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ABSTRACT. We prove that if the Szlenk index Sz(X) and the weak*-dentability index

δ∗(X) of a Banach space X are countable, then they are determined by the closed separable

linear subspaces of X. From this we deduce the existence of an absolute function ψ from ω1

to ω1 (first uncountable ordinal) such that δ∗(X) is bounded above by ψ(Sz(X)), and that

the condition Sz(X) < ω1 yields the existence of an equivalent norm on X whose dual norm

is locally uniformly convex. As an other application, we compute Sz(C(K)), where K is a

scattered compact space with K(ω1) = ∅. Finally we solve the three space problem for the

condition Sz(X) < ω1.
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1. INTRODUCTION.

Let X be a Banach space. We will first define the two ordinal indices δ∗(X) and Sz(X).

Weak*-dentability index, δ∗(X) :

Let F be a closed bounded subset of X∗. For ε > 0, F ′ε = {x∗ ∈ F such that any

weak*-slice of F containing x∗ is of diameter > ε}.
For α ordinal we construct Fα

ε inductively :

F 0
ε = F

Fα+1
ε = (Fα

ε )′ε

Fα
ε =

⋂
β<α

F β
ε , if α is a limit ordinal.

Then

∆ε(F ) =

{
inf{α : Fα

ε = ∅} if it exists

∞ otherwise

And ∆(F ) = sup
ε>0

∆ε(F ).

Finally, we denote δ∗(X, ε) = ∆ε(BX∗) and δ∗(X) = ∆(BX∗), where BX∗ is the unit ball

of X∗.

Szlenk index, Sz(X) :

Let F be a closed bounded subset of X∗. For ε > 0, F
[′]
ε = {x∗ ∈ F such that for any

weak*-neighborhood V of x∗, diam (V ∩ F ) > ε}.
We denote :

F
[0]
ε = F

F
[α+1]
ε = (F [α]

ε )[
′]
ε

F
[α]
ε =

⋂
β<α

F
[β]
ε , if α is a limit ordinal.

Sε(F ) =

{
inf{α : F [α]

ε = ∅} if it exists

∞ otherwise
S(F ) = sup

ε>0
Sε(F )

Sz(X, ε) = Sε(BX∗) and Sz(X) = S(BX∗).

Clearly Sz(X) ≤ δ∗(X).

Our main objective is to prove that, for a Banach space X, Sz(X) < ω1 if and only if

δ∗(X) < ω1, where ω1 is the first uncountable ordinal. Then, answering a question suggested

by R. Haydon, we will be able to deduce that if Sz(X) < ω1, then X admits an equivalent

norm whose dual norm is locally uniformly convex. An important step in the proof of this
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result is that, if Sz(X) is countable then Sz(X) = sup{Sz(Y ), Y closed separable subspace

of X} and if δ∗(X) is countable then δ∗(X) = sup{δ∗(Y ), Y closed separable subspace of

X}. In section 5 we use this fact to compute Sz(C(K)), for K scattered compact space such

that its ωth
1 derived set K(ω1) is empty. In the last section of this paper we give a quantitative

answer to the three space problem for the condition Sz(X) < ω1.

2. SEPARABLE CASE.

It is well known that if X is a separable Banach space, then the following are equivalent :

i) Sz(X) < ω1

ii) δ∗(X) < ω1

iii) X∗ is separable.

In this section we will explain how to obtain the following improvement.

PROPOSITION 2.1. There exists a function ψ : ω1 → ω1 so that, for any separable

Banach space X and for any α < ω1, Sz(X) ≤ α implies δ∗(X) ≤ ψ(α).

This is the consequence of ideas developed by B. Bossard in a slightly different and also

more general setting [B].

Before proceeding to the proof of this proposition, we will introduce a few notations :

Let K = (Bl∞ , σ(l∞, l1)). K is a compact metrizable space. We denote by F(K) the

collection of all closed subsets of K and we equip F(K) with the Hausdorff topology T
generated by the sets of the form {F ∈ F(K) : F ∩V 6= ∅} and {F ∈ F(K) : F ⊂ V }, where

V is an open subset of K. (F(K), T ) is a compact metrizable space.

PROPOSITION 2.2. There exists a function ψ : ω1 → ω1 so that, for any closed subset

F of K and for any α < ω1, S(F ) ≤ α implies ∆(F ) ≤ ψ(α).

Proof. We will need the following result of B. Bossard [B] :
for ε > 0 dε : F(K) → F(K) and Dε : F(K) → F(K)

F 7→ F ′ε F 7→ F
[′]
ε

are Borel derivations.
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Therefore, for any α < ω1, Bα = {F ∈ F(K) : S(F ) ≤ α} =
∞⋂

n=1
{F ∈ F(K) : S1/n(F ) ≤ α}

is a Borel set in (F(K), T ).

Moreover, for any n ≥ 1, Bα ⊆ {F ∈ F(K) : ∆1/n(F ) < ω1}. Indeed, if S(F ) < ω1,

then F is norm separable and therefore every weak*-closed subset of F is weak*-dentable.

So (Fα
1/n)α is strictly decreasing and must stabilize at ∅ before ω1.

Now, by a result of C. Dellacherie [Del] about the applications of the Kunen-Martin

theorem to the study of the analytic derivations, there exists ψn(α) < ω1 such that :

Bα ⊆ {F ∈ F(K) : ∆1/n(F ) ≤ ψn(α)}.

We can conclude the proof by taking ψ(α) = sup
n≥1

ψn(α).

Proof of Proposition 2.1. Let X be a separable Banach space and α < ω1.

There is a closed linear subspace Y of `1(IN) such that X is isomorphic to
`1(IN)

Y
.

So Sz(X) = Sz(
`1(IN)

Y
) = S(BY ⊥)

and δ∗(X) = δ∗(
`1(IN)

Y
) = ∆(BY ⊥).

Thus by proposition 2.2, if Sz(X) ≤ α, then δ∗(X) ≤ ψ(α).

3. WHEN COUNTABLE, Sz(X) AND δ∗(X) ARE SEPARABLY DETERMINED.

Our goal in this section is to prove the two following statements :

PROPOSITION 3.1. Let X be a Banach space and let α < ω1.

If Sz(X) > α, then there exists a separable closed subspace Y of X such that Sz(Y ) > α.

PROPOSITION 3.2. Let X be a Banach space and let α < ω1.

If δ∗(X) > α, then there exists a separable closed subspace Y of X such that δ∗(Y ) > α.
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Proof of Proposition 3.1 : We will give our original proof in which we construct ”by

hand” the space Y . In order to do this we will use a family (Tα)α<ω1 of trees on ω (first

infinite ordinal) constructed inductively in the following way :

T0 = {∅}
Tα+1 = {∅} ∪

∞⋃
n=0

n_Tα, where n_Tα = {n_s, s ∈ Tα}.

Tα = {∅} ∪
∞⋃

n=0
n_Tαn

, if α is a limit ordinal, (αn)∞n=0 being an enumeration of the

ordinals less than α.

Remarks :

1) The height of Tα is ht(Tα) = α.

2) For s in Tα we denote Tα(s) = {t ∈ ω<ω : s_t ∈ Tα}, where ω<ω is the set of all

finite sequences of elements of ω. If we call hα(s) = ht(Tα(s)), we have that Tα(s) = Thα(s).

We will need the following :

LEMMA 3.3. For any 1 ≤ α < ω1, there exists a bijection ϕα : ω → Tα such that :

For any s, s′ in Tα, s < s′ implies ϕ−1
α (s) < ϕ−1

α (s′).

Proof. Let {Bn}∞n=0 be an enumeration of the branches of Tα. In order to define ϕα we

enumerate successively B1, B2 \B1, ..., Bn+1 \
∞⋃

k=1

Bk, ... (each enumeration of Bn+1 \
∞⋃

k=1

Bk

following the natural partial order on Tα).

LEMMA 3.4. Let 1 ≤ α < ω1 and ε > 0 and let X be a Banach space. If x∗ ∈ (BX∗)[α]
ε ,

then there exist a separable subspace Y of X and a family (x∗s)s∈Tα ⊆ BX∗ such that

i) x∗∅ = x∗

ii) ∀ s ∈ (Tα)′, ∀ n ∈ ω : ‖(x∗s_n − x∗s)ÌY ‖ >
ε

2
.

iii) ∀ s ∈ (Tα)′ : (x∗s_n − x∗s)ÌY

σ(Y ∗,Y )−→ 0.

(Note : (Tα)′ = {s ∈ Tα, ∃ n ∈ ω : s_n ∈ Tα}).
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Proof. We will construct, by induction on n, (x∗ϕα(n))
∞
n=0 in BX∗ and (xn)∞n=1 in BX so

that :

a) x∗ϕα(0) = x∗∅ = x∗.

b) ∀ n ∈ ω, x∗ϕα(n) ∈ (BX∗)[hα(ϕα(n))]
ε

c) ∀ n ≥ 1, (x∗ϕα(n) − x∗sn
)(xn) >

ε

2
, where ϕα(n) = s_

n kn with kn ∈ ω.

d) ∀ n ≥ 2, ∀ 1 ≤ k ≤ n− 1, |(x∗ϕα(n) − x∗sn
)(xk)| ≤ 1

2n
.

Assume x∗ϕα(k) for 0 ≤ k ≤ n − 1 and xk for 1 ≤ k ≤ n − 1 have been con-

structed and satisty a)...d). By Lemma 3.3, there exists in < n such that ϕα(n) =

ϕα(in)_kn, with kn ∈ ω. By induction hypothesis x∗ϕα(in) ∈ (BX∗)[hα(ϕα(in))]
ε . Since

hα(ϕα(in)) ≥ hα(ϕα(n)) + 1, we have that x∗ϕα(in) ∈ (BX∗)[hα(ϕα(n))+1]
ε . So for any weak*-

neighborhood V of x∗ϕα(in), diam (V ∩ (BX∗)[hα(ϕα(n))]
ε ) > ε. In particular there exists

x∗ϕα(n) ∈ (BX∗)[hα(ϕα(n))]
ε such that :

∥∥∥x∗ϕα(n) − x∗ϕα(in)

∥∥∥ >
ε

2
and

∣∣∣(x∗ϕα(n) − x∗ϕα(in))(xk)
∣∣∣ ≤ 1

2n
, ∀ 1 ≤ k ≤ n− 1.

We conclude the induction by choosing xn in BX such that (x∗ϕα(n) − x∗ϕα(in))(xn) >
ε

2
.

Let Y be the closed linear span of {xn}∞n=1. Y and the family (x∗s)s∈Tα constructed by

induction satisfy the properties claimed in Lemma 3.4.

It is now easy to show that x∗ÌY
∈ (BY ∗)

[α]
ε/2. This completes the proof of Proposition

3.1.

Proof of Proposition 3.2 : It is possible, by using convex combinations, to adapt the

proof of Proposition 3.1. But we will use instead a simpler and more global technique that

has been indicated to us.

We will show by transfinite induction that for any countable ordinal α, there is a

separable subspace Zα of X such that for any γ ≤ α : x∗ ∈ (BX∗)γ
ε implies x∗ÌZα

∈ (BZ∗α)γ
ε .

First we pick x in X /∈ {0} and call Z0 = IRx.

Assume that the previous statement is true for any β < α.

If α is a limit ordinal, we choose Zα to be the closed linear span of
⋃

β<α

Zβ .

If α = β + 1 : let us call V0 = Zβ . Let D0 be a countable dense subset of V0 and S0 be

the collection of half spaces S = {x∗ ∈ X∗ : x∗(z) > q} with z in D0 and q in Q/ .

If S ∩ (BX∗)γ+1
ε 6= ∅ for some γ ≤ β, then diam(S ∩ (BX∗)γ

ε > ε and therefore we can find

u∗, v∗ in S ∩ (BX∗)γ
ε and x = x(γ, S) in BX such that (u∗ − v∗)(x) > ε.
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Let us denote by V1 the closed linear span of Zβ ∪
⋃

γ≤β

⋃
S∈S0

x(γ, S).

Then we consider D1 a countable dense subset of V1 and we construct V2 similarly.

Finally Zα+1 is the closed linear span of
∞⋃

n=0
Vn.

We now need to prove by induction that for any γ ≤ α : x∗ ∈ (BX∗)γ
ε implies

x∗ÌZα
∈ (BZ∗α)γ

ε . The case γ = 0 and the limit case are trivial, so let us assume that this is

true for γ.

Let x∗ ∈ (BX∗)γ+1
ε and let S be a slice of (BZ∗α)γ

ε containing x∗. We may assume that S

is defined by a z in some Dn and by a q in Q/ . Let u∗ and v∗ in S ∩ (BX∗)γ
ε such that

(u∗ − v∗)(x(γ, S)) > ε.

By induction hypothesis u∗ÌZα
and v∗ÌZα

belong to (BZ∗α)γ
ε .

Thus diam(S ∩ (BZ∗α)γ
ε ) > ε and x∗ÌZα

∈ (BZ∗α)γ+1
ε .

Remark : This method gives similar results about ordinals with a different cardinality

and the subspaces of X with corresponding density character.

However a refinement of the technique used in the proof of Proposition 3.1. allows us

to obtain the following extension :

PROPOSITION 3.5. Let X be a Banach space with a separable dual and let α < ω1.

If Sz(X) > α, then there is a subspace Z of X such that
X

Z
has a shrinking basis and

Sz(
X

Z
) > α.

Proof : It will follow from a slight modification of W.B. Johnson and H.P. Rosenthal’s

proof of the existence of a quotient with a shrinking basis for any Banach space with separable

dual ([J-R]).

Since X∗ is separable, we may assume that the norm of X is such that the weak∗ and

the norm topologies coincide on the unit sphere of X∗.

Let ε > 0 such that 0 ∈ (BX∗)[α]
2ε , (εn)n≥1 ⊆ (0, 1) such that

∞∑
n=1

εn < ∞ and (xn)n≥1

be a dense subset of BX . We will construct by induction (x∗ϕα(n))
∞
n=0 ⊆ BX∗ and (Fn)∞n=1

an increasing sequence of finite subsets BX verifying :

a) x∗ϕα(0) = 0.

b) ∀n ≥ 0, x∗ϕα(n) ∈ (BX∗)[hα(ϕα(n))]
2ε .
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c) ∀n ≥ 1, ||x∗ϕα(n) − x∗sn
|| > ε, (let us denote y∗n =

x∗ϕα(n) − x∗sn

||x∗ϕα(n) − x∗sn
|| ).

d) For any f in ([y∗k]nk=1)
∗ with ||f || ≤ 1, there is x ∈ Fn such that :

∀y∗ ∈ [y∗k]nk=1, |f(y∗)− y∗(x)| < εn

3
||y∗||.

e) ∀x ∈ Fn |y∗n+1(x)| ≤ εn

3
.

f) ∀n ≥ 1 (xk)n
k=1 ⊆ Fn.

Suppose (x∗ϕα(k))
n
k=0 and Fn−1 have been constructed. Take Fn satisfying d) and f).

As in the proof of Proposition 3.1, we now choose x∗ϕα(n+1) in (BX∗)[hα(ϕα(n+1))]
2ε such that

||x∗ϕα(n) − x∗sn
|| > ε and |y∗n+1(x)| ≤ εn

3
for all x in Fn.

Consequences of this construction : By d) and e), (y∗n)∞n=1 is a basic sequence in X∗

and, if we denote by Pn the natural projections from [y∗k]∞k=1 onto [y∗k]nk=1, we have that

||Pn|| → 1. Let (yk)∞k=1 ⊆ ([y∗k]∞k=1)
∗ be the biorthogonal functionnals associated to the basis

(y∗k)∞k=1. Following the paper of W.B. Johnson and H.P. Rosenthal ([J-R]) it is now possible

to check that the operator :

T : X → ([y∗k]∞k=1)
∗

x 7→ Tx, where Tx(y∗) = y∗(x)

maps X onto Y the closed linear span of (yk)∞k=1. From this we can deduce, as in [J-R],

that (y∗k)∞k=1 is a weak∗-basic sequence. Finally, since the norm and the weak∗ topologies

coincide on the unit sphere of X∗ we can see, still following [J-R], that (y∗k)∞k=1 is boundedly

complete. Therefore, (yk)∞k=1 is shrinking.

Moreover our construction insures that Sz(Y ) > α. Thus we can conclude the proof by

taking Z = Ker T .

4. MAIN RESULTS.

THEOREM 4.1. There exists a function ψ : ω1 → ω1 so that, for any Banach space X

and for any countable ordinal α : Sz(X) ≤ α implies δ∗(X) ≤ ψ(α).

Proof. This is an immediate consequence of Proposition 3.2 and Proposition 2.1. The

function ψ is the same as the function given by Proposition 2.1.
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Remarks.

1) For a Banach space X, it is possible to define a dentability index δ(X) and a “weak-

Szlenk” index Szω(X) by peeling the unit ball of X with slices of small diameter or with

weakly open sets of small diameter. But the two conditions “δ(X) < ω1” and “Szω(X) < ω1”

are not equivalent, even in the separable case. Indeed the predual B of the James tree space

has the Point of Continuity Property and is separable, so Szω(B) < ω1 ; but B does not

have the Radon-Nikodym Property, so δ(X) = ∞ (see R.C. James [J], J. Lindenstrauss and

C. Stegall [L-S], C.A. Edgar and R.F. Wheeler [E-W]).

2) In general ψ(α) > α. For instance, if X is finite dimensional, Sz(X) = 1, while

δ∗(X) = ω. Moreover, the condition δ∗(X) = ω is equivalent to X super reflexive. But this

is not true for the Szlenk index. For example it is easy to check that Sz((
∑∞

n=1 ln1 )l2) = ω.

On the other hand, the descriptive set theory approach used in section 2 implies that

{α < ω1 : {X Banach space : Sz(X) < α} = {X Banach space : δ∗(X) < α}}

contains a closed cofinal subset of ω1.

THEOREM 4.2. Let X be a Banach space. If Sz(X) < ω1, then X admits an equivalent

norm whose dual norm is locally uniformly convex. In particular, there is an equivalent

Fréchet-differentiable norm on X.

Proof. This result is proven in [L] under the “a priori” stronger hypothesis : δ∗(X) <

ω1.

5. Sz(C(K)) for K SCATTERED COMPACT SPACE.

For a topological space K, the derived space K ′ is defined to be K \{x : x isolated point

of K} ; for ordinals α we define K(α) inductively by K(0) = K, K(α+1) = (K(α))′,K(α) =
⋂

β<α

K(β) for α limit ordinal. Then the space K is said to be scattered if K(α) = ∅ for some

α.

THEOREM 5.1. Let K be a scattered compact space such that K(ω1) = ∅. Let α < ω1

be the ordinal such that K(ωα) 6= ∅ and K(ωα+1) = ∅. Then Sz(C(K)) = ωα+1.
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As a corollary we obtain the following result of R. Deville [Dev] : if K is a compact

space such that K(ω1) = ∅, then there is an equivalent norm on C(K) whose dual norm is

locally uniformly convex.

We will need two classical lemmas.

LEMMA 5.2. Let K be a compact space and X be a separable subspace of C(K). Then

there exists a compact space L such that :

i) C(L) is separable.

ii) X embeds isometrically into C(L).

iii) there is a map s : K → L which is continuous and onto.

Proof. Let X be a separable subspace of C(K). We denote by L0 the metrizable compact

space (BX∗ , σ(X∗, X)). For x in K we call δx the element of (C(K))∗ defined by : for any f

in C(K), δx(f) = f(x).
We have that the application s : K → L0

x 7→ δxÌX
is continuous.

Let L = s(K). X embeds isometrically and in a canonical way into C(L).

LEMMA 5.3. Let K and L be two compact spaces and let s : K → L be continous and

onto. Then, for any ordinal α, L(α) ⊆ s(K(α)).

The proof of this lemma is an easy transfinite induction.

Proof of theorem 5.1. Let K be a compact space such that K(ωα+1) = ∅ , with α < ω1.

Let X be a separable subspace of C(K). By Lemma 5.2, there is a compact space L such

that C(L) is separable, X embeds isometrically in C(L) and there is a continuous map s from

K onto L. Then by Lemma 5.3, L(ωα+1) = ∅. Since C(L) is separable and L is scattered we

have that L is countable. Now, it is known that for countable compact spaces, L(ωα+1) = ∅
implies Sz(C(L)) ≤ ωα+1 (see C. Samuel [Sa]). Therefore, for any separable subspace X of

C(K), Sz(X) ≤ ωα+1. Thus, by Proposition 3.1, Sz(C(K)) ≤ ωα+1.

Let us mention that the definition of the Szlenk index that we use is not the definition

introduced by W. Szlenk [Sz] and used by C. Samuel [Sa]. But the two definitions coincide
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for X separable Banach space not containing any isomorphic copy of l1(IN) (see [L]) and

therefore for C(L) with L countable compact space.

On the other hand, if K(ωα) 6= ∅, then Sz(C(K)) > ωα. More precisely we have that,

for any ordinal α : x ∈ K(α) ⇒ δx ∈ (BC(K)∗)
[α]
1 , where δx is the point evaluation at x.

Therefore, under the assumptions of theorem 5.1 we have that ωα < Sz(C(K)) ≤ ωα+1.

The conclusion of this proof follows immediately from the next proposition.

PROPOSITION 5.4. Let X be a Banach space such that Sz(X) < ω1. Then there exists

a countable ordinal α so that Sz(X) = ωα.

Proof. We will use the following fact : for any Banach space X and any ordinal α

(∗) 1
2
(BX∗)[α]

ε +
1
2
BX∗ ⊆ (BX∗)[α]

ε/2.

The proof of this is a straightforward transfinite induction.

Claim : Sz(X) > ωα ⇒ Sz(X) ≥ ωα+1.

If Sz(X) > ωα then we can find ε > 0 and x∗ ∈ BX∗ such that x∗ ∈ (BX∗)[ω
α]

2ε . Then,

by (*), 0 ∈ (BX∗)[ω
α]

ε .

Thus
1
2
BX∗ ⊆ (BX∗)[ω

α]
ε/2 . So (

1
2
BX∗)[ω

α]
ε/2 ⊆ (BX∗)[ω

α.2]
ε/2 . But 0 ∈ (BX∗)[ω

α]
ε ⇒ 0 ∈

(
1
2
BX∗)[ω

α]
ε/2 . Hence 0 ∈ (BX∗)[ω

α.2]
ε/2 .

Proceeding inductively, we show that for any n in ω, 0 ∈ (BX∗)[ω
α.2n

]
ε/2n .

Therefore Sz(X) ≥ ωα+1. This completes the proof of the Claim.

Now let α = Inf{γ : Sz(X) ≤ ωγ}. If α is a limit ordinal, Sz(X) ≥ sup
β<α

ωβ = ωα. So

Sz(X) = ωα. If α = β + 1, our claim implies that Sz(X) = ωα.

Remarks.

1) A similar argument shows that if δ∗(X) < ω1, then δ∗(X) is of the form ωα.

2) The property described by Proposition 5.4 has been suggested by a paper of A.

Sersouri [Se] about the Lavrientiev indices.
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6. THREE-SPACE PROBLEM FOR THE CONDITION Sz(X) COUNTABLE.

The general question we are now interested in is the following : let X be a Banach space

and Y be a closed subspace of X. Assume that Sz(Y ) < ω1 and Sz(X/Y ) < ω1. Can we

conclude that Sz(X) < ω1 ?

In this section we answer positively this question by proving the following result :

THEOREM 6.1. Let X be a Banach space and Y be a closed subspace of X such that

Sz(Y ) < ω1 and Sz(X/Y ) < ω1. Then Sz(X) ≤ Sz(X/Y ).Sz(Y )

Remark. If we can prove this inequality when Y ⊥ is separable, then we can use the

results of Section 3 to deduce the general case. Indeed, for any separable subspace Z of X,

if we call E the closed linear space spanned by Z and Y , since (E/Y )∗ is separable we have

Sz(E) ≤ Sz(E/Y ).Sz(Y ) ≤ Sz(X/Y ).Sz(Y )

So

Sz(Z) ≤ Sz(X/Y ).Sz(Y )

Hence, by Proposition 3.1

Sz(X) ≤ Sz(X/Y ).Sz(Y )

Therefore, from now on, we will assume that Y ⊥ is separable and we will denote by

V = (Vn)∞n=1 a basis of open sets for (BY ⊥ , σ(Y ⊥, X/Y )).

LEMMA 6.2. Let ε > 0, F = 3BY ⊥ and B = F +
ε

3
BX∗ . For any ordinal α :

B[ω.α]
ε ⊆ F

[α]
ε/3 +

ε

3
BX∗ .
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Proof. We will prove this by transfinite induction on α.

By definition of B, it is true for α = 0.

Assume this property is true for any β < α.

If α is a limit ordinal, we have that

B[ω.α]
ε =

⋂

β<α

B[ω.β]
ε ⊆

⋂

β<α

(F [β]
ε/3 +

ε

3
BX∗) = F

[α]
ε/3 +

ε

3
BX∗ ,

because (F [β]
ε/3)β<α is a decreasing family of σ(Y ⊥, X/Y )-compact sets.

If α = β+1 : let (Vni(α))∞i=1 = {V ∈ V such that V ∩F
[β]
ε/3 6= ∅ and diam(V ∩F

[β]
ε/3) ≤

ε

3
}.

We will show by induction that for any k ≥ 1 :

B[ω.β+k]
ε ⊆ (F [β]

ε/3 \
k⋃

i=1

Vni(α)) +
ε

3
BX∗ .

If we assume that this is true for k, we have that B
[ω.β+k]
ε \ [(F [β]

ε/3 \
k+1⋃
i=1

Vni(α)) +
ε

3
BX∗ ]

is a σ(X∗, X)-open subset of B
[ω.β+k]
ε and is included in (Vnk+1(α) ∩ F

[β]
ε/3) +

ε

3
BX∗ . So its

diameter is ≤ ε. Therefore B
[ω.β+k+1]
ε ⊆ (F [β]

ε/3 \
k+1⋃
i=1

Vni(α)) +
ε

3
BX∗ .

It follows from these inclusions that

B[ω.α]
ε ⊆ (F [β]

ε/3 \
∞⋃

i=1

Vni(α)) +
ε

3
BX∗ = F

[α]
ε/3 +

ε

3
BX∗ .

Let q be the quotient map from X∗ to X∗/Y ⊥. We have the following lemma.

LEMMA 6.3. For any ordinal α, q((BX∗)[γε.α]
ε ) ⊆ (BX∗/Y ⊥)[α]

ε/4,

where γε = ω.Sε/3(F ) = ω.Sz(X/Y,
ε

9
).

Proof. Again the proof is a transfinite induction.

Since q(BX∗) = BX∗/Y ⊥ , the case α = 0 is clear.

Assume this is true for any ordinal α < β.

If α is a limit ordinal, it is easy to check that the property considered is therefore true

for α.

If α = β + 1 : let x∗ ∈ BX∗ so that qx∗ /∈ (BX∗/Y ⊥)[α]
ε/4. We need to prove that

x∗ /∈ (BX∗)[γε.α]
ε , so we may assume that x∗ ∈ (BX∗)[γε.β]

ε and then, by induction hypothesis,

13



qx∗ ∈ (BX∗/Y ⊥)[β]
ε/4. Therefore there is a σ(X∗/Y ⊥, Y )-neighborhood Ṽ of qx∗ such that

diam(Ṽ ∩ (BX∗/Y ⊥)[β]
ε/4) ≤

ε

4
. Ṽ defines a σ(X∗, X)-neighborhood V of x∗, and

V ∩ (BX∗)[γε.β]
ε ⊆ x∗ + (3BY ⊥ +

ε

3
BX∗).

By Lemma 6.2, (3BY ⊥ +
ε

3
BX∗)[γε]

ε = ∅.
Therefore x∗ /∈ (BX∗)[γε.β+γε]

ε = (BX∗)[γε.α]
ε .

Proof of Theorem 6.1. We deduce directly from Lemma 6.3 that, for any ε > 0 :

Sz(X, ε) ≤ ω.Sz(X/Y,
ε

9
).Sz(Y,

ε

4
)

We will use the following easy and technical fact :

Claim : let α and β be two ordinals ≥ 1. If γ < ωα then ω.γ.ωβ ≤ ωα.ωβ

We want now to prove that Sz(X) ≤ Sz(X/Y ).Sz(Y ). It is clear that if dim(Y ) is finite

then Sz(X) = Sz(X/Y ) and that if dim(X/Y ) is finite then Sz(X) = Sz(Y ). Therefore we

may assume that Sz(Y ) ≥ ω and that Sz(X/Y ) ≥ ω. Then, if we combine the claim above

with Proposition 5.4 we can conclude that Sz(X) ≤ Sz(X/Y ).Sz(Y ).

We will end this section with a slight improvement of the above inequality in the case

where Y is complemented in X. This will allow us to compute Sz(X) in some particular

cases.

LEMMA 6.4. Let X a Banach space and Y a complemented subspace of X.

If Sz(Y ) < ω1 and Sz(
X

Y
) < ω1, then there exists a constant C > 0 such that :

for any ε > 0, Sz(X, ε) ≤ Sz(Y,
ε

C
).Sz(

X

Y
,

ε

C
).

Proof : It is enough to show that if X = Y ⊕1 Z, then for any ε > 0 :

Sz(X, ε) ≤ Sz(Y, ε).Sz(Z, ε).

This can be done by a straightforward double transfinite induction.

Remark : Now it is not difficult to see that if Sz(Y ) ≤ ω and dim(Z) = ∞, then

Sz(X) = Sz(Z).

If we combine this remark with Proposition 3.1, we get the following result :

14



PROPOSITION 6.5. Let X be a Banach space and Y be an infinite codimensional

subspace of X isomorphic to c0(IN).

If Sz(
X

Y
) < ω1, then Sz(X) = Sz(

X

Y
).

Proof. By Proposition 3.1, it is enough to show that for any separable subspace E of X

containing Y and such that Y is of infinite codimension in E, we have Sz(E) ≤ Sz(
X

Y
).

But Sobczyk’s theorem (see [So]) implies that Y is complemented in E. Moreover it is easy to

check that Sz(c0(IN)) = ω. Therefore, by the above remark, Sz(E) = Sz(
E

Y
) ≤ Sz(

X

Y
).

Example : Let JL be the space constructed by W.B. Johnson et J. Lindenstrauss (see

[J-L] for the definition and the main properties of this space).

JL contains a subspace Y isometric to c0(IN) and such that
JL

Y
is isometric to l2(Γ), where

Γ is a certain uncountable set.

Thus, by Proposition 6.5, Sz(JL) = Sz(l2(Γ)).

But l2(Γ) is uniformly convex, so Sz(l2(Γ)) = ω = Sz(JL).
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