L^{p}-MAXIMAL REGULARITY ON BANACH SPACES WITH A SCHAUDER BASIS

N. J. KALTON AND G. LANCIEN

Abstract

We investigate the problem of L^{p}-maximal regularity on Banach spaces having a Schauder basis. Our results improve those of a recent paper. We also address the question of L^{r}-regularity in L^{s} spaces.

1. Introduction

We will only recall the basic facts and definitions on maximal regularity. For further information, we refer the reader to [2], [4], [8] or [7].

We consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
u^{\prime}(t)+B(u(t))=f(t) \quad \text { for } 0 \leq t<T \\
u(0)=0
\end{array}\right.
$$

where $T \in(0,+\infty),-B$ is the infinitesimal generator of a bounded analytic semigroup on a complex Banach space X and u and f are X-valued functions on $[0, T)$. Suppose $1<p<\infty . B$ is said to satisfy L^{p}-maximal regularity if whenever $f \in L^{p}([0, T) ; X)$ then the solution

$$
u(t)=\int_{0}^{t} e^{-(t-s) B} f(s) d s
$$

satisfies $u^{\prime} \in L^{p}([0, T) ; X)$. It is known that B has L^{p}-maximal regularity for some $1<p<\infty$ if and only if it has L^{p}-maximal regularity for every $1<p<\infty$ [3], [4], [14]. We thus say simply that B satisfies maximal regularity (MR).

As in [7], we define:
Definition 1.1. A complex Banach space X has the maximal regularity property (MRP) if B satisfies (MR) whenever $-B$ is the generator of a bounded analytic semigroup.

Let us recall that De Simon [3] proved that any Hilbert space has (MRP), and that the question whether L^{q} for $1<q \neq 2<\infty$ has (MRP) remained open until recently. Indeed, in [7] it is shown that a Banach space with an

[^0]unconditional basis (or more generally a separable Banach lattice) has (MRP) if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assumptions and study the (MRP) on Banach spaces with a finite-dimensional Schauder decomposition. In particular, we show that a UMD Banach space with an (FDD) and satisfying (MRP) must be isomorphic to an ℓ_{2} sum of finite dimensional spaces.

In the last question we consider the question of whether the solution u of our Cauchy problem satisfies $u^{\prime} \in L^{2}\left(\left[0, T ; L^{r}\right)\right.$ if $f \in L^{2}\left([0, T) ; L^{s}\right)$.

This work was done during a visit of the second author to the Department of Mathematics of the University of Missouri in Columbia in fall 1999; he would like to thank the Department for its warm hospitality.

2. Notation and background

We will follow the notation of [7]. Let us now introduce more precisely a few notions.

If F is a subset of the Banach space X, we denote by $[F]$ the closed linear span of F. We denote by $\left(\varepsilon_{k}\right)_{k=0}^{\infty}$ the standard sequence of Rademacher functions on $[0,1]$ and by $\left(h_{k}\right)_{k=0}^{\infty}$ the standard Haar functions on $[0,1]$ (for convenience we index from 0).

Let $1 \leq p<\infty$. A Banach space X has type p if there is a constant $C>0$ such that for every finite sequence $\left(x_{k}\right)_{k=1}^{K}$ in X :

$$
\left(\int_{0}^{1}\left\|\sum_{k=1}^{K} \varepsilon_{k}(t) x_{k}\right\|^{2} d t\right)^{1 / 2} \leq C\left(\sum_{k=1}^{K}\left\|x_{k}\right\|^{p}\right)^{1 / p} .
$$

Notice that every Banach space is of type 1. A Banach space X is called (UMD) if martingale difference sequences in $L_{2}([0,1] ; X)$ are unconditional i.e. there is a constant K so that for every martingale difference sequence $\left(f_{n}\right)_{n=1}^{N}$ we have

$$
\left\|\sum_{k=1}^{N} \delta_{k} f_{k}\right\|_{L_{2}(X)} \leq K\left\|\sum_{k=1}^{N} f_{k}\right\|_{L_{2}(X)}
$$

if $\sup _{k \leq N}\left|\delta_{k}\right| \leq 1$.
Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence of closed subspaces of X. Assume that $\left(E_{n}\right)_{n \geq 1}$ is a Schauder decomposition of X and let $\left(P_{n}\right)_{n \geq 1}$ be the associated sequence of projections from X onto E_{n}. For convenience we will also denote this Schauder decomposition by $\left(E_{n}, P_{n}\right)_{n \geq 1}$. The decomposition constant is defined by $\sup _{n}\left\|\sum_{K=1}^{n} P_{k}\right\|$; this is necessarily finite. If each $\left(E_{n}\right)$ is finitedimensional we refer to (E_{n}) as an (FDD) (finite-dimensional decomposition); an unconditional (FDD) is abbreviated to (UFDD).

If $\left(E_{n}\right)_{n \geq 1}$ is a Schauder decomposition of X and $\left(u_{n}\right)_{n=1}^{N}$ is a finite or infinite sequence (i.e. $N \leq \infty$) of the form $u_{n}=\sum_{k=r_{n-1}+1}^{r_{n}} x_{k}$ where $x_{k} \in E_{k}$ and $1=r_{0}<r_{1}<. .<r_{n}<$. , then $\left(u_{n}\right)_{n \geq 1}$ is called a block basic sequence of the decomposition $\left(E_{n}\right)$.

We denote by $\omega^{<\omega}$ the set of all finite sequences of positive integers, including the empty sequence denoted \emptyset. For $a=\left(a_{1}, . ., a_{n}\right) \in \omega^{<\omega},|a|=n$ is the length of $a(|\emptyset|=0)$. For $a=\left(a_{1}, . ., a_{k}\right)$ (respectively $\left.a=\emptyset\right)$, we denote $(a, n)=\left(a_{1}, . ., a_{k}, n\right)$ (respectively $\left.(a, n)=(n)\right)$. A subset β of $\omega^{<\omega}$ is a branch of $\omega^{<\omega}$ if there exists $\left(\sigma_{n}\right)_{n=1}^{\infty} \subset \mathbb{N}$ such that $\beta=\left\{\left(\sigma_{1}, . ., \sigma_{n}\right) ; n \geq 1\right\}$. In this paper, for a Banach space X, we call a tree in X any family $\left(y_{a}\right)_{a \in \omega<\omega} \subset X$. A tree $\left(y_{a}\right)_{a \in \omega<\omega}$ is weakly null if for any $a \in \omega^{<\omega},\left(y_{(a, n)}\right)_{n \geq 1}$ is a weakly null sequence.

Let $\left(y_{a}\right)_{a \in \omega<\omega}$ be a tree in the Banach space X. Let $T \subset \omega^{<\omega},\left(y_{a}\right)_{a \in T}$ is a full subtree of $\left(y_{a}\right)_{a \in \omega<\omega}$ if $\emptyset \in T$ and for all $a \in T$, there are infinitely many $n \in \mathbb{N}$ such that $(a, n) \in T$. Notice that if $\left(y_{a}\right)_{a \in T}$ is a full subtree of a weakly null tree $\left(y_{a}\right)_{a \in \omega<\omega}$, then it can be reindexed as a weakly null tree $\left(z_{a}\right)_{a \in \omega<\omega}$

We now state a result of [7] that will be an essential tool for this paper:
Theorem 2.1. Let $\left(E_{n}, P_{n}\right)_{n \geq 1}$ be a Schauder decomposition of the Banach space X. Let $Z_{n}=P_{n}^{*} X^{*}$ and $Z=\left[\cup_{n=1}^{\infty} Z_{n}\right]$. Assume X has (MRP). Then there is a constant $C>0$ so that whenever $\left(u_{n}\right)_{n=1}^{N}$ are such that $u_{n} \in$ $\left[E_{2 n-1}, E_{2 n}\right]$ and $\left(u_{n}^{*}\right)_{n=1}^{N}$ are such that $u_{n}^{*} \in\left[Z_{2 n-1}, Z_{2 n}\right]$ then

$$
\left(\int_{0}^{2 \pi}\left\|\sum_{n=1}^{N} P_{2 n} u_{n} e^{i 2^{n} t}\right\|^{2} \frac{d t}{2 \pi}\right)^{1 / 2} \leq C\left(\int_{0}^{2 \pi}\left\|\sum_{n=1}^{N} u_{n} e^{i 2^{n} t}\right\|^{2} \frac{d t}{2 \pi}\right)^{1 / 2}
$$

and

$$
\left(\int_{0}^{2 \pi}\left\|\sum_{n=1}^{N} P_{2 n}^{*} u_{n}^{*} e^{i 2^{n} t}\right\|^{2} \frac{d t}{2 \pi}\right)^{1 / 2} \leq C\left(\int_{0}^{2 \pi}\left\|\sum_{n=1}^{N} u_{n}^{*} e^{i 2^{n} t}\right\|^{2} \frac{d t}{2 \pi}\right)^{1 / 2}
$$

We observe that, by a well-known result of Pisier [12] these inequalities can be replaced by equivalent inequalities (with a modified constant) using ε_{k} in place of $e^{i 2^{k} t}$:

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} P_{2 n} u_{n} \varepsilon_{n}\right\|_{L_{2}(X)} \leq C\left\|\sum_{n=1}^{N} u_{n} \varepsilon_{n}\right\|_{L_{2}(X)} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} P_{2 n} u_{n}^{*} \varepsilon_{n}\right\|_{L_{2}(X)} \leq C\left\|\sum_{n=1}^{N} u_{n}^{*} \varepsilon_{n}\right\|_{L_{2}\left(X^{*}\right)} \tag{2.2}
\end{equation*}
$$

We refer the reader to [15] for further recent developments in this area.

3. The main Results

We begin with a general result on spaces with a Schauder decomposition:
Theorem 3.1. Let X be a Banach space of type $p>1$ and with a Schauder decomposition $\left(E_{n}\right)_{n=1}^{\infty}$. If X has $(M R P)$, then there is a constant $C>0$ so that for any block basic sequence $\left(u_{k}\right)_{k=1}^{N}$ with respect to the decomposition $\left(E_{n}\right)$:

$$
\begin{equation*}
\frac{1}{C} \sum_{k=1}^{N}\left\|u_{k}\right\|^{2} \leq \int_{0}^{1}\left\|\sum_{k=1}^{N} \varepsilon_{k}(t) u_{k}\right\|^{2} d t \leq C \sum_{k=1}^{K}\left\|u_{k}\right\|^{2} \tag{3.3}
\end{equation*}
$$

Proof. If the result is false we can clearly inductively construct an infinite normalized block basic sequence $\left(u_{n}\right)_{n=1}^{\infty}$ so that there is no constant C so that for all finitely nonzero sequences $\left(a_{k}\right)_{k=1}^{\infty}$ we have:

$$
\begin{equation*}
\frac{1}{C} \sum_{k=1}^{N}\left|a_{k}\right|^{2} \leq \int_{0}^{1}\left\|\sum_{k=1}^{N} a_{k} \varepsilon_{k}(t) u_{k}\right\|^{2} d t \leq C \sum_{k=1}^{N}\left|a_{k}\right|^{2} \tag{3.4}
\end{equation*}
$$

It therefore suffices to show that (3.4) holds for every normalized block basic sequence $\left(u_{n}\right)_{n=1}^{\infty}$. We can clearly then suppose $u_{n} \in E_{n}$.

We next use a theorem of Figiel and Tomczak-Jaegermann [5] combined with [13] (see also [10] p.112) that, since X has nontrivial type for every $n \in \mathbb{N}$ there exists $\varphi(n) \in \mathbb{N}$ so that any subspace F of X with dimension $\varphi(n)$ has a subspace H of dimension n which is 2-complemented in X and 2-isomorphic to ℓ_{2}^{n}.

Assume (3.4) is false. Then we can inductively find a sequence $\left(a_{n}\right)_{n \geq 1}$ and an increasing sequence $\left(r_{n}\right)_{n \geq 0}$ with $r_{0}=0$ so that $r_{2 n}>r_{2 n-1}+\varphi\left(r_{2 n-1}-r_{2 n-2}\right)$ for $n \geq 1$,

$$
\sum_{r_{2 n}+1}^{r_{2 n+1}}\left|a_{k}\right|^{2}=1
$$

and either

$$
\int_{0}^{1}\left\|\sum_{k=r_{2 n}+1}^{r_{2 n+1}} a_{k} \varepsilon_{k}(t) u_{k}\right\|^{2} d t>2^{n}
$$

or

$$
\int_{0}^{1}\left\|\sum_{k=r_{2 n}+1}^{r_{2 n+1}} a_{k} \varepsilon_{k}(t) u_{k}\right\|^{2} d t<2^{-n}
$$

In order to create new Schauder decompositions of X, we will need the following elementary lemma, that we state without a proof:

Lemma 3.2. Let $\left(E_{n}\right)_{n \geq 1}$ be a Schauder decomposition of a Banach space X. Assume that each E_{n} has a finite Schauder decomposition $\left(F_{n, k}\right)_{k=1}^{m_{n}}$ with a uniform bound on the decomposition constant. Then ($F_{1,1}, \cdots, F_{1, m_{1}}, F_{2,1}, \cdots, F_{2, m_{2}}, \cdots$) is also a Schauder decomposition of X.

We denote the induced decomposition by $\sum_{n=1}^{\infty} \oplus\left(\sum_{k=1}^{m_{n}} \oplus F_{n, k}\right)$.
Now by assumption $E_{r_{2 n-1}+1}+\cdots+E_{r_{2 n}}$ which has dimension at least $\varphi\left(r_{2 n}-\right.$ $r_{2 n-1}$) contains a subspace H_{n} which is 2-Hilbertian and 2-complemented in X. Let G_{n} be the complement of H_{n} in $E_{r_{2 n-1}+1}+\cdots+E_{r_{2 n}}$ by the projection of norm 2. At the same time $\left[u_{k}\right]$ is 1-complemented (by the Hahn-Banach theorem) in E_{k} for $r_{2 n-1}+1 \leq k \leq r_{2 n}$ and let F_{k} be its associated complement. We thus have a new Schauder decomposition:

$$
\left(F_{1},\left[u_{1}\right], F_{2},\left[u_{2}\right], \cdots, F_{r_{1}},\left[u_{r_{1}}\right], H_{1}, G_{1}, F_{r_{2}+1},\left[u_{r_{2}+1}\right], \cdots,\left[u_{r_{3}}\right], H_{2}, G_{2}, \cdots\right)
$$

If we write $D_{n}=F_{r_{2 n-2}+1}+\cdots+F_{r_{2 n-1}}+G_{n}$ then we have a Schauder decomposition

$$
\sum_{n=1}^{\infty} \oplus\left(D_{n} \oplus H_{n} \oplus \sum_{k=r_{2 n-2}+1}^{r_{2 n}} \oplus\left[u_{k}\right]\right)
$$

Next select a normalized basis $\left(v_{k}\right)_{k=r_{2 n-2}+1}^{r_{2 n-1}}$ of H_{k} which is 2-equivalent to the canoncal basis of $\ell_{2}^{r_{2 n}-r_{2 n-1}}$. It is easy to see that we can obtain a new Schauder decomposition by interlacing the $\left(v_{k}\right)$ with the $\left(u_{k}\right)$ i.e.:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(D_{n} \oplus\left[u_{r_{2 n-2}+1}\right] \oplus\left[v_{r_{2 n-2}+1}\right] \oplus \cdots \oplus\left[u_{r_{2 n-1}}\right] \oplus\left[v_{r_{2 n-1}}\right]\right) \tag{3.5}
\end{equation*}
$$

Now again using Lemma 3.2 we can form two further decompostions:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(D_{n} \oplus\left[u_{r_{2 n-2}+1}+v_{r_{2 n-2}+1}\right] \oplus\left[v_{r_{2 n-2}+1}\right] \oplus \cdots \oplus\left[u_{r_{2 n-1}}+v_{r_{2 n-1}}\right] \oplus\left[v_{r_{2 n-1}}\right]\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(D_{n} \oplus\left[u_{r_{2 n-2}+1}+v_{r_{2 n-2}+1}\right] \oplus\left[u_{r_{2 n-2}+1}\right] \oplus \cdots \oplus\left[u_{r_{2 n-1}}+v_{r_{2 n-1}}\right] \oplus\left[u_{r_{2 n-1}}\right]\right) \tag{3.7}
\end{equation*}
$$

Now we can apply Theorem 2.1. If we use decomposition (3.6) we note that $u_{k}=\left(u_{k}+v_{k}\right)-v_{k}$ and so for a suitable C and all n,

$$
\left\|\sum_{k=r_{2 n-2}+1}^{r_{2 n}} a_{k}\left(u_{k}+v_{k}\right) \varepsilon_{k}\right\|_{L_{2}(X)} \leq C\left\|\sum_{k=r_{2 n-2}+1}^{r_{2 n-1}} a_{k} u_{k} \varepsilon_{k}\right\|_{L_{2}(X)} .
$$

However, using decomposition (3.5) there is also a constant C^{\prime} so that

$$
\left\|\sum_{k=r_{2 n-2}+1}^{r_{2 n}} a_{k} v_{k} \varepsilon_{k}\right\|_{L_{2}(X)} \leq C^{\prime}\left\|\sum_{k=r_{2 n-2}+1}^{r_{2 n}} a_{k}\left(u_{k}+v_{k}\right) \varepsilon_{k}\right\|_{L_{2}(X)} .
$$

This leads to an estimate:

$$
\left(\sum_{k=r_{2 n-2}+1}^{r_{2 n-1}}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}} \leq C_{1}\left\|\sum_{k=r_{2 n-2}+1}^{r_{2 n-1}} a_{k} u_{k} \varepsilon_{k}\right\|_{L_{2}(X)}
$$

If we use decomposition (3.7) instead we obtain an estimate:

$$
\left\|\sum_{k=r_{2 n-2}+1}^{r_{2 n-1}} a_{k} u_{k} e^{i 2^{k} t}\right\|_{L_{2}(X)} \leq C_{2}\left(\sum_{k=r_{2 n-2}+1}^{r_{2 n-1}}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}} .
$$

Combining gives us (3.4) and completes the proof.
Let us first use this result to give a mild improvement of a result from [7]:
Theorem 3.3. Let X be a reflexive space with an (FDD) and with non-trivial type which embeds into a space Y with a (UFDD). If X has (MRP) then X is isomorphic to an $\ell_{2}-$ sum of finite-dimensional spaces $\left(\sum_{n=1}^{\infty} \oplus E_{n}\right)_{\ell_{2}}$.
Proof. Using Proposition 1.g. 4 of [9] (cf. [6]) we can block the given (FDD) to produce an (FDD) $\left(E_{n}\right)$ so that $\left(E_{2 n}\right)_{n=1}^{\infty}$ and $\left(E_{2 n-1}\right)_{n=1}^{\infty}$ are both (UFDD)'s. Let us denote, as in Theorem 2.1, the dual (FDD) of X^{*} by $\left(Z_{n}\right)_{n=1}^{\infty}$. Now it follows applying Theorem 3.1 to both X and X^{*} (which also has (MRP)) that there exists a constant C so that if $x_{n} \in E_{n}$ and $x_{n}^{*} \in Z_{n}$ are two finitely nonzero sequences

$$
\begin{aligned}
& \left\|\sum_{k=1}^{\infty} x_{2 k-j}\right\| \leq C\left(\sum_{k=1}^{\infty}\left\|x_{2 k-j}\right\|^{2}\right)^{\frac{1}{2}} \\
& \left\|\sum_{k=1}^{\infty} x_{2 k-j}^{*}\right\| \leq C\left(\sum_{k=1}^{\infty}\left\|x_{2 k-j}^{*}\right\|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

for $j=0,1$. Hence

$$
\begin{aligned}
& \left\|\sum_{k=1}^{\infty} x_{k}\right\| \leq 2 C\left(\sum_{k=1}^{\infty}\left\|x_{k}\right\|^{2}\right)^{\frac{1}{2}} \\
& \left\|\sum_{k=1}^{\infty} x_{k}^{*}\right\| \leq 2 C\left(\sum_{k=1}^{\infty}\left\|x_{k}^{*}\right\|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Now for given x_{k} we may find $y_{k}^{*} \in X^{*}$ with $\left\|y_{k}^{*}\right\|=\left\|x_{k}\right\|$ and $y_{k}\left(x_{k}^{*}\right)=\left\|x_{k}^{*}\right\|$. Let $x_{k}^{*}=P_{k}^{*} y_{k}^{*}$ (where $P_{k}: X \rightarrow E_{k}$ is the projection associated with the FDD $\left.\left(E_{n}\right)\right)$. Then $\left\|x_{k}^{*}\right\| \leq C_{1}\left\|x_{k}\right\|$ where $C_{1}=\sup _{n}\left\|P_{n}\right\|<\infty$. Hence if $\left(x_{k}\right)_{k=1}^{\infty}$ is finitely nonzero, we have

$$
\left\|\sum_{k=1}^{\infty} x_{k}^{*}\right\| \leq 2 C C_{1}\left(\sum_{k=1}^{\infty}\left\|x_{k}\right\|^{2}\right)^{\frac{1}{2}}
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left\|x_{k}\right\|^{2} & =\sum_{k=1}^{\infty} x_{k}^{*}\left(x_{k}\right) \\
& =\left(\sum_{k=1}^{\infty} x_{k}^{*}\right)\left(\sum_{k=1}^{\infty} x_{k}\right) \\
& \leq 2 C C_{1}\left(\sum_{k=1}^{\infty}\left\|x_{k}^{*}\right\|^{2}\right)^{\frac{1}{2}}\left\|\sum_{k=1}^{\infty} x_{k}\right\|
\end{aligned}
$$

so that we obtain the lower estimate:

$$
\left(\sum_{k=1}^{\infty}\left\|x_{k}\right\|^{2}\right)^{\frac{1}{2}} \leq 2 C C_{1}\left\|\sum_{k=1}^{\infty} x_{k}\right\| .
$$

This completes the proof.
We next give another application to (UMD)-spaces with (MRP).
Theorem 3.4. Let X be a (UMD) Banach space with an (FDD) satisfying (MRP). Then X is isomorphic to an ℓ_{2}-sum of finite dimensional spaces, $\left(\sum_{n=1}^{\infty} \oplus E_{n}\right)_{\ell_{2}}$.
Proof. Let $\left(E_{n}\right)$ be the given (FDD) of X. We will show first that there is a blocking $\left(F_{n}\right)$ of $\left(E_{n}\right)$ which satisfies an upper 2-estimate i.e. if there is a constant A so that if $\left(x_{n}\right)$ is block basic with respect to $\left(F_{n}\right)$ and finitely non-zero then

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty} x_{n}\right\| \leq A\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}\right)^{\frac{1}{2}} \tag{3.8}
\end{equation*}
$$

Once this is done, the proof can be completed easily. Indeed if $\left(Z_{n}\right)$ is the dual decomposition to $\left(F_{n}\right)$ for X^{*} then we can apply the fact that X^{*} also has (MRP) (X is reflexive) to block $\left(Z_{n}\right)$ to obtain a decomposition which also has an upper 2-estimate. Thus we can assume $\left(F_{n}\right)$ and $\left(Z_{n}\right)$ both have an upper 2-estimate and then repeat the argument used in Theorem 3.3 to deduce that $X=\left(\sum_{n=1}^{\infty} \oplus F_{n}\right)_{\ell_{2}}$.

Since X necessarily has type $p>1$, we can apply Theorem 3.1 and assume $\left(E_{n}\right)$ obeys (3.3).

We now introduce a particular type of tree in the space $L_{2}([0,1) ; X)$. Let \mathcal{D}_{n} for $n \geq 0$ be the sub-algebra of the Borel sets of $[0,1)$ generated by the dyadic intervals $\left[(k-1) 2^{-n}, k 2^{-n}\right)$ for $1 \leq k \leq 2^{n}$. Let \mathbb{E}_{n} denote the conditional expectation operator $\mathbb{E}_{n} f=\mathbb{E}\left(f \mid \mathcal{D}_{n}\right)$.

We will say that a tree $\left(f_{a}\right)_{a \in \omega<\omega}$ is a martingale difference tree or (MDT) if

- each f_{a} is $\mathcal{D}_{|a|}$ - measurable,
- if $|a|>0$ then $\mathbb{E}_{|a|-1} f_{a}=0$,
- there exists N so that if $|a|>N$ then $f_{a}=0$.

In such a tree the partial sums along any branch form a dyadic martingale which is eventually constant.

We will prove the following Lemma:
Lemma 3.5. There is a constant K so that if $\left(f_{a}\right)_{a \in \omega<\omega}$ is a weakly null (MDT), there is a full subtree $\left(f_{a}\right)_{a \in T}$ so that for any branch β we have:

$$
\left\|\sum_{a \in \beta} f_{a}\right\|_{L_{2}(X)} \leq K\left(\sum_{a \in \beta}\left\|f_{a}\right\|_{L_{2}(X)}^{2}\right)^{\frac{1}{2}}
$$

Proof. For each a we define integers $m_{-}(a)$ and $m_{+}(a)$. If $f_{a} \neq 0$ we set $m_{-}(a)$ to be the greatest m so that

$$
\left\|\sum_{k=1}^{m} P_{m} f_{a}\right\|_{L_{2}(X)} \leq 2^{-|a|-1}\left\|f_{a}\right\|_{L_{2}(X)}
$$

and $m_{+}(a)$ to be the least $m>m_{-}(a)$ so that

$$
\left\|\sum_{k=m+1}^{\infty} P_{k} f_{a}\right\|_{L_{2}(X)} \leq 2^{-|a|-1}\left\|f_{a}\right\|_{L_{2}(X)} .
$$

If $f_{\emptyset}=0$ we set $m_{-}(\emptyset)=0$ and $m_{+}(\emptyset)=1$; if $f_{a}=0$ where $a \neq \emptyset$ we set $m_{-}(a)$ to be the last member of a and $m_{+}(a)=m_{-}(a)+1$.

Since $\left(f_{a}\right)$ is weakly null we have $\lim _{n \rightarrow \infty} m_{-}(a, n)=\infty$ for every a. It is then easy to pick a full subtree T so that $m_{-}(a, n)>m_{+}(a)$ whenever $a,(a, n) \in T$. Now let $g_{a}=\sum_{k=m_{-}(a)+1}^{m_{+}(a)} f_{a}$. Then $\left\|f_{a}-g_{a}\right\|_{L_{2}(X)} \leq 2^{-|a|}\left\|f_{a}\right\|_{L_{2}(X)}$.

For any branch β of T, we have that $g_{a}(t)$ is a block basic sequence with respect to $\left(E_{n}\right)$ for every $0 \leq t<1$. Hence

$$
\left(\int_{0}^{1}\left\|\sum_{a \in \beta} \epsilon_{|a|}(s) g_{a}(t)\right\|_{X}^{2} d s\right)^{\frac{1}{2}} \leq C\left(\sum_{a \in \beta}\left\|g_{a}(t)\right\|_{X}^{2}\right)^{\frac{1}{2}}
$$

Integrating again we have

$$
\left(\int_{0}^{1}\left\|\sum_{a \in \beta} \epsilon_{|a|}(s) g_{a}\right\|_{L_{2}(X)}^{2} d s\right)^{\frac{1}{2}} \leq C\left(\sum_{a \in \beta}\left\|g_{a}\right\|_{L_{2}(X)}^{2}\right)^{\frac{1}{2}}
$$

From this we get

$$
\left(\int_{0}^{1}\left\|\sum_{a \in \beta} \epsilon_{|a|}(s) f_{a}\right\|_{L_{2}(X)}^{2} d s\right)^{\frac{1}{2}} \leq 2 C\left(\sum_{a \in \beta}\left\|f_{a}\right\|_{L_{2}(X)}^{2}\right)^{\frac{1}{2}}+\sum_{a \in \beta} 2^{-|a|}\left\|f_{a}\right\| .
$$

Estimating the last term by the Cauchy-Schwarz inequality and using the fact that X is (UMD) we get the Lemma.

Now we introduce a functional Φ on X by defining $\Phi(x)$ to be the infimum of all $\lambda>0$ so that for every weakly null (MDT) $\left(f_{a}\right)_{a \in \omega<\omega}$ with $f_{\emptyset}=x \chi_{[0,1)}$ we have a full subtree T so that for any branch β

$$
\begin{equation*}
\left\|\sum_{a \in \beta} f_{a}\right\|_{L_{2}(X)}^{2} \leq \lambda+2 K^{2} \sum_{\substack{a \in \beta \\ a \neq \emptyset}}\left\|f_{a}\right\|_{L_{2}(X)}^{2} \tag{3.9}
\end{equation*}
$$

Note that that since

$$
\left\|\sum_{a \in \beta} f_{a}\right\|_{L_{2}(X)}^{2} \leq 2\left(\|x\|^{2}+\left\|\sum_{\substack{a \in \beta \\ a \neq \emptyset}} f_{a}\right\|_{L_{2}(X)}^{2}\right)
$$

we have an estimate $\Phi(x) \leq 2\|x\|^{2}$. By considering the null tree we have $F(x) \geq\|x\|^{2}$. It is clear that Φ is continuous and 2 -homogeneous. Most importantly we observe that Φ is convex; the proof of this is quite elementary and we omit it. It follows that we can define an equivalent norm by $\left\|\|x\|^{2}=\right.$ $\Phi(x)$ and $\|x\| \leq\||x|\| \leq 2\|x\|$ for $x \in X$.

Next we prove that if $x \in X$ and $\left(y_{n}\right)$ is a weakly null sequence then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|\left|x+y_{n}\| \|^{2}+\left\|\mid x-y_{n}\right\| \|^{2}\right) \leq 2\right\|\|x\|\left\|^{2}+4 K^{2} \limsup _{n \rightarrow \infty}\right\| y_{n} \|^{2}\right. \tag{3.10}
\end{equation*}
$$

We first note that we can suppose $\lim _{n \rightarrow \infty} \mid\left\|x \pm y_{n}\right\|$ and $\lim _{n \rightarrow \infty}\left\|y_{n}\right\|^{2}$ all exist. Now suppose $\epsilon>0$. Then we can find weakly null (MDT)'s $\left(f_{a}^{n}\right)_{a \in \omega<\omega}$ with $f_{\emptyset}^{n} \equiv x+y_{n}$ so that for every full subtree T we have a branch β on which:

$$
\begin{equation*}
\left\|\sum_{a \in \beta} f_{a}^{n}\right\|_{L_{2}(X)}^{2}+\epsilon>\| \| x+y_{n}\left\|^{2}+2 K^{2} \sum_{\substack{a \in \beta \\ a \neq \emptyset}}\right\| f_{a}^{n} \|_{L_{2}(X)}^{2} \tag{3.11}
\end{equation*}
$$

In fact by easy induction we can pick a full subtree so that (3.11) holds for every branch. Hence we suppose the original tree satisfies (3.11) for every branch.

Similarly we may find weakly null (MDT)'s $\left(g_{a}^{n}\right)_{a \in \omega<\omega}$ with $g_{\emptyset}^{n} \equiv x-y_{n}$ and for every branch β,

$$
\left\|\sum_{a \in \beta} g_{a}^{n}\right\|_{L_{2}(X)}^{2}+\epsilon>\mid\left\|x-y_{n}\right\|\left\|^{2}+2 K^{2} \sum_{\substack{a \in \beta \\ a \neq \emptyset}}\right\| g_{a}^{n} \|_{L_{2}(X)}^{2} .
$$

We next consider the (MDT) defined by $h_{\emptyset} \equiv x$,

$$
h_{(n)}(t)=\left\{\begin{array}{lc}
y_{n} & \text { if } 0 \leq t<\frac{1}{2} \\
-y_{n} & \text { if } \frac{1}{2} \leq t<1
\end{array}\right.
$$

and if $|a|>1$ then

$$
h_{(a, n)}(t)=\left\{\begin{array}{l}
f_{a}^{n}(2 t-1) \quad \text { if } 0 \leq t<\frac{1}{2} \\
g_{a}^{n}(2 t) \quad \text { if } \frac{1}{2} \leq t<1
\end{array}\right.
$$

Now for every branch of the (MDT) $\left(h_{a}\right)_{a \in \omega<\omega}$ with initial element $\{n\}$ we have

$$
\left\|\sum_{a \in \beta} h_{a}\right\|_{L_{2}(X)}^{2}+\epsilon>\frac{1}{2}\left(\left|\left\|x+y_{n}\right\|\left\|^{2}+\right\|\right| x-y_{n}\| \|^{2}\right)+2 K^{2} \sum_{\substack{a \in \beta \\|a|>1}}\left\|h_{a}\right\|_{L_{2}(X)}^{2} .
$$

However, from the definition of $\Phi(x)=\| \| x\| \|^{2}$ it follows that there exists n_{0} so that if $n \geq n_{0}$ we can find a branch β whose initial element is n and such that

$$
\left\|\sum_{a \in \beta} h_{a}\right\|_{L_{2}(X)}^{2}<\|\mid x\|\left\|^{2}+2 K^{2} \sum_{\substack{a \in \beta \\|a|>0}}\right\| h_{a} \|_{L_{2}(X)}^{2}+\epsilon .
$$

Combining gives the equation (for $n \geq n_{0}$),

$$
\frac{1}{2}\left(\mid\left\|x+y_{n}\right\|\left\|^{2}+\right\|\left\|x-y_{n}\right\| \|^{2}\right) \leq\||x|\|^{2}+2 K^{2}\left\|y_{n}\right\|^{2}+2 \epsilon
$$

This proves (3.10). But note that if y_{n} is weakly null we have $\lim _{\inf }^{n \rightarrow \infty}$ $\| \mid x-$ $y_{n} \||\geq||x|||$ and so we deduce:

$$
\limsup _{n \rightarrow \infty}\left\|\left|x+y_{n}\| \|^{2} \leq\left\|\left|\|x \mid\|^{2}+4 K^{2} \lim \sup \left\|y_{n}\right\|^{2}\right.\right.\right.\right.
$$

Using this equation it is now easy to block the Schauder decomposition $\left(E_{n}\right)$ to produce a Schauder decomposition $\left(F_{n}\right)$ with the property that for any N if $x \in F_{1}+\cdots+F_{N}$ and $y \in \sum_{k=N+2}^{\infty} F_{k}$ then

$$
\|\mid x+y\| \| \leq\left(1+\delta_{N}\right)\left(\| \| x\| \|^{2}+4 K^{2}\|y\|^{2}\right)^{\frac{1}{2}}
$$

where $\delta_{N}>0$ are chosen to be decreasing and so that $\prod_{N=1}^{\infty}\left(1+\delta_{N}\right) \leq 2$. Next suppose $\left(x_{k}\right)$ is any finitely non-zero block basic sequence with respect to (F_{n}). By an easy induction we obtain for $j=0,1$:

$$
\left|\left\|\mid \sum_{k=1}^{n} x_{2 k-j}\right\| \| \leq 4 K^{2} \prod_{k=1}^{n-1}\left(1+\delta_{2 k-j}\right)\left(\sum_{k=1}^{n}\left|\left\|x_{2 k-j} \mid\right\|^{2}\right)^{\frac{1}{2}} .\right.\right.
$$

Hence

$$
\left\|\sum_{k=1}^{n} x_{k}\right\| \leq 32 K^{2}\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{2}\right)^{\frac{1}{2}}
$$

This establishes (3.8) and as shown earlier this suffices to complete the proof.

Remark. Recently Odell and Schlumprecht [11] showed that a separable Banach space X can be embedded in an ℓ_{p}-sum of finite-dimensional spaces for $1<p<\infty$ if and only if X is reflexive and every normalized weakly null tree has a branch which is equivalent to the usual ℓ_{p}-basis. This result is closely related to the proof of the previous theorem.

4. On L^{r}-REgularity in L^{s} Spaces

Let $s \in[1, \infty)$. We consider our usual Cauchy problem:

$$
\left\{\begin{array}{l}
u^{\prime}(t)+B(u(t))=f(t) \quad \text { for } 0 \leq t<T \\
u(0)=0
\end{array}\right.
$$

where $T \in(0,+\infty),-B$ is the infinitesimal generator of a bounded analytic semigroup on $L^{s}=L^{s}([0,1])$ and $f \in L^{2}\left([0, T) ; L^{s}\right)$. Then we ask the following question: for what values of s and r in $[1, \infty)$ does the solution

$$
u(t)=\int_{0}^{t} e^{-(t-s) B} f(s) d s
$$

necessarily satisfies $u^{\prime} \in L^{2}\left([0, T) ; L^{r}\right)$? Thus we introduce the following definition:

Definition 4.1. Let r and s in $[1, \infty)$. We say that (r, s) is a regularity pair if whenever $-B$ is the infinitesimal generator of a bounded analytic semigroup on $L^{s}=L^{s}([0,1])$ and $f \in L^{2}\left([0, T) ; L^{s}\right)$, the solution u of

$$
\left\{\begin{array}{l}
u^{\prime}(t)+B(u(t))=f(t) \quad \text { for } 0 \leq t<T \\
u(0)=0
\end{array}\right.
$$

satisfies $u^{\prime} \in L^{2}\left([0, T) ; L^{r}\right)$.
Notice that it follows from previous results ([3], [8] and [7]) that (s, s) is a regularity pair if and only if $s=2$. This is extended by our next result:

Theorem 4.2. Let r and s in $[1, \infty)$. Then (r, s) is a regularity pair if and only if $r \leq s=2$.

Proof. It follows clearly from the work of De Simon [3], that if $r \leq s=2$ then (r, s) is a regularity pair.
So let now (r, s) be a regularity pair. Since L^{1} does nat have (MRP) ([8]), we have that $s>1$. Then, solving our Cauchy problem with $B=0$, we obtain that $r \leq s$. Thus we can limit ourselves to the case $s>1$ and $1 \leq r \leq s$.
Then by the closed graph Theorem, for any B so that $-B$ is the infinitesimal generator of a bounded analytic semigroup on $L^{s}=L^{s}([0,1])$, there is a constant $C>0$ such that for any $f \in L^{2}\left([0, T) ; L^{s}\right)$:

$$
\left\|u^{\prime}\right\|_{L^{2}\left(L^{s}\right)} \leq C\|f\|_{L^{2}\left(L^{s}\right)} .
$$

Using the inclusion $L^{s} \subset L^{r}$ for $r \leq s$, we can now state the following analogue of Theorem 2.1:

Proposition 4.3. Let $\left(E_{n}, P_{n}\right)_{n \geq 1}$ be a Schauder decomposition of L^{s}. Assume that (r, s) is a regularity pair. Then there is a constant $C>0$ so that whenever
$\left(u_{n}\right)_{n=1}^{N}$ are such that $u_{n} \in\left[E_{2 n-1}, E_{2 n}\right]$ then

$$
\left\|\sum_{n=1}^{N} P_{2 n} u_{n} \varepsilon_{n}\right\|_{L^{2}\left(L^{r}\right)} \leq C\left\|\sum_{n=1}^{N} u_{n} \varepsilon_{n}\right\|_{L^{2}\left(L^{s}\right)}
$$

Then our first step will be to show that the Haar system $\left(h_{k}\right)$ satisfies some lower-2 estimates in L^{s} in the following sense:

Lemma 4.4. If there exists $r \leq s$ such that (r, s) is a regularity pair, then there is a constant $C>0$ such that for any normalized block basic sequence $\left(v_{1}, \ldots, v_{n}\right)$ of $\left(h_{k}\right)$ and for any $a_{1}, . ., a_{n}$ in \mathbb{C} :

$$
\left\|\sum_{k=1}^{n} a_{k} v_{k}\right\|_{L^{s}}^{2} \geq C \sum_{k=1}^{n}\left|a_{k}\right|^{2} .
$$

Proof. We first observe that if $1<p<2$, it follows from the work of J. Bretagnolle, D. Dacunha-Castelle and J.L. Krivine [1] on p-stable random variables that there is a sequence $\left(e_{n}\right)_{n \geq 1}$ in L^{1} which is equivalent to the canonical basis of ℓ_{p} in any L^{q} for $1 \leq q<p$. Thus $\left(e_{n}\right)$ is weakly null in L^{s}, and by a gliding hump argument, we may assume that $\left(e_{n}\right)$ is actually a block basic sequence with respect with the Haar basis. If $p=2$, then the Rademacher functions form a block basic sequence in every L^{q} for $1 \leq q<\infty$.

Now assume the lemma is false. We pick a normalized block basic sequence $\left(v_{1}, \ldots, v_{n_{1}}\right)$ of $\left(h_{k}\right)$ and $a_{1}, . ., a_{n_{1}}$ in \mathbb{C} so that

$$
\left\|\sum_{k=1}^{n_{1}} a_{k} v_{k}\right\|_{L^{s}}^{2} \leq \sum_{k=1}^{n_{1}}\left|a_{k}\right|^{2}=1
$$

Then pick $m_{1} \in \mathbb{N}$ such that $\left(v_{1}, . ., v_{n_{1}}, e_{m_{1}}\right)$ is a block basic sequence of $\left(h_{k}\right)$. By induction, we pick a normalized block basic sequence $\left(v_{n_{j}+1}, \ldots, v_{n_{j+1}}\right)$ of $\left(h_{k}\right), a_{n_{j}+1}, . ., a_{n_{j+1}}$ in \mathbb{C} and $m_{j+1} \in \mathbb{N}$ so that $\left(v_{1}, . ., v_{n_{1}}, e_{m_{1}}, v_{n_{1}+1}, . ., v_{n_{j+1}}, e_{m_{j+1}}\right)$ is a block basic sequence of $\left(h_{k}\right)$ and

$$
\left\|\sum_{k=n_{j}+1}^{n_{j+1}} a_{k} v_{k}\right\|_{L^{s}}^{2} \leq \frac{1}{2^{j}} \sum_{k=n_{j}+1}^{n_{j+1}}\left|a_{k}\right|^{2}=\frac{1}{2^{j}}
$$

So we can find $\left(I_{k}\right)_{k \geq 1}$ and $\left(J_{k}\right)_{k \geq 1}$ two sequences of finite intervals of \mathbb{N} such that $\left\{I_{k}, J_{k}: k \geq 1\right\}$ is a partition of \mathbb{N} and for all $k \geq 1, v_{k} \in\left[h_{j}, j \in I_{k}\right]$ and $e_{m_{k}} \in\left[h_{j}, j \in J_{k}\right]$. Then set

$$
X_{k}=\left[h_{j}: j \in I_{k} \cup J_{k}\right] .
$$

Then $\left(X_{k}\right)$ is an unconditional Schauder decomposition of L^{s}. Each X_{k} can be decomposed into $X_{k}=E_{2 k-1} \oplus E_{2 k}$, where $E_{2 k-1}=\left[v_{k}+e_{m_{k}}\right]$, $e_{m_{k}} \in E_{2 k}$ and the corresponding projections are uniformly bounded. So, by Lemma 3.2, $\left(E_{k}\right)_{k \geq 1}$ is a Schauder decomposition of L^{s}. We can now make use of of

Proposition 4.3. If we decompose $a_{k} v_{k}=a_{k}\left(v_{k}+e_{m_{k}}\right)-a_{k} e_{m_{k}}$ in $E_{2 k-1} \oplus E_{2 k}$, we obtain that there is a constant $C>0$ such that for all $n \geq 1$:

$$
\left\|\sum_{k=1}^{n} a_{k} v_{k} \varepsilon_{k}\right\|_{L^{2}\left(L^{s}\right)} \geq C\left(\sum_{k=1}^{n}\left|a_{k}\right|^{2}\right)^{1 / 2}
$$

Since $\left(v_{k}\right)$ is an unconditional basic sequence in L^{s}, there is a constant $K>0$ so that for all $n \geq 1$:

$$
\left\|\sum_{k=1}^{n} a_{k} v_{k}\right\|_{L^{s}}^{2} \geq K \sum_{k=1}^{n}\left|a_{k}\right|^{2},
$$

which is in contradiction with our construction.
We now conclude the proof of Theorem 4.2. The Haar basis of L^{s} has a block basic sequence equivalent to the standard basis of $\ell_{\max (s, 2)}$. Hence Lemma 4.4 shows that $\max (s, 2) \leq p$ whenever $s<p<2$ or $p=2$. Thus $s=2$.

References

[1] J. Bretagnolle, D. Dacunha-Castelle and J.L. Krivine, Lois stables et espaces L^{p}, Annales de l'Institut Henri Poincaré 2, 231-259 (1966).
[2] T. Coulhon and D. Lamberton, Régularité L^{p} pour les équations d'évolution, Séminaire d'Analyse Fonctionnelle Paris VI-VII (1984-85),155-165.
[3] L. De Simon, Un' applicazione della theoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine, Rend. Sem. Mat., Univ. Padova (1964), 205-223.
[4] G. Dore, L^{p} regularity for abstract differential equations (In "Functional Analysis and related topics", editor: H. Komatsu), Lect. Notes in Math. 1540, Springer Verlag (1993).
[5] T. Figiel, N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), no. 2, 155-171.
[6] W.B. Johnson and M. Zippin, On subspaces of quotients of $\left(\sum G_{n}\right)_{\ell_{p}}$ and $\left(\sum G_{n}\right)_{c_{0}}$, Israel J. Math. 13 (1972) 311-316.
[7] N.J. Kalton and G. Lancien, A solution to the problem of L^{p}-maximal regularity, to appear in Math. Z.
[8] C. Le Merdy, Counterexamples on L^{p}-maximal regularity, Math. Z. 230 (1999), 4762.
[9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Vol.1, Sequence spaces, Springer, Berlin 1977.
[10] V.D. Milman and G. Schechtman, Asymptotic theory of fninite-dimensional normed spaces, Springer Lecture Notes 1200, Berlin 1986.
[11] E. Odell and T. Schlumprecht, Trees and branches in Banach spaces, to appear.
[12] G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, Séminaire sur la géometrie des éspaces de Banach, Ecole Polytechnique, Palaiseau, Exposé VII, 197778.
[13] G. Pisier, Holomorphic semigroups and the geometry of Banach spaces, Ann. Math. 115 (1982) 375-392.
[14] P.E. Sobolevskii, Coerciveness inequalities for abstract parabolic equations (translations), Soviet Math. Dokl. 5 (1964), 894-897.
[15] L. Weis, Operator-valued Fourier Multiplier Theorems and Maximal L_{p}-Regularity, to appear.

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211

E-mail address: nigel@math.missouri.edu
Equipe de Mathématiques - UMR 6623, Université de Franche-Comté, F25030 Besançon cedex

E-mail address: glancien@math.univ-fcomte.fr

[^0]: 1991 Mathematics Subject Classification. Primary: 47D06, Secondary: 46B03, 46B52, 46C15.

 The first author was partially supported by NSF grant DMS-9870027.

