A(u)−A(v)|θδ(t− s)

·
ˆ
r<|z|≤r1

(
θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y)

)
d(µ+ − ν+)(z) dw

+

¨
Q2
T

|A(u)−A(v)| θδ(t− s)Dθ̄ε(x− y)

· sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(µ+ − ν+)(z) dw

+

¨
Q2
T

sgn (u− v)L(µ+−ν+),r1 [A(u(·, s))](y)φε,δ dw,

=: J+
1 + J+

2 + J+
3 .

4. L1∩BV -regularity. We estimate J±i (i = 1, . . . , 3). Almost all the computations
have already been done in the preceding proof. Indeed, J±1 are of the same form as
in (5.12)–(5.13), with the new nonlinearity A and the new measures ±(µ± − ν±).
Arguing as for (5.14) thus gives∑
±
J±1 ≤

1

2ε

ˆ
Rd
|Dθ̃d|dx

· |A(u)|L1(0,T ;BV )︸ ︷︷ ︸
≤|u0|BV (Rd) T ‖A′‖L∞(R) by (2.10)

ˆ
r<|z|≤r1

|z|2 d
∑
±
±(µ± − ν±)︸ ︷︷ ︸

=|µ−ν| by (5.21)

(z).

Moreover,
∑
±(µ± − ν±) = µ− ν and hence∑

±
J±2 =

¨
Q2
T

|A(u)−A(v)| θδ(t− s)Dθ̄ε(x− y)

· sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(µ− ν)(z) dw.
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This term is of the same form than J+
2 in (5.12) (or J−2 in (5.13)) with the new non-

linearity A and the new flux
´
r1∧(1∨r)<|z|≤r1∨1 z d(µ− ν)(z). Arguing as for (5.15)

and using (2.10) thus give∑
±
J±2 ≤ |u0|BV (Rd) T ‖A′‖L∞(R)

∣∣∣∣ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(µ− ν)(z)

∣∣∣∣.
Finally, ∑

±
J±3 ≤ T ‖A′‖L∞(R)

ˆ
|z|≥r1

‖u0(·+ z)− u0‖L1(Rd) d|µ− ν|(z).

5. Conclusion. The rest of the proof is the same as for Theorem 3.3; i.e. we use
the estimates on J±i to estimate I3 + I4 ≤

∑3
i=1

∑
± J
±
i in (5.22) and pass to limit

and/or optimizes w.r.t. the parameters r, ε, δ > 0. The proof is complete. �

Appendix A. Technical computations

Proof of (5.14) and (5.15). We start by proving (5.14) in the + case. Similar ar-
guments give the proof also in the − case. From Taylor’s formula

θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) =

ˆ 1

0

(1− τ)D2θ̄ε(x− y + τ z) z · z dτ,

and hence by Fubini’s theorem, J+
1 in (5.12) can be written as

(A.1) J+
1 =

¨
(0,T )2

ˆ
r<|z|≤r1

ˆ 1

0

θδ(t− s) (1− τ)

·
ˆ
Rd

ˆ
Rd
|C+(v(x, t))− C+(u(y, s))|D2θ̄ε(x− y + τ z) z · z dy dx︸ ︷︷ ︸

=:J

dτ dµ(z) dtds.

For any k ∈ R, it is classical that ηk(C+(u(·, s))) = |k − C+(u(·, s))| ∈ BV with

|Dηk(C+(u(·, s))| ≤ |DC+(u(·, s))|,

since it is the composition of a Lipschitz-continuous function with a BV -function;
see e.g. [13, 35, 57]. Integration by parts w.r.t. y (for fixed z, x, t, s), then leads to

|J | =
∣∣∣∣ˆ

Rd

ˆ
Rd
Dθ̄ε(x− y + τ z) · z z · dDηC+(v(x,t))(C+(u(·, s)))(y) dx

∣∣∣∣ ,
≤ |z|2

ˆ
Rd

ˆ
Rd
|Dθ̄ε(x− y + τ z)|d|DC+(u(·, s))|(y) dx.

Note that by the definition of θ̄ε (just below (3.1)), we haveˆ
Rd
|Dθ̄ε(x)|dx =

1

ε

ˆ
Rd
|Dθ̃d|dx.

Hence, we change the order of integration (using Fubini) to see that

|J | ≤ |z|2 |C+(u(s))|BV (Rd)

ˆ
Rd
|Dθ̄ε(x)|dx ≤ |z|2 |C+(u(s))|BV (Rd)

1

ε

ˆ
Rd
|Dθ̃d|dx,

and then from (A.1) that

|J+
1 | ≤

1

ε

ˆ
Rd
|Dθ̃d|dx

·
¨

(0,T )2

ˆ
r<|z|≤r1

ˆ 1

0

θδ(t− s) (1− τ) |z|2 |C+(u(s))|BV (Rd) dτ dµ(z) dtds.
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Let us recall that the integrand above is dτ dµ(z) dtds-measurable since s →
|u(s)|BV (Rd) is lower semi-continuous. By Fubini we then integrate first w.r.t. t

and use that
´ T
0
θδ(t− s) dt ≤ 1 to see that

|J+
1 | ≤

1

ε

ˆ
Rd
|Dθ̃d|dx

ˆ 1

0

(1− τ) dτ

ˆ
r<|z|≤r1

|z|2dµ(z)

ˆ T

0

|C+(u(s))|BV (Rd) ds,

and the proof of (5.14) is complete.

We prove (5.15) by similar arguments. Define

(A.2) q(v, u) := |v − u| sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z),

and note that it is Lipschitz-continuous. Again by Fubini’s theorem, J+
2 in (5.12)

can be written as
(A.3)

J+
2 =

¨
(0,T )2

θδ(t− s)
ˆ
Rd

ˆ
Rd
Dθ̄ε(x− y) · q(C+(v(x, t), C+(u(y, s))) dy dx︸ ︷︷ ︸

=:J

dtds.

For fixed (x, t, s), q(C+(v(x, t), ·) is Lipschitz-continuous and C+(u(·, s)) is BV ;
hence, the composition q(C+(v(x, t)), C+(u(·, s))) is in BV (Rd,Rd) with

|divyq(C+(v(x, t)), C+(u(·, s)))| ≤ |DC+(u(·, s))| ‖qu‖L∞(R,Rd),

where ‖qu‖L∞(R,Rd) denotes the Lipschitz constant of q w.r.t. its second variable.
We thus may integrate by parts in y to see that

|J | ≤ ‖qu‖L∞(R,Rd)

ˆ
Rd

ˆ
Rd
θ̄ε(x− y) d|DC+(u(·, s))|(y) dx.

Changing the order of integration, we find that

J ≤ |C+(u(s))|BV (Rd)‖qu‖L∞(R,Rd),

and hence by (A.3) and integrating first w.r.t. t, we get that

|J+
2 | ≤ ‖qu‖L∞(R,Rd)

ˆ T

0

|C+(u(s))|BV (Rd) ds.

The proof of (5.15) is now complete since by (A.2),

‖qu‖L∞(R,Rd) =

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ .
�
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[33] J. Droniou, T. Gallouët and J. Vovelle. Global solution and smoothing effect for a nonlocal

regularization of a hyperbolic equation. J. Evol. Equ. 4(3):479–499, 2003.

[34] J. Droniou and C. Imbert. Fractal first order partial differential equations. Arch. Ra-
tion. Mech. Anal. 182(2):299–331, 2006.

[35] L.-C. Evans and R.-F. Gariepy. Measure theory and fine properties of functions. Studies in
Advanced Mathematics, CRC Press, 1992.

[36] C. Imbert. A non-local regularization of first order Hamilton-Jacobi equations. J. Diff. Equa-

tions 211:214–246, 2005.



28 N. ALIBAUD, S. CIFANI, AND E. R. JAKOBSEN

[37] I. Ivec and D. Mitrovic. A generalization of H-measures and application on purely fractional

scalar conservation laws. Communications on Pure and Applied Analysis 10(6):1617–1627,

2011.
[38] E. R. Jakobsen and K. H. Karlsen. Continuous dependence estimates for viscosity solutions

of integro-PDEs. J. Differential Equations 212(2):278–318, 2005.
[39] V. G. Jakubowski and P. Wittbold. On a nonlinear elliptic/parabolic integro-differential

equation with L1-data. J. Differential Equations 197(2):427–445, 2003.
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