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Abstract. In this paper we study the existence of minimizers for

F (u) =
1

2

∫
R3

|∇u|2dx+
1

4

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy − 1

p

∫
R3

|u|p dx

on the constraint

S(c) = {u ∈ H1(R3) :

∫
R3

|u|2dx = c},

where c > 0 is a given parameter. In the range p ∈ [3, 103 ] we explicit a threshold
value of c > 0 separating existence and non-existence of minimizers. We also
derive a non-existence result of critical points of F (u) restricted to S(c) when
c > 0 is sufficiently small. Finally, as a byproduct of our approaches, we extend
some results of [9] where a constrained minimization problem, associated to a
quasilinear equation, is considered.

1. Introduction

The following stationary nonlinear Schrödinger-Poisson equation

(1.1) −∆u− λu+ (|x|−1 ∗ |u|2)u− |u|p−2u = 0 in R3,

where p ∈ (2, 6) and λ ∈ R has attracted considerable attention in the recent
period. Part of the interest is due to the fact that to a pair (u(x), λ) solution of
(1.1) corresponds a standing wave φ(x) = e−iλtu(x) of the evolution equation

(1.2) i∂tφ+ ∆φ− (|x|−1 ∗ |φ|2)φ+ |φ|p−2φ = 0 in R+ × R3.

This class of Schrödinger type equations with a repulsive nonlocal Coulombic
potential is obtained by approximation of the Hartree-Fock equation describing
a quantum mechanical system of many particles, see for instance [4, 15, 17, 18].
For physical reasons solutions are searched in H1(R3).

A first line of study to (1.1) is to consider λ ∈ R as a fixed parameter and then
to search for a u ∈ H1(R3) solving (1.1). In that direction, mainly by variational
methods, the existence, non-existence and multiplicity of solutions have been
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extensively studied by many authors. See, for example, [1, 2, 10, 11, 13, 19, 20,
22, 23] and the references therein.

In the present paper, motivated by the fact that physicists are often interested
in “normalized solutions”, we look for solutions in H1(R3) having a prescribed
L2−norm. More precisely, for given c > 0 we look to

(uc, λc) ∈ H1(R3)× R solution of (1.1) with ‖uc‖2L2(R3) = c.

In this case, a solution uc ∈ H1(R3) of (1.1) can be obtained as a constrained
critical point of the functional

F (u) :=
1

2
‖Ou‖2L2(R3) +

1

4

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy − 1

p

∫
R3

|u|p dx

on the constraint

S(c) := {u ∈ H1(R3) : ‖u‖2L2(R3) = c, c > 0}.

The parameter λc ∈ R, in this approach, can’t be fixed any longer and it will
appear as a Lagrange parameter.

It is well known, see for example [19], that for any p ∈ (2, 6), F (u) is a well
defined and C1-functional. We set

m(c) := inf
u∈S(c)

F (u).

It is standard that minimizers of m(c) are exactly critical points of F (u) re-
stricted to S(c), and thus solutions of (1.1). Also it can be checked in many cases
that the set of minimizers is orbitally stable under the flow of (1.2). Thus the
search of minimizers can provide us some information on the dynamics of (1.2).

By scaling arguments, see Remark 1.1, it is readily seen that for any c ∈ (0,∞),
m(c) ∈ (−∞, 0] if p ∈ (2, 10

3
) and m(c) = −∞ if p ∈ (10

3
, 6). When m(c) > −∞,

the existence of minimizers of m(c) has been studied in [5] [6] [21], see also [11] for
a closely related problem. In [21], the authors prove the existence of minimizers
when p = 8

3
and c ∈ (0, c0) for a suitable c0 > 0. It is shown in [6] that a

minimizer exists if p ∈ (2, 3) and c > 0 is small enough, and in [5] that when
p ∈ (3, 10

3
), m(c) admits a minimizer for any c > 0 sufficiently large. In addition,

when p ∈ (10
3
, 6), though m(c) = −∞ for all c > 0, [7] shows that there exists,

for c > 0 small enough, a critical point of F (u) constrained on S(c), at a strictly
positive energy level. This critical point is a least energy solution in the sense
that it minimizes F (u) on the set of solutions having this L2-norm. It is proved
as well in [7] that it is orbitally unstable.

The first aim of this paper is to establish non-existence results of minimizers
and more generally of constrained critical points of F (u) on S(c) in the range
p ∈ [3, 10

3
]. As we shall see our results are sharp in the sense that we explicit a

threshold value of c > 0 separating existence and non-existence of minimizers.
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We first present a detailed study of the function c → m(c) when p ∈ [3, 10
3

].
This study is, we believe, interesting for itself, but it is also a key to establish the
existence or the non-existence of minimizers. Let

c1 = inf{c > 0 : m(c) < 0}.(1.3)

Theorem 1.1. (I) When p ∈ (3, 10
3

) we have

(i) c1 ∈ (0,∞);
(ii) m(c) = 0, as c ∈ (0, c1];
(iii) m(c) < 0 and is strictly decreasing about c, as c ∈ (c1,∞).

(II) When p = 3 or p = 10
3
we have

(iv) When p = 3, m(c) = 0 for all c > 0;
(v) When p = 10

3
, we denote

c2 = inf{c > 0 : ∃ u ∈ S(c) such that F (u) ≤ 0},(1.4)

then c2 ∈ (0,∞) and{
m(c) = 0, as c ∈ (0, c2);

m(c) = −∞, as c ∈ (c2,∞).
(1.5)

Our result concerning the existence or non-existence of a minimizer is

Theorem 1.2. (i) When p ∈ (3, 10
3

), m(c) has a minimizer if and only if
c ∈ [c1,∞).

(ii) When p = 3 or p = 10
3
, m(c) has no minimizer for any c > 0.

Remark 1.1. One always has m(c) ≤ 0 for any c > 0. Indeed let u ∈ S(c) be

arbitrary and consider the scaling ut(x) = t
3
2u(tx). We have ut ∈ S(c) for any

t > 0 and also

F (ut) =
t2

2

∫
R3

|∇u|2dx+
t

4

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy − t

3
2
(p−2)

p

∫
R3

|u|pdx.

Thus F (ut)→ 0 as t→ 0 and the conclusion follows.

Remark 1.2. In [11, 13] the minimization problem on S(c) for the functional

Fa,b(u) :=
1

2

∫
R3

|∇u|2dx+
a

4

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy − b

p

∫
R3

|u|p dx

is considered. When p = 3 it is proved that for each a > 0, there exists a b0 > 0
such that if b > b0 then a minimizer exists for all c > 0 (see Theorem 1.4 of [11]).
Theorem 1.2 (ii) implies that when a = 1, necessarily b0 > 1.

Remark 1.3. Theorem 1.2 provides a complete answer to the issue of minimizers
for F (u) on S(c) when p ∈ [3, 10

3
]. When p ∈ (2, 3), this question is still open. In

[6] it is proved that a minimizer exists when c > 0 is sufficiently small. However
even if m(c) < 0, for any c > 0 and any minimizing sequence is bounded, we still
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do not know what happen for an arbitrary value of c > 0. In trying to develop a
minimization process one faces the difficulty to remove the possible dichotomy of
the minimizing sequences. Also when p ∈ (10

3
, 6) the existence of a least energy

solution is only established for c > 0 small (see [7]). In [7] however and even if
the result is still to be proved, strong indications are given that there do not exist
least energy critical points of F (u) constrained to S(c) when c > 0 is large.

In addition to the non-existence results of Theorem 1.2 we also show that,
taking eventually c > 0 smaller, there are no critical points of F (u) on S(c).
Precisely

Theorem 1.3. When p ∈ (3, 10
3

], there exists c̄ > 0 such that for any c ∈ (0, c̄),
there are no critical points of F (u) restricted to S(c). When p = 3, for all c > 0,
F (u) does not admit critical points on the constraint S(c).

Remark 1.4. Theorem 1.3 is, up to our knowledge, the only result where a non-
existence result of small L2 norm solutions is established for (1.1). Note however
that in [12, 19] it was independently proved that when p ∈ (2, 3] there exists a
λ0 < 0 such that (1.1) has only trivial solution when λ ∈ (−∞, λ0).

Another aim of this paper is to clarify and extend some results contained in [9]
where a constrained minimization problem associated to a quasilinear equation
is considered. Actually in [9] one looks for minimizers of

m(c) = inf
σ(c)
E(u),(1.6)

where

E(u) =
1

2

∫
RN
|∇u|2dx+

∫
RN
|u|2|∇u|2dx− 1

p+ 1

∫
RN
|u|p+1dx,(1.7)

and

σ(c) = {u ∈ H1(RN) :

∫
RN
|u|2|∇u|2dx <∞ with ‖u‖2L2(RN ) = c}.

Here N ∈ N+ and we focus on the range p ∈ [1 + 4
N
, 3 + 4

N
]. Let

c(p,N) = inf{c > 0 : m(c) < 0}.

Theorem 1.4. (i) If p ∈ [1 + 4
N
, 3 + 4

N
), we have

a) c(p,N) ∈ (0,∞);
b) m(c) = 0 if c ∈ (0, c(p,N)];
c) m(c) < 0 if c ∈ (c(p,N),∞) and is strictly decreasing about c, as
c ∈ (c(p,N),∞).

(ii) If p ∈ [1+ 4
N
, 3+ 4

N
), the mapping c 7−→ m(c) is continuous at each c > 0.

(iii) If p = 3 + 4
N
, we denote

cN = inf{c > 0 : ∃ u ∈ σ(c) such that E(u) ≤ 0},(1.8)
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then cN ∈ (0,∞) and{
m(c) = 0, as c ∈ (0, cN);

m(c) = −∞, as c ∈ (cN ,∞).
(1.9)

Concerning the existence or non-existence of minimizers we have

Theorem 1.5. (i) If p ∈ (1 + 4
N
, 3 + 4

N
), then m(c) admits a minimizer if

and only if c ∈ [c(p,N),∞).
(ii) If p = 3 + 4

N
, m(c) has no minimizer for all c ∈ (0,∞).

Remark 1.5. We note that in [9] it is proved that when p ∈ (1, 1 + 4
N

), for all

c > 0, m(c) < 0 and m(c) admits a minimizer. When p = 1 + 4
N

, we believe, the
conclusion of Theorem 1.5 (i) holds also, though a convinced proof is still open.
The obstacle may technically stem from Lemma (4.3). As for p ∈ (3 + 4

N
,∞),

m(c) = −∞ for any c > 0, for which it’s impossible to find a minimizer.

Remark 1.6. We point out that parts of Theorem 1.4 and 1.5 are already con-
tained in Theorem 1.12 of [9]. However, on one hand we provide here additional
information. In particular we settle the question of existence for the threshold
value c(p,N) which requires a special treatment. On the other hand some state-
ments of Theorem 1.12 are wrong, in particular concerning the case p = 3 + 4

N
.

There are also some gaps in the proofs of [9]. In particular it is not proved
completely that there are no minimizer when c ∈ (0, c(p,N)).

Remark 1.7. In [8], the minimization problem (1.6) is studied and the question
of finding explicit bounds on c(p,N) and cN is addressed by a combination of
analytical and numerical arguments in dimension N = 3. In particular, when
p = 3 + 4

N
a cb > 0 such that m(c) = 0 if 0 < c ≤ cb and a cb > 0 such

that m(c) = −∞ if c > cb are explicitly given (see Proposition 2.1, points (4)
and (5) of [8]). Their values are cb ≈ 19.73 and cb ≈ 85.09. Theorem 1.4 (iii)
complements these results showing that the change from m(c) = 0 to m(c) = −∞
occurs abruptly at the value cN . We also point out that our results hold for any
dimension N ∈ N+.

Similarly to Theorem 1.3 we obtain more generally

Theorem 1.6. Assume that p ∈ [1 + 4
N
, 3 + 4

N
] holds, then there exists ĉ > 0

such that for all c ∈ (0, ĉ), the functional E(u), restricted to σ(c), has no critical
points.

Acknowledgement: The authors thank the referee for its comments which have
permitted to simplify several proofs in the paper.

Notations: For convenience we set

A(u) :=

∫
R3

|∇u|2dx, B(u) :=

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy
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C(u) :=

∫
R3

|u|pdx, D(u) :=

∫
R3

|u|2dx.

Then

F (u) =
1

2
A(u) +

1

4
B(u)− 1

p
C(u).(1.10)

Also we denote by || · ||p the standard norm on Lp(RN). Throughout the paper
we shall denote by C > 0 various positive constants which may vary from one
line to another and which are not important for the analysis of the problem.

2. Preliminary results

To obtain our non-existence results we use the fact that any critical point of
F (u) on S(c) satisfies Q(u) = 0 where

Q(u) :=

∫
R3

|∇u|2dx+
1

4

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy − 3(p− 2)

2p

∫
R3

|u|pdx.

Indeed we have

Lemma 2.1. If u0 is a critical point of F (u) on S(c), then Q(u0) = 0.

Proof. First we denote

Iλ(u) := 〈S ′λ(u), u〉 = A(u)− λD(u) +B(u)− C(u),(2.1)

Pλ(u) :=
1

2
A(u)− 3

2
λD(u) +

5

4
B(u)− 3

p
C(u).(2.2)

Here λ ∈ R is a parameter and Sλ(u) is the energy functional corresponding to
the equation (1.1), i.e.

Sλ(u) :=
1

2
A(u)− λ

2
D(u) +

1

4
B(u)− 1

p
C(u).(2.3)

Clearly Sλ(u) = F (u)− λ
2
D(u) and simple calculations imply that

3

2
Iλ(u)− Pλ(u) = Q(u).(2.4)

Now from [10] or Theorem 2.2 of [19], we know that Pλ(u) = 0 is a Pohozaev
identity for the Schrödinger-Poisson equation (1.1). In particular any critical
point u of Sλ(u) satisfies Pλ(u) = 0.

On the other hand, since u0 is a critical point of F (u) restricted to S(c), there
exists a Lagrange multiplier λ0 ∈ R, such that

F ′(u0) = λ0u0.

Thus for any φ ∈ H1(R3),

〈S ′λ0(u0), φ〉 = 〈F ′(u0)− λ0u0, φ〉 = 0,(2.5)
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which shows that u0 is also a critical point of Sλ0(u). Hence

Pλ0(u0) = 0, Iλ0(u0) = 〈S ′λ0(u0), u0〉 = 0,

and Q(u0) = 0 follows from (2.4). �

We now give an estimate on the nonlocal term, which is useful to control the
functionals F (u) and Q(u).

Lemma 2.2. When p ∈ [3, 4], there exists a constant C > 0, depending only on
p, such that, for any u ∈ S(c),∫

R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy ≥ − 1

16π
‖Ou‖22 + C

‖u‖
p

4−p
p

‖Ou‖
3(p−3)
4−p

2 ‖u‖
p−3
4−p
2

.(2.6)

Proof. Since p ∈ [3, 4], by interpolation, we have

‖u‖pp ≤ ‖u‖
3(4−p)
3 ‖u‖4(p−3)4 .(2.7)

In addition, since (|x|−1 ∗ |u|2) ∈ D1,2(R3) solves the equation

−∆Φ = 4π|u|2 in R3,(2.8)

on one hand multiplying (2.8) by (|x|−1 ∗ |u|2) ∈ D1,2(R3) and integrating we get

4π

∫
R3

(|x|−1 ∗ |u|2)|u|2dx =

∫
R3

|∇(|x|−1 ∗ |u|2)|2dx.(2.9)

On the other hand, multiplying (2.8) by |u| and integrating we get for any η > 0,

4πη

∫
R3

|u|3dx = η

∫
R3

−∆(|x|−1 ∗ |u|2)|u|dx

≤ η

∫
R3

∇(|x|−1 ∗ |u|2) · ∇|u|dx(2.10)

≤
∫
R3

|∇(|x|−1 ∗ |u|2)|2dx+
η2

4

∫
R3

|∇u|2dx.

Thus, taking η = 1 in (2.10) it follows from (2.9) and (2.10) that∫
R3

|u|3 dx ≤
∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy +

1

16π
‖Ou‖22 .(2.11)

Now, using Gagliardo-Nirenberg’s inequality, there exists a constant C > 0, de-
pending only on p, such that∫

R3

|u|4 dx ≤ C ‖Ou‖32 ‖u‖2 .(2.12)
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Taking (2.11) and (2.12) into (2.7), we obtain

‖u‖pp ≤ C

(∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x− y|
dxdy +

1

16π
‖∇u‖22

)(4−p)

‖∇u‖3(p−3)2 ‖u‖(p−3)2 ,

which implies (2.6). �

The estimate (2.6) leads to a lower bound on Q(u).

Lemma 2.3. When p ∈ (3, 10
3

), there exists a constant C > 0, depending only on
p, such that, for any u ∈ S(c)

Q(u) ≥ 64π − 1

64π
A(u)− C · A(u)

3
2 · c

1
2 .(2.13)

Proof. By Lemma 2.2 there exists a constant C > 0 depending only on p, such
that, for any u ∈ S(c),

(2.14) Q(u) ≥ 64π − 1

64π
A(u) + C · C(u)

1
4−p

A(u)
3(p−3)
2(4−p) ·D(u)

p−3
2(4−p)

− 3(p− 2)

2p
C(u).

To obtain (2.13) from (2.14) we introduce the auxiliary function

fK(x) =

(
64π − 1

64π

)
K +D · x

1
4−p − 3(p− 2)

2p
· x, x > 0

with D = C ·
(
K

3(p−3)
2(4−p) · c

p−3
2(4−p)

)−1
. Its study will provide us an estimate indepen-

dent of C(u). Clearly

f ′K(x) = D · 1

4− p
· x

p−3
4−p − 3(p− 2)

2p
,

f ′′K(x) = D · 1

4− p
· p− 3

4− p
· x

p−3
4−p−1 > 0, for all x > 0.

Therefore fK(x) has the unique global minimum at

x̄ =

(
3(p− 2)(4− p)

2pD

) 4−p
p−3

,

and

fK(x̄) =
64π − 1

64π
K +D ·

(
3(p− 2)(4− p)

2pD

) 1
p−3

− 3(p− 2)

2p
·
(

3(p− 2)(4− p)
2pD

) 4−p
p−3

=
64π − 1

64π
K −

(
3(p− 2)(4− p)

2p

) 1
p−3

· p− 3

4− p
·D

p−4
p−3

=
64π − 1

64π
K −

(
3(p− 2)(4− p)

2p

) 1
p−3

· p− 3

4− p
· C

p−4
p−3 ·K

3
2 · c

1
2 .
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Thus fK(x) ≥ fK(x̄) for all x > 0. This, together with (2.14) implies (2.13). �

Finally we recall the following results obtained in [5, 6].

Lemma 2.4. Let p ∈ (3, 10
3

), then

(i) For any c > 0 such that m(c) < 0, m(c) admits a minimizer.
(ii) There exists d > 0, such that for all c ∈ (d,∞), m(c) < 0.
(iii) The function c 7→ m(c) is continuous at each c > 0.

Remark 2.1. Points (i) and (ii) of Lemma 2.4 are proved in [5]. Concerning Point
(iii), in [6] the authors prove the continuity of m(c) about c > 0 when p ∈ (2, 3).
However inspecting their proof reveals that it also holds for p ∈ [3, 10

3
).

3. Proofs of the main results

We first give the following non-existence result.

Lemma 3.1. When p ∈ (3, 10
3

), there exists a c3 > 0, such that m(c) has no
minimizer for all c ∈ (0, c3).

Proof. Let us assume by contradiction that there exist sequences {cn} ⊂ R+, with
cn → 0 as n→∞, and {un} ⊂ S(cn) such that F (un) = m(cn). Then by Lemma
2.1, Q(un) = 0 for any n ∈ N+.

Since m(c) ≤ 0 for any c > 0, see Remark 1.1, we know that F (un) ≤ 0. Thus

1

2
A(un) +

1

4
B(un) ≤ 1

p
C(un)

≤ C

p
A(un)

3
4
(p−2) ·D(un)

6−p
4 ,(3.1)

by Gagliardo-Nirenberg’s inequality. Since p ∈ (3, 10
3

), 1 > 3
4
(p − 2) and thus

(3.1) implies that

A(un)→ 0, as n→∞.(3.2)

Now due to (3.2) and Lemma 2.3, when n ∈ N+ is sufficiently large,

Q(un) ≥ 64π − 1

64π
A(un)− C · A(un)

3
2 · c

1
2
n

≥ 64π − 1

64π
A(un)− C · A(un)

3
2 > 0.

Obviously this contradicts Lemma 2.1 and this ends the proof. �

The following lemma is crucial to establish a precise threshold between exis-
tence and non-existence.

Lemma 3.2. Assume that p ∈ (3, 10
3

) holds. For any c > 0 such that m(c) < 0
or such that m(c) = 0 and m(c) has a minimizer we have

m(tc) < tm(c), for all t > 1.
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Proof. By Lemma 2.4 (i) without restriction we can assume that m(c) ≤ 0 admit
a minimizer uc ∈ S(c). We set (uc)t(x) = t2uc(tx) for t > 1. Then D((uc)t) =
tD(uc) = tc, and since 2p − 6 > 0 in case of p ∈ (3, 10/3] and C(uc) > 0, we
obtain

m(tc) ≤ F ((uc)t) = t3 ·
(

1

2
A(uc) +

1

4
B(uc)−

t2p−6

p
C(uc)

)
< t3 ·

(
1

2
A(uc) +

1

4
B(uc)−

1

p
C(uc)

)
(3.3)

= t3 · F (uc) = t3m(c).

Since m(c) ≤ 0 and t > 1, we conclude from (3.3) that m(tc) < t3m(c) ≤
tm(c). �

In the case p = 10
3

we first have

Lemma 3.3. When p = 10
3
, we have c2 ∈ (0,∞), where c2 is given by (1.4).

Proof. First observe that by Gagliardo-Nirenberg’s inequality, when p = 10
3

we
have

C(u) ≤ C · A(u) · c
2
3 , for all u ∈ S(c),(3.4)

where C > 0 independent of c > 0. Thus for any u ∈ S(c), there holds

F (u) ≥ 1

2
A(u) +

1

4
B(u)− 3

10
C · A(u) · c

2
3

≥ A(u)

(
1

2
− 3

10
C · c

2
3

)
.(3.5)

Thus F (u) > 0, for all u ∈ S(c) if c > 0 is sufficiently small and it proves that
c2 > 0.

Now take u1 ∈ S(1) arbitrary and consider the scaling

ut(x) = t2u1(tx), for all t > 0.(3.6)

Then ut ∈ S(t) and

F (ut) =
t3

2
A(u1) +

t3

4
B(u1)−

3

10
t
11
3 C(u1)

= t3
(

1

2
A(u1) +

1

4
B(u1)−

3

10
t
2
3C(u1)

)
.(3.7)

This shows that F (ut) < 0 for t > 0 large enough and proves that c2 <∞. �

We can now give the
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Proof of Theorem 1.1. First we prove that c1 > 0 by contradiction. If we assume
that c1 = 0 then, from the definition of c1, m(c) < 0 for all c > 0. Thus Lemma
2.4 (i) implies the existence of a minimizer for any c > 0 and this contradicts
Lemma 3.1. Additionally Lemma 2.4 (ii) shows that c1 < ∞, thus Point (i)
follows. To prove Point (ii) we observe that since m(c) ≤ 0 for all c > 0, from the
definition of c1 > 0 it follows that m(c) = 0 if c ∈ (0, c1). Using the continuity
of c 7→ m(c), see Lemma 2.4 (iii), we obtain that m(c1) = 0 and then Point (ii)
holds. Point (iii) is a direct consequence of Lemma 3.2 and of the definition of
c1 > 0.

Concerning Point (iv), it is enough to show that if p = 3, for any c > 0 one has

F (u) > 0, for all u ∈ S(c).(3.8)

Indeed, since m(c) ≤ 0 for all c > 0, (3.8) implies immediately Point (iv). To
check (3.8), we use (2.10) with η = 4/3. From (2.9) and (2.10) we then get

1

4

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy ≥ − 1

36π
||∇u||22 +

1

3
||u||33.

Thus when p = 3, for any u ∈ S(c),

F (u) ≥ 1

2
||∇u||22 −

1

36π
||∇u||22 > 0

and (3.8) holds.
Finally since, by Lemma 3.3, c2 ∈ (0,∞), to prove Point (v) it is enough to

verify (1.5). From the definition of c2, it follows directly that m(c) = 0 for any
c ∈ (0, c2). Now if c ∈ (c2,∞), we first claim that there exists a v ∈ S(c) such
that F (v) ≤ 0. Indeed if we assume that F (u) > 0 for all u ∈ S(c) we reach
a contradiction as follows. For an arbitrary ĉ ∈ [c2, c) taking any u ∈ S(ĉ) we
scale it as in (3.6) where t = c/ĉ. Then ut ∈ S(c) and it follows from (3.7) that
F (ut) ≤ t3F (u). This implies that F (u) > 0 for all u ∈ S(ĉ) and since ĉ ∈ [c2, c)
is arbitrary this contradicts the definition of c2 > 0. Hence, for any c ∈ (c2,∞),
there exists a u0 ∈ S(c) such that F (u0) ≤ 0.

Consider now the scaling

uθ(x) = θ
3
2u0(θx), for all θ > 0.(3.9)

We have uθ ∈ S(c) for all θ > 0 and

F (uθ) =
θ2

2
A(u0) +

θ

4
B(u0)−

10

3
θ2C(u0)

=
θ

4
B(u0)−

(
10

3
C(u0)−

1

2
A(u0)

)
· θ2.(3.10)

Since F (u0) ≤ 0, necessarily

10

3
C(u0)−

1

2
A(u0) > 0.
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Thus we see from (3.10) that limθ→∞ F (uθ) = −∞ and m(c) = −∞ follows. At
this point the proof of the theorem is completed. �

Before giving the proof of Theorem 1.2 we consider the case where c = c1 that
requires a special treatment.

Lemma 3.4. Assume that p ∈ (3, 10
3

) holds. Then m(c1) admits a minimizer.

Proof. Let kn := c1 + 1/n, for all n ∈ N+. We have kn → c1 and thus, by Lemma
2.4 (iii), m(kn) → m(c1) = 0. Furthermore, by Theorem 1.1 (iii) and Lemma
2.4 (i) we know that for each n ∈ N+, m(kn) < 0 and m(kn) admits a minimizer
un. Now we claim that the sequence {un} is bounded in H1(R3). Indeed, by
Gagliardo-Nirenberg’s inequality, we have

1

2
A(un) +

1

4
B(un) =

1

p
C(un) + F (un)

≤ CA(un)
3(p−2)

4 k
6−p
4

n +m(kn).

This implies that {A(un)} is bounded, since m(kn) ≤ 0 and 1 > 3(p−2)/4. Thus
we conclude that {un} is bounded in H1(R3).

Now we claim that C(un) 9 0. By contradiction let us assume that C(un)→ 0
as n→∞. Since F (un)→ m(c1) = 0 it then follows that

A(un)→ 0 and B(un)→ 0, as n→∞.(3.11)

Now, similarly to the proof of Lemma 2.3, using (2.6), we can estimate F (u) from
below by

F (u) ≥ 32π − 1

64π
A(u)− C · A(u)

3
2 · c

1
2 , for all u ∈ S(c)(3.12)

where C > 0 is constant, depending only on p. In particular

(3.13) F (un) ≥ A(un)

(
32π − 1

64π
− C · A(un)

1
2 · k

1
2
n

)
.

Taking (3.11) into account, (3.13) implies that F (un) ≥ 0 for n ∈ N+ sufficiently
large. This contradicts the fact that F (un) = m(kn) < 0 for all n ∈ N+ and
proves the claim.

Now, by Lemma I.1 of [14], we deduce that {un} does not vanish. Namely that
there exists a constant δ > 0 and a sequence {xn} ⊂ R3 such that∫

B(xn,1)

|un|2dx ≥ δ > 0,

or equivalently

(3.14)

∫
B(0,1)

|un(·+ xn)|2dx ≥ δ > 0.
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Here B(0, 1) denotes the ball centered in 0 with radius r = 1. Now let vn(·) =
un(·+xn). Clearly {vn} is bounded in H1(R3) and thus there exists v0 ∈ H1(R3)
such that

vn ⇀ v0 weakly in H1(R3) and vn → v0 in L2
loc(R3).

We note that v0 6= 0, since by (3.14)

0 < δ ≤ lim
n→∞

∫
B(0,1)

|vn|2dx =

∫
B(0,1)

|v0|2dx.

Let us prove that v0 is a minimizer of m(c1). First we show that F (v0) = 0.
Clearly

(3.15) lim
n→∞

‖vn‖22 = ‖v0‖22 + lim
n→∞

‖vn − v0‖22 = c1

and using Lemma 2.4 (iii) we deduce from (3.15) that

(3.16) lim
n→∞

F (vn − v0) ≥ lim
n→∞

m(||vn − v0||22) = m(c1 − ||v0||22) = 0.

Here we make the convention that m(0) = 0. Now using Lemma 2.2 of [23], we
have

(3.17) 0 = m(c1) = lim
n→∞

F (vn) = F (v0) + lim
n→∞

F (vn − v0).

Since ||v0||22 ≤ c1 we have m(||v0||22) = 0 and it shows that F (v0) < 0 is impossible.
From (3.16) and (3.17) we deduce that F (v0) = 0 and that v0 is a minimizer
associated to m(||v0||22). If we assume that ||v0||22 < c1 we get a contradiction
with Lemma 3.2 since m(c1) = 0. Thus necessarily ‖v0‖22 = c1 and this ends the
proof. �

Proof of Theorem 1.2. To prove Point (i) we assume by contradiction that there
exists c̃ ∈ (0, c1) such that m(c̃) admits a minimizer. Then from the definition
of c1 > 0 we get that m(c̃) = 0 and Lemma 3.2 implies that m(c) < 0 for any
c > c̃. This contradicts the definition of c1 > 0. Now when c > c1 the result
clearly follows from Theorem 1.1 (iii) and Lemma 2.4 (i). Finally the case c = c1
is considered in Lemma 3.4. For Point (ii), first observe that, because of (3.8),
when p = 3, for any c > 0, m(c) does not have a minimizer. Then we note that,
from the definition of Q(u), it holds, for any u ∈ S(c),

F (u)− 2

3(p− 2)
Q(u) =

3p− 10

6(p− 2)
A(u) +

3p− 8

12(p− 2)
B(u).(3.18)

Taking p = 10
3

in (3.18) we obtain

F (u)− 1

2
Q(u) =

1

8
B(u).(3.19)
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Thus if we assume by contradiction that m(c) has a minimizer uc ∈ S(c) for some
c > 0 we see from Lemma 2.1 and (3.19) that

0 ≥ m(c) = F (uc) =
1

8
B(uc) > 0.

This contradiction ends the proof of Point (ii) and of the theorem. �

Proof of Theorem 1.3. We first consider the case p ∈ (3, 10
3

] and we assume by
contradiction that there exists sequences {cn} ⊂ R+, with cn → 0, as n → ∞,
and {un} ⊂ S(cn) such that un ∈ S(cn) is a critical point of F (u) restricted to
S(cn). Then since

Q(un) = A(un) +
1

4
B(un)− 3(p− 2)

2p
C(un) = 0,

we deduce, from Gagliardo-Nirenberg’s inequality, that for some C > 0,

(3.20) A(un) ≤ 3(p− 2)

2p
C(un) ≤ C · A(un)

3(p−2)
4 · c

6−p
4

n .

Thus there holds

A(un)
10−3p

4 ≤ C · c
6−p
4

n

and we get that

A(un)→ 0 as n→∞(3.21)

if p ∈ (3, 10
3

) and directly a contradiction if p = 10
3

. Now when p ∈ (3, 10
3

) by
Lemma 2.3 we know, since Q(un) = 0, that there exists a constant C > 0 such
that

64π − 1

64π
A(un) ≤ C · A(un)

3
2 · c

1
2
n

or equivalently that

(3.22)
64π − 1

64π
≤ C · A(un)

1
2 · c

1
2
n .

But (3.22) implies that A(un)→∞ as n→∞ and this contradicts (3.21).
Now when p = 3, it is enough to prove that, for any c > 0, there holds

Q(u) > 0, for all u ∈ S(c).(3.23)

Indeed, if (3.23) holds true, we can conclude the non-existence of minimizers
directly from Lemma 2.1. To check (3.23), we use (2.10) with η = 2. Then, from
(2.9) and (2.10), we get

1

4

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy ≥ − 1

16π
||∇u||22 +

1

2
||u||33.
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Thus, for any u ∈ S(c),

Q(u) = ||∇u||22 +
1

4

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy − 1

2
||u||33

≥ ||∇u||22 −
1

16π
||∇u||22 > 0.

At this point the proof is completed. �

4. On the quasilinear minimization problem

In the proofs of Theorems 1.4 and 1.5 we only provide the parts which were
not established or whose proofs in [9] contains a gap. First we observe

Lemma 4.1. Assume that p ∈ [1 + 4
N
, 3 + 4

N
). If there exists a c > 0 such that

m(c) = 0 is achieved, then

m(c) < 0, for all c > c.(4.1)

Proof. Let ū ∈ σ(c) be a minimizer of m(c). Setting (ū)t(x) = ū(t−
1
N x) for t > 1,

we have ‖(ū)t‖22 = t‖ū‖22 = tc, and

m(tc) ≤ E((ū)t) = t1−
2
N

(∫
RN

1

2
|∇ū|2 + |ū|2|∇ū|2dx

)
− t

p+ 1

∫
RN
|ū|p+1dx

= t

[
t−

2
N

∫
RN

(
1

2
|∇ū|2 + |ū|2|∇ū|2

)
dx− 1

p+ 1

∫
RN
|ū|p+1dx

]
(4.2)

< tE(ū) = tm(c).

Thus (4.1) follows immediately from (4.2) since m(c) = 0. �

Similarly with Lemma 3.3, we have for cN given by (1.8).

Lemma 4.2. Assume that p = 3 + 4
N
. Then cN ∈ (0,∞).

Proof. We know from (4.5) of [9] that when p ∈ [1 + 4
N
, 3 + 4

N
] there exists a

C > 0, depending only on p and N , such that

‖u‖p+1
p+1 ≤ C · ‖u‖2(1−θ)2 ·

(∫
RN
|u|2|∇u|2dx

) θN
N−2

, for all ∈ X(4.3)

where

θ =
(p− 1)(N − 2)

2(N + 2)
and X = {u ∈ H1(RN) :

∫
RN
|u|2|∇u|2dx <∞}.

Letting p = 3 + 4
N

in (4.3), we obtain that

‖u‖4+4/N
4+4/N ≤ C · ‖u‖

4
N
2 ·
(∫

RN
|u|2|∇u|2dx

)
, for all u ∈ X .(4.4)
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Thus, for any u ∈ σ(c), there holds

E(u) ≥ 1

2
‖∇u‖22 +

∫
RN
|u|2|∇u|2dx− C · c

2
N ·
∫
RN
|u|2|∇u|2dx

≥
(

1− C · c
2
N

)
·
∫
RN
|u|2|∇u|2dx

and E(u) > 0 for all u ∈ σ(c) if c > 0 is sufficiently small. This proves that
cN > 0.

Now take u1 ∈ σ(1) arbitrary and consider the scaling

ut(x) = u1(t
− 1
N
x), for all t > 0.(4.5)

We have ut ∈ σ(t) and

E(ut) = t1−
2
N

(
1

2
‖∇u1‖22 +

∫
RN
|u1|2|∇u1|2dx

)
− t · N

4(N + 1)
‖u1‖4+4/N

4+4/N

= t

[
t−

2
N

(
1

2
‖∇u1‖22 +

∫
RN
|u1|2|∇u1|2dx

)
− N

4(N + 1)
‖u1‖4+4/N

4+4/N

]
.(4.6)

This shows that E(ut) < 0 for t > 0 large and proves that cN <∞. �

Proof of Theorem 1.4. In Theorem 1.12 of [9], Point (i) was already proved except
for the statement that m(c(p,N)) = 0. But it is a direct consequence of Point
(ii) that we shall now prove. Let c > 0 be arbitrary but fixed and let {cn} be
a sequence such that cn → c. We need to show that m(cn) → m(c). By the
definition of m(cn), for each n ∈ N+, there exists a un ∈ σ(cn) such that

E(un) ≤ m(cn) +
1

n
.(4.7)

It is shown in [9] that m(c) ≤ 0 for any c > 0. Thus in particular

E(un) ≤ 1

n
.(4.8)

Now we claim that the sequences {‖∇un‖22}, {
∫
RN |un|

2|∇un|2dx}, {‖un‖p+1
p+1} are

bounded. Indeed using (4.8) and (4.3), we have

(4.9)
1

n
≥ E(un) ≥

∫
RN
|un|2|∇un|2dx−

C

p+ 1
c1−θn

(∫
RN
|un|2|∇un|2dx

) θN
N−2

.

Since θN
N−2 < 1 as p ∈ [1+ 4

N
, 3+ 4

N
), we conclude from (4.9) that {

∫
RN |un|

2|∇un|2dx}
is bounded and then from (4.3) that {‖un‖p+1

p+1} is also bounded. At this point
the fact that {‖∇un‖22} is bounded follows from the boundedness of E(un). Now
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we see that

m(c) ≤ E
(√

c

cn
un

)
=

1

2

(
c

cn

)
‖∇un‖22 +

(
c

cn

)2 ∫
RN
|un|2|∇un|2dx−

1

p+ 1

(
c

cn

) p+1
2

‖un‖p+1
p+1

= E(un) + o(1) ≤ m(cn) + o(1).

On the other hand, for a minimizing sequence {vm} of m(c), we have

m(cn) ≤ E
(√

cn
c
vm

)
= E(vm) + o(1) = m(c) + o(1).

From these two estimates we deduce that limn→∞m(cn) = m(c).

We now prove Point (iii). Note that the statement in Theorem 1.12 of [9]
concerning p = 3 + 4

N
was incorrect. We already know, from Lemma 4.2, that

cN ∈ (0,∞). Using the definition of cN , it follows directly that m(c) = 0 for any
c ∈ (0, cN), since one always has m(c) ≤ 0 for any c ∈ (0,∞). Now if c > cN ,
we proceed as in the proof of Theorem 1.1 (v), namely we observe that there
exists a v ∈ σ(c) such that E(v) ≤ 0. Indeed if we assume that E(u) > 0 for all
u ∈ σ(c) we reach a contradiction as follows. For an arbitrary ĉ ∈ [cN , c) taking
any u ∈ σ(ĉ) we scale it as in (4.5) where t = c/ĉ. Then ut ∈ σ(c) and it follows
from (4.6) that E(ut) ≤ tE(u). This implies that E(u) > 0 for all u ∈ σ(ĉ) and
since ĉ ∈ [cN , c) is arbitrary this contradicts the definition of cN > 0.

Hence, for any c ∈ (cN ,∞), there exists a u0 ∈ σ(c) such that E(u0) ≤ 0 and
we consider the scaling

uδ(x) = δ
N
2 u0(δx), for all δ > 0.(4.10)

Then uδ ∈ σ(c), for all δ > 0 and

E(uδ) =
δ2

2
‖∇u0‖22 + δN+2

∫
RN
|u0|2|∇u0|2dx−

N

4(N + 1)
δN+2‖u0‖4+4/N

4+4/N

=
δ2

2
‖∇u0‖22 − δN+2

(
N

4(N + 1)
‖u0‖4+4/N

4+4/N −
∫
RN
|u0|2|∇u0|2dx

)
.(4.11)

Since E(u0) ≤ 0, necessarily

N

4(N + 1)
‖u0‖4+4/N

4+4/N −
∫
RN
|u0|2|∇u0|2dx > 0

and thus we see from (4.11) that limδ→∞ E(uδ) = −∞. It proves that m(c) = −∞
for any c ∈ (cN ,+∞). �

Before giving the proof of Theorem 1.5 we treat the limit case c = c(p,N).
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Lemma 4.3. Assume that p ∈ (1 + 4
N
, 3 + 4

N
). Then m(c(p,N)) admits a mini-

mizer.

Proof. Let cn := c(p,N) + 1
n
, for all n ∈ N+. Since m(cn) < 0 we know by

Lemma 4.3 of [9] that m(cn) admits, for all n ∈ N+ a minimizer that is Schwartz
symmetric. We claim that {un} is bounded in X , namely that {un} is bounded
in H1(RN) and {

∫
RN |un|

2|∇un|2dx} is bounded. Indeed using (4.3) we have since
E(un) ≤ 0, for all n ∈ N+,

1

2
‖∇un‖22 +

∫
RN
|un|2|∇un|2dx ≤

1

p+ 1

∫
RN
|un|p+1dx

≤ C

p+ 1
c1−θn ·

(∫
RN
|un|2|∇un|2dx

) θN
N−2

.(4.12)

Since p ∈ [1 + 4
N
, 3 + 4

N
) we have θN

N−2 < 1 and thus (4.12) implies that both

{
∫
RN |un|

2|∇un|2dx} and {||∇un||22} are bounded.

Passing to a subsequence we can assume that un ⇀ u0 in X . Now from Lemma
4.3 of [9] we have that

T (u0) ≤ lim inf
n→∞

T (un) where T (u) :=
1

2
‖∇u‖22 +

∫
RN
|u|2|∇u|2dx.

Also the fact that {un} is a sequence of Schwartz symmetric functions readily im-
plies that un → u0 in Lp+1(RN). Thus, since by Theorem 1.4 (ii), limn→∞ E(un) =
limn→∞m(cn) = 0 we obtain that E(u0) ≤ 0. Also since ||u0||22 ≤ c(p,N) neces-
sarily E(u0) = 0.

In order to show that ||u0||22 = c(p,N) and thus that u0 is a minimizer of c(p,N)
we first show that u0 6= 0. By contradiction let us assume that u0 = 0. Then
using the fact that un → 0 in Lp(RN) we get from E(un)→ 0 that

‖∇un‖22 → 0 and

∫
RN
|un|2|∇un|2dx→ 0, as n→∞.(4.13)

As in the proof of Lemma 3.4 we shall prove that E(un) ≥ 0 for n ∈ N+ sufficiently
large and this will contradict the fact that E(un) = m(cn) < 0 for n ∈ N+. For
p ∈ (1 + 4

N
, N+2
N−2 ] if N ≥ 3 and p ∈ (1 + 4

N
,+∞) if N = 1, 2, by Gagliardo-

Nirenberg’s inequality, we have

(4.14)

∫
RN
|un|p+1dx ≤ C‖∇un‖

N(p−1)
2

2 · c
(N+2)−(N−2)p

4
n ≤ C‖∇un‖

N(p−1)
2

2 .
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Thus

E(un) ≥ 1

2
‖∇un‖22 − C‖∇un‖

N(p−1)
2

2

= ‖∇un‖22
(

1

2
− C‖∇un‖

Np−(N+4)
2

2

)
.

This, together with (4.13), proves that E(un) ≥ 0 as n ∈ N+ is sufficiently large.
For p ∈ (N+2

N−2 , 3 + 4
N

), N ≥ 3, we know from the proof of Theorem 1.12 of [9] that

{un} it is bounded in Lq(RN) for all q ≥ 4N
N−2 . Thus by Hölder and Sobolev’s

inequalities we can write∫
RN
|un|p+1dx ≤ C(p,N)‖∇un‖α2 · ‖un‖

β
(p−1)N ,(4.15)

where

α =
2N(p− 1)− 2(p+ 1)

(p− 1)(N − 2)− 2
and β = (p− 1)

(N − 2)(p+ 1)− 2N

(p− 1)(N − 2)− 2
.

For more details see, in particular, (4.16) in [9]. Now since ‖un‖β(p−1)N is bounded

we have

E(un) ≥ 1

2
‖∇un‖22 − C(p,N)‖∇un‖α2

= ‖∇un‖22
(

1

2
− C(p,N)‖∇un‖α−22

)
.

Since α − 2 > 0 as p > 1, we then deduce using (4.13) that E(un) ≥ 0 for all
n ∈ N+ sufficiently large. This proves that u0 6= 0. Finally if we assume that
‖u0‖22 < c(p,N) we directly get a contradiction from Lemma 4.1 sincem(c) = 0 for
all c ∈ (0, c(p,N)]. Thus ‖u0‖22 = c(p,N) and u0 is a minimizer of m(c(p,N)). �

Proof of Theorem 1.5. In Theorem 1.12 of [9] it is shown that m(c) admits a
minimizer if c ∈ (c(p,N),∞). By Lemma 4.3 this is also true for c = c(p,N).
To complete the proof of Point (i) we need to show that for c ∈ (0, c(p,N)),
m(c) does not admit a minimizer. But since m(c) = 0 for c ∈ (0, c(p,N)] it
results directly from Lemma 4.1. To prove Point (ii) we argue by contradiction
assuming that there exists a c > 0 such that m(c) admits a minimizer uc. Then,
by standard arguments, uc satisfies weakly

(4.16) −∆uc − λcuc − uc∆|uc|2 = |uc|p−1uc,

where λc ∈ R is the associated Lagrange multiplier. Multiplying (4.16) by uc and
integrating we derive that∫

RN
|∇uc|2dx+ 4

∫
RN
|uc|2|∇uc|2dx−

∫
RN
|uc|p+1dx = λc‖uc‖22.(4.17)
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Also, from Lemma 3.1 of [9] we know that uc satisfies the Pohozaev identity
(4.18)

N − 2

N

(
1

2

∫
RN
|∇uc|2dx+

∫
RN
|uc|2|∇uc|2dx

)
=
λc
2
‖uc‖22 +

1

p+ 1
‖uc‖p+1

p+1.

It follows from (4.17) and (4.18) that

‖∇uc‖22 + (N + 2)

∫
RN
|uc|2|∇uc|2dx−

N(p− 1)

2(p+ 1)
‖uc‖p+1

p+1 = 0,(4.19)

by which we can rewrite E(uc) as

(4.20) E(uc) =
Np− (N + 4)

2N(p− 1)
‖∇uc‖22 +

Np− (3N + 4)

N(p− 1)

∫
RN
|uc|2|∇uc|2dx.

When p = 3 + 4
N

, (4.20) becomes

E(uc) =
N

2N + 4
‖∇uc‖22.(4.21)

This is clearly a contradiction since by assumption E(uc) = m(c) ≤ 0 and Point
(ii) is established. �

Proof of Theorem 1.6. From the proof of Theorem 1.5, we know that any critical
point uc of E(u) restricted to σ(c) must satisfy (4.19). Denoting

Q(u) = ‖∇u‖22 + (N + 2)

∫
RN
|u|2|∇u|2dx− N(p− 1)

2(p+ 1)
‖u‖p+1

p+1,

we thus have Q(uc) = 0. Now we assume by contradiction that there exist
sequence {cn} ⊂ R+ with cn → 0, and {un} ⊂ σ(cn) such that un is a critical
point of E(u) on σ(cn). Then for each n ∈ N+, Q(un) = 0 and using (4.3) we
obtain

(4.22) ‖∇un‖22+(N+2)

∫
RN
|un|2|∇un|2dx ≤ C ·c1−θn ·

(∫
RN
|un|2|∇un|2dx

) θN
N−2

,

where θ = (p−1)(N−2)
2(N+2)

. When p = 3 + 4
N

we have θN
N−2 = 1 , 1 − θ = 4

N
and thus

we get immediately a contradiction from (4.22). Now when p ∈ [1 + 4
N
, 3 + 4

N
),

θN
N−2 < 1 and we derive from (4.22) that

(4.23)

∫
RN
|un|2|∇un|2dx→ 0 and ‖∇un‖22 → 0 as n→∞.
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Also when p ∈ [1 + 4
N
, N+2
N−2 ] if N ≥ 3 and p ∈ [1 + 4

N
,+∞) if N = 1, 2, we obtain

from (4.14) that

Q(un) ≥ ‖∇un‖22 − C‖∇un‖
N(p−1)

2
2 · c

(N+2)−(N−2)p
4

n

= ‖∇un‖22
(

1− C‖∇un‖
Np−(N+4)

2
2 · c

(N+2)−(N−2)p
4

n

)
.(4.24)

Taking (4.23) into account (4.24) implies that Q(un) > 0 for n ∈ N+ large enough
and provides a contradiction.

When p ∈ (N+2
N−2 , 3 + 4

N
), N ≥ 3, using (4.15) and the fact that {‖un‖β(p−1)N} is

bounded, we have

Q(un) ≥ ‖∇un‖22 − C(p,N)‖∇un‖α2 .
Since α − 2 as p > 1, using (4.23) we conclude that Q(un) > 0 for n ∈ N+

sufficiently large. Here also we have obtained a contradiction and this ends the
proof. �
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