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Abstract. We prove that the Lipschitz-free space over a doubling metric space
has the bounded approximation property. We also show that the Lipschitz-free
spaces over `N1 or `1 have monotone finite-dimensional Schauder decompositions.

1. Introduction

For (M1, d1) and (M2, d2) metric spaces and f : M1 → M2, we denote by Lip(f)
the Lipschitz constant of f given by

Lip(f) = sup

{
d2(f(x), f(y))

d1(x, y)
, x, y ∈M1, x 6= y

}
.

Consider (M,d) a pointed metric space, i.e. a metric space equipped with a dis-
tinguished element (origin) denoted 0. Then, the space Lip0(M) of all real-valued
Lipschitz functions f on M which satisfy f(0) = 0, endowed with the norm

‖f‖Lip0(M) = Lip(f)

is a Banach space. The Dirac map δ : M → Lip0(M)∗ defined by 〈g, δ(p)〉 = g(p)
for g ∈ Lip0(M) and p ∈ M is an isometric embedding from M into Lip0(M)∗.
The closed linear span of {δ(p), p ∈M} is denoted F(M) and called the Lipschitz-
free space over M (or free space in short). It follows from the compactness of the
unit ball of Lip0(M) with respect to the topology of pointwise convergence, that
F(M) can be seen as the canonical predual of Lip0(M). Then the weak∗-topology
induced by F(M) on Lip0(M) coincides with the topology of pointwise convergence
on the bounded subsets of Lip0(M). Lipschitz-free spaces are a very useful tool for
abstractly linearizing Lipschitz maps. Indeed, if we identify through the Dirac map
a metric space M with a subset of F(M), then any Lipschitz map from the metric
spaceM to a metric spaceN extends to a continuous linear map from F(M) to F(N)
with the same Lipschitz constant (see [14] or Lemma 2.2 in [5]). A comprehensive
reference for the basic theory of the spaces of Lipschitz functions and their preduals,
which are called Arens-Eells spaces there, is the book [14] by Weaver.

Despite the simplicity of their definition, very little is known about the linear
structure of Lipschitz-free spaces over separable metric spaces. It is easy to see that
F(R) is isometric to L1. However, adapting a theorem of Kislyakov [8], Naor and
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Schechtman proved in [12] that F(R2) is not isomorphic to any subspace of L1. Then
the metric spaces whose Lipschitz-free space is isometric to a subspace of L1 have
been characterized by Godard in [4].

The aim of this paper is to study metric spaces M such that F(M) has the
bounded approximation property (BAP) or admits a finite-dimensional Schauder
decomposition (FDD). This kind of study was initiated in the fundamental paper
by Godefroy and Kalton [5], where they proved that a Banach space X has the
λ-BAP if and only if F(X) has the λ-BAP. In particular, for any finite dimensional
Banach space E, F(E) has the metric approximation property (MAP). Another
major result from [5] is that any separable Banach space has the so-called isometric
lifting property. Refining the techniques used in the proof of this result, Godefroy
and Ozawa have proved in their recent work [6] that any separable Banach space
failing the BAP contains a compact subset whose Lipschitz-free space also fails the
BAP. It is then natural, as it is suggested in [6], to try to describe the metric spaces
whose Lipschitz-free space has BAP. We address this question in Section 2. Our
main result of this section (Corollary 2.2) is that for any doubling metric space M ,
the Lipschitz-free space F(M) has the BAP.

Then we try to find the Banach spaces such that the corresponding Lipschitz-
free spaces have stronger approximation properties. The first result in this direction
is due to Borel-Mathurin [1], who proved that F(RN ) admits a finite-dimensional
Schauder decomposition. The decomposition constant obtained in [1] depends on
the dimension N . In Section 3 we show that F(`N1 ) and F(`1) admit a monotone
finite-dimensional Schauder decomposition. For that purpose, we use a particular
technique for interpolating Lipschitz functions on hypercubes of RN .

2. Bounded approximation property for Lipschitz-free spaces and
gentle partitions of unity

We first recall the definition of the bounded approximation property.
Let 1 ≤ λ < ∞. A Banach space X has the λ-bounded approximation property

(λ-BAP) if, for every ε > 0 and every compact set K ⊂ X, there is a bounded
finite-rank linear operator T : X → X with ‖T‖ ≤ λ and such that ‖T (x)− x‖ ≤ ε
whenever x ∈ K. We say that X has the BAP if it has the λ−BAP for some
1 ≤ λ <∞.

Obviously, if there is a sequence of uniformly bounded finite-rank linear operators
on a Banach space X converging in the strong operator topology to the identity on
X, then X has the BAP. For further information on the approximation properties
of Banach spaces we refer the reader to [10] or [3].

We now detail a construction due to Lee and Naor [9] that we shall use. Let (Y, d)
be a metric space, X a closed subset of Y , (Ω,Σ, µ) a measure space and K > 0.
Following [9] we say that a function ψ : Ω × Y → [0,∞) is a K-gentle partition of
unity of Y with respect to X if it satisfies the following:
(i) For all x ∈ Y \X, the function ψx : ω 7→ ψ(ω, x) is in L1(µ) and ‖ψx‖L1(µ) = 1.
(ii) For all ω ∈ Ω and all x in X, ψ(ω, x) = 0.
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(iii) There exists a Borel measurable function γ : Ω→ X such that for all x, y ∈ Y∫
Ω
|ψ(ω, x)− ψ(ω, y)|d(γ(ω), x) dµ(ω) ≤ Kd(x, y).

Then, for Y having a K-gentle partition of unity with respect to a separable subset
X and for f Lipschitz on X, Lee and Naor define E(f) by E(f)(x) = f(x) if x ∈ X
and

E(f)(x) =

∫
Ω
f(γ(ω))ψ(ω, x) dµ(ω) if x ∈ Y \X

and show that Lip(E(f)) ≤ 3KLip(f) ([9] Lemma 2.1).
The proof of this Lemma is quite elementary. However, let us emphasize that

building a K-gentle partition of unity is highly non trivial. The approach of Lee and
Naor in [9] is to first construct random partitions of unity. Then, the key idea, as
we understand it, is that a single smooth or “gentle” partition of unity can emerge
by averaging a “good” random distribution of partitions of unity.

Our general result is then the following.

Theorem 2.1. Let (M,d) be a pointed separable metric space such that there exists
a constant K > 0 so that for any closed subset X of M , M admits a K-gentle
partition of unity with respect to X. Then F(M) has the 3K-BAP.

Proof. Our objective is to find a sequence of finite-rank linear operators on F(M)
with norms bounded by 3K and converging to the identity on F(M) in the strong
operator topology. To this end, we first construct a sequence of operators of appro-
priate qualities on the dual space Lip0(M) so that they are adjoint operators and
then pass to F(M). To be more precise, we build a sequence (Sn)∞n=1 of 3K-bounded
finite-rank linear operators on Lip0(M) that are pointwise continuous, and therefore
weak∗ to weak∗ continuous, on bounded subsets of Lip0(M) and such that for all
f ∈ Lip0(M), (Sn(f))∞n=1 converges pointwise to f . This will imply that Sn = T ∗n ,
where Tn is a finite-rank operator on F(M) (see [3], Corollary 3.94 for instance)
and such that (Tn)∞n=1 is converging to the identity for the weak operator topology
on F(M). Recall now that M is assumed to be a separable metric space. So us-
ing the fact that the Dirac map δ is an isometry from M into F(M) whose image
has a dense linear span, we see that F(M) is also separable. Then Mazur’s Lemma
and a standard diagonal argument will yield the existence of a bounded sequence
of finite-rank operators converging to the identity for the strong operator topology
on F(M). Note that the operators obtained in this last step are made of convex
combinations of the Tn’s. This preserves our control on their norms.

So, let (xn)∞n=1 be a dense sequence in M and 0 be the origin of M . Put Xn =
{0, x1, .., xn}. For f ∈ Lip0(M) we denote Rn(f) the restriction of f to Xn. The
operator Rn, defined from Lip0(M) to Lip0(Xn), is clearly of finite rank, pointwise
continuous and such that ‖Rn‖ ≤ 1.

Thanks to our assumption that M admits a K-gentle partition of unity with
respect to Xn, we can apply Lee and Naor’s construction to obtain an extension
operator En from Lip0(Xn) to Lip0(M). Note that it follows immediately from the
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definition of En and Lebesgue’s dominated convergence theorem that En is pointwise
continuous on bounded subsets of Lip0(Xn).

Finally, we set Sn = EnRn. The sequence (Sn)∞n=1 is indeed a sequence of finite-
rank linear operators from Lip0(M) to Lip0(M) that are pointwise continuous on
bounded subsets of Lip0(M) and so that ‖Sn‖ ≤ 3K for all n ∈ N. To finish the
proof, we only need to show that for any f ∈ Lip0(M), the sequence (Sn(f))∞n=1

converges pointwise to f . So let us fix x ∈ M , f ∈ Lip0(M) and ε > 0. Let n0 ∈ N
such that d(x, xn0) ≤ ε. Then, for any n ≥ n0,

|f(x)− f(xn0)| ≤ ε‖f‖Lip0(M) and |Sn(f)(x)− f(xn0)| ≤ 3Kε‖f‖Lip0(M).

Therefore
|Sn(f)(x)− f(x)| ≤ (1 + 3K)ε‖f‖Lip0(M).

This concludes our proof.
�

We recall that a metric space (M,d) is called doubling if there exists a constant
D(M) > 0 such that any open ball B(p,R) in M can be covered with at most D(M)
open balls of radius R

2 . We can now state the main application of Theorem 2.1.

Corollary 2.2. Let (M,d) be a pointed doubling metric space. Then the Lipschitz-
free space F(M) has the C(1 + log(D(M)))-BAP, where C is a universal constant.

Proof. We combine some of the important results from [9]. Namely, it follows from
Lemma 3.8, Corollary 3.12 and Theorem 4.1 in [9] that if M is a doubling metric
space and X is a closed subset of M , then M admits a K(1+log(D(M)))-gentle par-
tition of unity with respect to X (where K is a universal constant). The conclusion
is now a direct application of Theorem 2.1. �

Remarks.
1) Let us mention that an extension operator with these properties could also be

obtained from a later construction due to A. and Y. Brudnyi in [2], where they use
the notion of metric space of homogeneous type. A Borel measure µ on a metric space
(M,d) is called doubling if the measure of every open ball is strictly positive and
finite and if there is a constant δ(µ) > 0 such that µ(B(p, 2R)) ≤ δ(µ)µ(B(p,R)) for
all p ∈M and R > 0. A metric space endowed with a doubling measure is said to be
of homogeneous type. Clearly, a space of homogeneous type is doubling. Conversely,
Luukkainen and Saksman proved in [11] that every complete doubling metric space
(M,d) carries a doubling measure µ such that δ(µ) ≤ c(D(M)), where c(D(M)) is
a constant depending only on D(M). More on doubling metric spaces and spaces of
homogeneous type can be found in [13] and [7].

2) We refer the reader to Lee and Naor’s paper [9] for other examples of metric
spaces admitting K-gentle partitions of unity such as negatively curved manifolds,
special graphs or surfaces of bounded genus.

Let us conclude this section with a few words on the Lipschitz-free spaces over
subsets of RN . It is easily checked that for N ∈ N, the space RN with the Euclidean
norm is a doubling metric space with doubling constant bounded above by KN ,
where K is a universal constant. This property is inherited by metric subspaces. So,
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it follows from Corollary 2.2 that for any closed subset F of the Euclidean space RN ,
F(F ) has the CN -BAP for some universal constant C. It turns out that a better
result can be derived from [9] and [5].

Proposition 2.3. Let N ∈ N and F be a closed subset of RN equipped with
the Euclidean norm. Then the Lipschitz-free space F(F ) is isometric to a C

√
N -

complemented subspace of the Lipschitz-free space F(RN ). In particular, F(F ) has

the C
√
N -BAP.

Proof. We may assume, after translating F , that 0 ∈ F . The restriction to F defined
from Lip0(RN ) to Lip0(F ) is the adjoint operator of an isometry J from F(F )
into F(RN ). We can now apply a more precise result on extensions of Lipschitz
functions coming from [9]. Indeed, it follows from Lemma 3.16 and Theorem 4.1

in [9] that RN equipped with the Euclidean norm admits a K
√
N -gentle partition

of unity with respect to F , where K is a universal constant. So, there exists a
linear operator E : Lip0(F ) → Lip0(RN ) which is weak∗ to weak∗ continuous on
bounded subsets of Lip0(F ) and such that E(f)|F = f for every f ∈ Lip0(F ) and

‖E‖ ≤ 3K
√
N . Due to the weak∗-continuity of E, there exists a bounded linear

operator P : F(RN )→ F(F ) satisfying P ∗ = E. Moreover, thanks to the fact that
E is an extension operator and by the Hahn-Banach theorem, JP (µ) = µ for every
µ ∈ J(F(F )). Hence JP is a linear projection from F(RN ) onto J(F(F )) such

that ‖JP‖ ≤ 3K
√
N . This shows that F(F ) is isometric to a C

√
N -complemented

subspace of F(RN ), where C is a universal constant. On the other hand, it is proved

in [5] that F(RN ) has the MAP. Therefore F(F ) has the C
√
N -BAP. �

3. Finite-dimensional Schauder decomposition of the Lipschitz-free
space F(`1)

We recall the notion of finite-dimensional Schauder decomposition following the
monograph of Lindenstrauss and Tzafriri [10].

Let X be a Banach space. A sequence (Xn)∞n=1 of finite-dimensional subspaces of
X is called a finite-dimensional Schauder decomposition of X (FDD) if every x ∈ X
has a unique representation of the form x =

∑∞
n=1 xn with xn ∈ Xn for every n ∈ N.

If (Sn)∞n=0, where S0 ≡ 0, is a sequence of projections on X satisfying SnSm =
Smin{m,n} such that 0 < dim(Sn − Sn−1)(X) < ∞ and converging in the strong

operator topology to the identity on X, then (Xn)∞n=1 =
(
(Sn−Sn−1)(X)

)∞
n=1

is an
FDD of X, for which the Sn’s are the partial sum projections. Then the sequence
(Sn)∞n=1 is bounded and K = supn∈N ‖Sn‖ is called the decomposition constant. If
K = 1, then the decomposition is called monotone.

For N ∈ N, the space RN equipped with the norm ‖x‖1 =
∑N

i=1 |xi| is denoted

`N1 . The space
{
x = (xi)

∞
i=1 ∈ RN,

∑∞
i=1 |xi| <∞

}
equipped with the norm ‖x‖1 =∑∞

i=1 |xi| is denoted `1. We write 0N for the origin in `N1 and 0 for the origin in `1.
Our result is the following.

Theorem 3.1. The Lipschitz-free spaces F(`1) and F(`N1 ) admit monotone finite-
dimensional Schauder decompositions.
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Let X be `1 or `N1 . It follows from the classical theory that we only need to build
a sequence of contractive finite-rank linear projections (Sn)∞n=1 on F(X) such that

SnSm = Smin{m,n} for all m,n ∈ N and that
∞⋃
n=1

Sn(F(X)) = F(X). As in the

proof of Theorem 2.1 we shall work on the dual space and construct a sequence of
contractive finite-rank linear projections on Lip0(X), that are pointwise continuous
on bounded subsets of Lip0(X), possess the commuting property and converge to
the identity on Lip0(X) in the weak∗-operator topology. The general idea will be
to take an increasing sequence of closed bounded subsets of X and associate with
each of these sets a finite-rank linear operator on Lip0(X) so that the image of a
function under this operator has values close to the values of the original function at
the points of the considered closed set. However, unlike the situation in our previous
section, we have the linear structure of the metric space X at our disposal. This will
enable us to work accurately enough to obtain a monotone FDD for F(X).

3.1. Notation and interpolation Lemma. Put N0 = N∪{0} and fix N ∈ N. We
denote by C (y,R), where y ∈ RN and 0 < R <∞, the hypercube

C(y,R) =

{
x ∈ RN , sup

1≤i≤N
|xi − yi| ≤

R

2

}
.

For y ∈ RN , 0 < R < ∞ and δ ∈ {−1, 1}N , the symbol Aδ(y,R) stands for the
vertex y + R

2 δ of the hypercube C (y,R).
The following interpolation on C(y,R) of a function defined on its vertices will

be the crucial tool for our proof. Let y ∈ RN , 0 < R < ∞, x ∈ C (y,R) and let
f : dom(f) → R satisfy

{
Aδ (y,R) , δ ∈ {−1, 1}N

}
⊂ dom(f) ⊂ RN . We define

inductively:

Λγ (f, C (y,R)) (x) =
x1 − y1 + R

2

R
f
(
A(1,γ1,...,γN−1) (y,R)

)
+

(
1−

x1 − y1 + R
2

R

)
f
(
A(−1,γ1,...,γN−1) (y,R)

)
for each γ = (γ1, . . . , γN−1) ∈ {−1, 1}N−1,

Λγ (f, C (y,R)) (x) =
xj − yj + R

2

R
Λ(1,γ1,...,γN−j) (f, C (y,R)) (x)

+

(
1−

xj − yj + R
2

R

)
Λ(−1,γ1,...,γN−j) (f, C (y,R)) (x)

for each j ∈ {2, . . . , N − 1} and γ = (γ1, . . . , γN−j) ∈ {−1, 1}N−j , and

Λ (f, C (y,R)) (x) =
xN − yN + R

2

R
Λ(1) (f, C (y,R)) (x)(3.1)

+

(
1−

xN − yN + R
2

R

)
Λ(−1) (f, C (y,R)) (x).
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Let us use the following convention: {−1, 1}0 := {∅} and Λ∅ = Λ.
Let I1, . . . , IN be closed intervals in R. We shall say that a function Φ : I1 ×

· · · × IN → R has the property (AF) on I1 × · · · × IN ⊂ RN if its restriction to any
segment lying in I1 × · · · × IN and parallel to one of the coordinate axes is affine.
A function having the property (AF) on I1× · · · × IN is uniquely determined by its
values at the vertices of I1× · · · × IN . Observe that Λ (f, C (y,R)) has the property
(AF) on C(y,R) and coincides with the function f at the vertices of C (y,R).

We now state and prove our basic interpolation lemma.

Lemma 3.2. Let y ∈ RN , 0 < R < ∞ and let f : dom(f) → R be a function
satisfying

{
Aδ (y,R) , δ ∈ {−1, 1}N

}
⊂ dom(f) ⊂ RN . Consider RN equipped with

the `1-norm. Then

Lip (Λ (f, C (y,R))) = Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

Proof. It follows clearly from its definition that Λ (f, C (y,R)) is differentiable in the
interior of C (y,R). We shall prove that for any 1 ≤ i ≤ N and any x in the interior
of C (y,R)

∣∣∣∣∂Λ (f, C (y,R))

∂xi
(x)

∣∣∣∣ ≤ Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

Since RN is equipped with ‖ ‖1, the conclusion of our lemma will then follow directly
from the mean value theorem.

So let x be an interior point of C (y,R), that is x so that yi − R
2 < xi < yi + R

2

for all 1 ≤ i ≤ N . Consider first γ, γ̃ ∈ {−1, 1}N−1 such that there exists a unique
k ∈ {1, . . . , N − 1} satisfying γk 6= γ̃k. Then

∣∣Λγ (f, C (y,R)) (x)− Λγ̃ (f, C (y,R)) (x)
∣∣

=

∣∣∣∣∣
(

1−
x1 − y1 + R

2

R

)(
f
(
A(−1,γ1,...,γN−1) (y,R)

)
− f

(
A(−1,γ̃1,...,γ̃N−1) (y,R)

))
+
x1 − y1 + R

2

R

(
f
(
A(1,γ1,...,γN−1) (y,R)

)
− f

(
A(1,γ̃1,...,γ̃N−1) (y,R)

)) ∣∣∣∣∣
≤ RLip

(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.
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Further, one shows by induction on j ∈ {1, . . . , N−1} that for all γ, γ̃ ∈ {−1, 1}N−j
such that there exists a unique k ∈ {1, . . . , N − j} satisfying γk 6= γ̃k we have∣∣Λγ (f, C (y,R))(x)− Λγ̃ (f, C (y,R)) (x)

∣∣(3.2)

=

∣∣∣∣∣
(

1−
xj − yj + R

2

R

)(
Λ(−1,γ1,...,γN−j) (f, C (y,R)) (x)

− Λ(−1,γ̃1,...,γ̃N−j) (f, C (y,R)) (x)
)

+
xj − yj + R

2

R

(
Λ(1,γ1,...,γN−j) (f, C (y,R)) (x)

− Λ(1,γ̃1,...,γ̃N−j) (f, C (y,R)) (x)
)∣∣∣∣∣

≤ RLip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

Now, for γ ∈ {−1, 1}N−1 and i ∈ {1, . . . , N},

∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ =



∣∣∣∣f
(
A(1,γ1,...,γN−1)

(y,R)
)

R

−
f
(
A(−1,γ1,...,γN−1)

(y,R)
)

R

∣∣∣∣ if i = 1,

0 if i > 1.

Therefore ∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ ≤ Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

Further, for j ∈ {2, . . . , N}, γ ∈ {−1, 1}N−j and i ∈ {1, . . . , N},

∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ =



∣∣∣∣R−(xj−yj+R
2 )

R

∂Λ(−1,γ1,...,γN−j)(f, C(y,R))

∂xi
(x)

+
xj−yj+R

2
R

∂Λ(1,γ1,...,γN−j)(f, C(y,R))

∂xi
(x)

∣∣∣∣ if i < j,∣∣∣∣Λ(1,γ1,...,γN−j)(f, C(y,R))(x)

R

−
Λ(−1,γ1,...,γN−j)(f, C(y,R))(x)

R

∣∣∣∣ if i = j,

0 if i > j.

Consequently, using (3.2) and an induction on j, one gets that for all j ∈ {1, . . . , N},
i ∈ {1, . . . , N} and γ ∈ {−1, 1}N−j ,∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ ≤ Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

This concludes the proof.
�
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We now finish setting our notation. Provided that ε = (ε1, . . . , εN ) ∈ {−1, 1}N ,
y ∈ RN , h = (h1, . . . , hN ) ∈ NN0 and k ∈ N0, we denote

xε,yh,k = y + 2−k−1ε+ 2−k(ε1h1, . . . , εNhN ).

Next, if 0 < R < ∞ and t ∈ R, we define πR(t) to be the nearest point to t in
[−R

2 ,
R
2 ]. Then we define ΠN

R (x) = (πR(x1), . . . , πR(xN )) for all x ∈ RN . It is easily

checked that ΠN
R is a retraction from `N1 onto C

(
0N, R

)
and that Lip(ΠN

R ) = 1. In

fact, ΠN
R is the nearest point mapping to C

(
0N, R

)
and is 1-Lipschitz in both ‖ ‖1

and ‖ ‖2 on RN .

Finally, we define ρN to be the canonical projection from `1 onto `N1 and τN to
be the canonical injection from `N1 into `1. Namely ρN (x) = (x1, . . . , xN ) for any
x = (xi)

∞
i=1 ∈ `1 and τN (x) = (x1, . . . , xN , 0, . . . ) for every x = (x1, . . . , xN ) ∈ `N1 .

3.2. Proof of Theorem 3.1. We detail the argument for F(`1). As we have an-
nounced in the note below the formulation of Theorem 3.1, we perform first a con-
struction of projections having the desired qualities on Lip0(`1).

So, for f ∈ Lip0(`1), n ∈ N and x ∈ `1 we define

Qn(f)(x) = Pn(f ◦ τn)(ρn(x)),

with

Pn(g)(u) = Λ
(
g, C

(
xε,0

n

h,n−1, 2
1−n
))

(Πn
2n(u)), for g ∈ Lip0(`n1 ) and u ∈ Rn,

where ε ∈ {−1, 1}n and h ∈ {0, . . . , 22n−2 − 1}n are chosen such that Πn
2n(u) ∈

C
(
xε,0

n

h,n−1, 2
1−n
)

.

Let us mention that in the above construction the symbols xε,0
n

h,n−1, C
(
xε,0

n

h,n−1, 2
1−n
)

and Λ
(
g, C

(
xε,0

n

h,n−1, 2
1−n
))

are meant in Rn, or acting on Rn. In the sequel, the

information on the dimension considered for hypercubes or for points xε,yh,k shall be

carried by the centre of a hypercube or by y respectively, which most of the time

will be 0n. Finally, we denote Vn the set of all vertices of all cubes C
(
xε,0

n

h,n−1, 2
1−n
)

for ε ∈ {−1, 1}n and h ∈ {0, . . . , 22n−2 − 1}n.
Before we proceed with the proof, let us describe the operator Qn. The hyper-

cube C(0n, 2n) of Rn is split into small hypercubes of edge length equal to 21−n.
If x belongs to one of the small hypercubes, then Qn(f)(x) is the value obtained
by performing the interpolation Λ for the restriction of f to the vertices of this
small hypercube. If x does not belong to C(0n, 2n), then Qn(f)(x) is defined to be
Qn(f)(rn(x)), where rn = Πn

2n ◦ ρn is the natural retraction from `1 onto C(0n, 2n).
In rough words, let us say that as we go from step n to step n+ 1, we perform the
three following operations: we add one dimension to our hypercubes, we double the
edge length of the large hypercube and divide by two the edge length of the small
hypercubes.

We now make a simple observation.
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Lemma 3.3. Let m > n in N. Assume that g ∈ Lip0(`n1 ). Then the function Pn(g)

has the property (AF) on each hypercube C
(
xε,0

n

h,m−1, 2
1−m

)
where ε ∈ {−1, 1}n and

h ∈ Nn0 (note here that these hypercubes are considered in Rn).

Proof. The assertion is clear if the hypercube C
(
xε,0

n

h,m−1, 2
1−m

)
lies inside C (0n, 2n).

Assume now that it is not the case. First, it is easily checked that Πn
2n has the

property (AF) on C
(
xε,0

n

h,m−1, 2
1−m

)
. Besides, the image by Πn

2n of a segment in

C
(
xε,0

n

h,m−1, 2
1−m

)
that is parallel to a coordinate axis is either a point or a segment

parallel to a coordinate axis. Finally, Πn
2n

(
C
(
xε,0

n

h,m−1, 2
1−m

))
is included in a face

of one of the hypercubes in the tilling of C (0n, 2n). On this face Pn(g) has the
property (AF). The conclusion follows.

�

Let us proceed with the proof of Theorem 3.1. Fix n ∈ N. First, it is clear that

Qn(f)(0) = f(0) = 0.

Then, using Lemma 3.2 and the fact that 1 = Lip(τn) = Lip(ρn) = Lip(Πn
2n), we

get that for all x, y ∈ `1

|Qn(f)(x)−Qn(f)(y)| ≤ ‖f ◦ τn‖Lip0(`1) ‖Πn
2n(ρn(x))−Πn

2n(ρn(y))‖1
≤ ‖f‖Lip0(`1) ‖x− y‖1 .

The map f 7→ Λ (f, C (y,R)) is clearly linear. Then, the linearity of Qn follows
easily. Moreover, Qn(f) is uniquely determined by the values of f at the elements of
the finite set Vn. Hence Qn : Lip0(`1)→ Lip0(`1) is a well defined finite-rank linear
operator with ‖Qn‖ ≤ 1.

Consider now m,n ∈ N so that m ≤ n. Then Qn(f) ◦ τm = f ◦ τm on Vm. Indeed,
for A = (A1, . . . , Am) ∈ Vm, we have that ρn(τm(A)) ∈ Vn. So

Qn(f)(τm(A)) = f(τn(A1, . . . , Am, 0, . . . , 0︸ ︷︷ ︸
n−m

)) = f(τm(A)).

Thus Qm(Qn(f)) = Qm(f) on `1 by definition.
Suppose now m > n and assume that j ∈ {1, . . . ,m}, λ ∈ [0, 1] and that x, x̃ ∈

C
(
xε,0

m

h,m−1, 2
1−m

)
, where ε ∈ {−1, 1}m and h ∈ {0, . . . , 22m−2 − 1}m, are such that

xi = x̃i for i 6= j. Then

Qn(f)(τm(λx+ (1− λ)x̃)) = Pn(f ◦ τn)(ρn(τm(λx+ (1− λ)x̃)))

= Pn(f ◦ τn)(λρn(τm(x)) + (1− λ)ρn(τm(x̃)))

= λPn(f ◦ τn)(ρn(τm(x)))

+ (1− λ)Pn(f ◦ τn)(ρn(τm(x̃)))

= λQn(f)(τm(x)) + (1− λ)Qn(f)(τm(x̃)).
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In the above we have used that ρn and τm are affine, that

ρn

(
τm

(
C
(
xε,0

m

h,m−1, 2
1−m

)))
= C

(
x

(ε1,...,εn),0n

(h1,...,hn),m−1, 2
1−m

)
and the fact that Pn(f ◦ τn) has the property (AF) on C

(
x

(ε1,...,εn),0n

(h1,...,hn),m−1, 2
1−m

)
(see

Lemma 3.3). So,Qn(f)◦τm has the property (AF) on each hypercube C
(
xε,0

m

h,m−1, 2
1−m

)
,

where ε ∈ {−1, 1}m and h ∈ {0, . . . , 22m−2−1}m. It follows by the uniqueness of the

function admitting property (AF) on a hypercube C
(
xε,0

m

h,m−1, 2
1−m

)
and coinciding

with Qn(f)◦τm at the vertices of this hypercube that for all f ∈ Lip0(`1) and x ∈ `1
Pm(Qn(f) ◦ τm)(ρm(x)) = Qn(f) (τm (Πm

2m (ρm(x)))) .

Therefore, we obtain that for all x ∈ `1 and f ∈ Lip0(`1)

Qm(Qn(f))(x) = Pm(Qn(f) ◦ τm)(ρm(x))

= Qn(f) (τm (Πm
2m (ρm(x))))

= Pn(f ◦ τn) (ρn (τm (Πm
2m (ρm(x)))))

= Pn(f ◦ τn) (π2m(x1), . . . , π2m(xn))

= Pn(f ◦ τn) (Πn
2n (π2m(x1), . . . , π2m(xn))) .

We now use the fact that π2nπ2m = π2n to get

Qm(Qn(f))(x) = Pn(f ◦ τn) (π2n(x1), . . . , π2n(xn))

= Pn(f ◦ τn) (Πn
2n (ρn(x))) = Qn(f)(x).

Hence the formula QmQn = Qmin{m,n} is also satisfied for m > n.
By construction, for each n in N, Qn is pointwise continuous and therefore weak∗

to weak∗ continuous on bounded subsets of Lip0(`1).
Furthermore,

(
Qn(f)

)∞
n=1

converges pointwise to f for every f ∈ Lip0(`1). Indeed,
for given f ∈ Lip0(`1), x ∈ `1 and η > 0, we can find n0 ∈ N such that for all n ≥ n0

‖f‖Lip0(`1)

∞∑
i=n+1

|xi| <
η

4
, ρn(x) ∈ C(0n, 2n) and n21−n‖f‖Lip0(`1) <

η

4
.

Thus, for any n ≥ n0, we get

|Qn(f)(x)− f(x)| ≤ |Qn(f)(x)−Qn(f)(τn(ρn(x)))|
+ |Qn(f)(τn(ρn(x)))− f(τn(A))|
+ |f(τn(A))− f(τn(ρn(x)))|+ |f(τn(ρn(x)))− f(x)|,

where A ∈ Rn is a vertex of a hypercube C
(
xε,0

n

h,n−1, 2
1−n
)

, with ε ∈ {−1, 1}n and

h ∈ {0, . . . , 22n−2 − 1}n, containing ρn(x).
Since f and Qn(f) are ‖f‖Lip0(`1)-Lipschitz and ‖τn(A)− τn(ρn(x))‖1 ≤ n21−n, we
deduce that
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|Qn(f)(x)− f(x)| ≤ 2‖f‖Lip0(`1) (‖τn(ρn(x))− x‖1 + ‖τn(A)− τn(ρn(x))‖1)

≤ 2‖f‖Lip0(`1)

( ∞∑
i=n+1

|xi|+ n21−n

)
< η.

Now, it follows from the weak∗ continuity of Qn on bounded subsets of Lip0(`1)
that Qn = S∗n, where (Sn)∞n=1 is a sequence of finite-rank bounded linear projections
on F(`1). The sequence (Sn)∞n=1 satisfies that ‖Sn‖ ≤ 1 for each n ∈ N and that
SmSn = Smin{m,n} for every m,n ∈ N.

The fact that (Qn)∞n=1 converges to the identity with respect to the weak∗ operator
topology then implies that (Sn(µ))∞n=1 converges weakly to µ for every µ ∈ F(`1).

Therefore
∞⋃
n=1

Sn(F(`1)) = F(`1). In view of these properties, the sequence (Sn)∞n=1

determines a monotone FDD of F(`1). The proof of Theorem 3.1 is now complete.

Remark. The proof for `N1 is clearly simpler and the sequence (Qn)∞n=1 can be
directly given by

Qn(f)(x) = Λ
(
f, C

(
xε,0

N

h,n−1, 2
1−n
)) (

ΠN
2n(x)

)
,

where ε ∈ {−1, 1}N and h ∈ {0, . . . , 22n−2−1}N are such that ΠN
2n(x) ∈ C

(
xε,0

N

h,n−1, 2
1−n
)

.
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