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Abstract. We show that a class of divergence-form elliptic prob-

lems with quadratic growth in the gradient and non-coercive zero

order terms are solvable, under essentially optimal hypotheses on

the coefficients in the equation. In addition, we prove that the

solutions are in general not unique. The case where the zero order

term has the opposite sign was already intensively studied and the

uniqueness is the rule.

1. Introduction

Boundary value problems for elliptic equations like

(1.1) − div(a(x, u,∇u)) = B(x, u,∇u) + f(x), x ∈ Ω ⊂ RN ,
where −div(a(x, ·,∇·)) is a Leray-Lions operator on some Sobolev

space, have been one of the central problems in the theory of ellip-

tic PDE in divergence form. This paper is a contribution to this study

for the widely explored case when the nonlinear term B(x, u, ξ) has

“natural growth” in the unknown function, that is, grows linearly in u

and quadratically in ξ ∈ RN . The model case for our study is

(1.2) a(x, u, ξ) = A(x)ξ, B(x, u, ξ) = c0(x)u+ µ(x)|ξ|2,
where A is a positive bounded matrix, µ ∈ L∞(Ω), and c0, f belong to

suitably chosen Lebesgue spaces.

This type of problems have generated a considerable literature. Let

us mention here [10, 12, 15, 18, 20, 6, 7, 8, 3, 1, 2] as reference papers

on this subject, most closely related to the problem we consider. In

these works the existence, uniqueness or multiplicity of solutions of

(1.1) is established under various conditions on a, B and f , which will

be discussed below.

Most of the works quoted above, when reduced to (1.2), assume that

the coefficient c0 is nonpositive, that is, the equation is coercive or

proper. The only exception to this rule is [2], in which the particular
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case c0 = f 	 0 in the model problem (1.1)-(1.2) was mentioned; in the

next section we will give a more detailed account on the results which

appeared prior to this paper. Here we consider the general problem

(2.1) below, with non-coercive dependence in the unknown function u.

Specifically, we are going to see that, when c0 is positive and sufficiently

close to zero, the same type of existence result as in the case c0 ≤ 0

can be obtained, but the bounded solutions are not unique.

The paper is organized as follows. The next section contains our

hypotheses and main results, and situates them with respect to previ-

ous works. A brief overview of the proofs is given in Section 3, while

the proofs themselves can be found in Sections 4–7. We conclude with

some final remarks in Section 8, where we discuss possible extensions

and open problems.

2. Main Results

In this section we state our main results. We study the equation

(2.1) − div(A(x)∇u) = H(x, u,∇u), u ∈ H1
0 (Ω),

where Ω ⊂ RN , N ≥ 3 is a bounded domain in RN ,

(H1)


A ∈ L∞(Ω)N×N , ΛI ≥ A ≥ λI, for some Λ ≥ λ > 0, and

|H(x, s, ξ)| ≤ c0(x)|s|+ µ|ξ|2 + f(x),

for some µ ∈ R+ , c0, f ∈ Lp(Ω) with p > N
2
.

In the sequel we denote with CN the optimal Sobolev constant, defined

in (4.8) below. We have the following main existence result.

Theorem 1. Assume that (H1) holds and

(2.2) µ‖f‖
L

N
2 (Ω)

< CN .

Then there exists a constant c > 0 depending on N , p, |Ω|, µ, µ‖f‖Lp(Ω),

such that if

‖c0‖Lp(Ω) < c

then (2.1) admits a bounded solution.

Next, we show that introducing a non-coercive zero order term in

(2.1) induces non-uniqueness of the bounded solutions of this equation,

in the extremal cases of the structural hypothesis (H1) above. In other

words, we prove a multiplicity result for the equation

(2.3) −∆u = c0(x)u+ µ|∇u|2 + f(x), u ∈ H1
0 (Ω),

where µ ∈ R, c0, f ∈ Lp(Ω).
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Theorem 2. Assume that

µ 6= 0 and c0 	 0 in Ω.

If

(2.4) ‖[µf ]+‖
L

N
2 (Ω)

< CN ,

and

max{‖c0‖Lp(Ω) , ‖[µf ]−‖Lp(Ω)} < c ,

where c > 0 depends only on N , p, |Ω|, |µ|, ‖[µf ]+‖Lp(Ω), then (2.3)

admits at least two bounded solutions.

Remark 1. It is easy to check that the hypotheses in the above the-

orems are necessary, in the sense that (2.3) has no bounded solutions

if c0 = 0 and µ is large, or if c0 = 0 and f is large, or if µ = 0 and

c0 is large; also if c0 = 0 or µ = 0 the solution given by Theorem 1

is unique. See for instance the last remarks in Section 3 of [24], pages

598-599 in that paper.

Remark 2. Note that in Theorem 2 there is no restriction on the sign

of the source term f(x).

Remark 3. A slightly more general version of Theorem 2 will be given

in Section 7 (see also the remarks in Section 8).

Next we review the existence and uniqueness results which appeared

prior to our work. Because of the very large literature we restrict our-

selves to works which encompass the model case (1.2) (the reader may

consult the references in the papers quoted below for various related

problems).

We begin with references concerning Theorem 1. A weaker version of

this result appeared already in Kazdan and Kramer [22], where equa-

tions in non-divergence form are studied. Later, in [10, 12], Boccardo,

Murat and Puel showed that the sub- and super-solution method ap-

plies to general divergence-form equations with quadratic growth in the

gradient, and proved existence of bounded solutions of such equations

under a hypothesis of strict coercivity in u, that is, c0(x) ≤ −α0 < 0

in (1.2). For results on strictly coercive equations we refer also to

dall’Aglio, Giachetti and Puel [15]. Next, the equation (2.1) in the

weakly coercive case (c0 ≡ 0) was studied by Maderna, Pagani and

Salsa [23], and Ferone and Murat [17, 18]. In that case it turns out

that existence can be proved only under a smallness hypothesis on the

source term f , as in (2.2). Theorem 1 reduces to these results when

c0 = 0, and extends them to non-coercive zero-order terms.
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Let us give some more context on coercive problems. Further exis-

tence results with weaker assumptions of regularity on the coefficients

can be found in Grenon, Murat and Porretta [20]. Uniqueness results

in natural spaces associated to the coercive problem were obtained by

Barles and Murat [7], Barles, Blanc, Georgelin, and Kobylanski [6],

Barles and Porretta [8]. We also refer to the recent works by Abdel-

laoui, dall’Aglio and Peral [3], and Abdel Hamid and Bidaut-Véron [1]

for a deep study of (2.3) in the particular case c0 = 0, µ = 1, and

f ≥ 0. They show that in this case the problem (2.3) has infinitely

many solutions, of which only one is such that eu − 1 ∈ H1
0 (Ω). For

results on other classes of equations of type (1.1), with H being for

instance in the form H(x, s, ξ) = β(s)|ξ|2 for some real function β, we

refer to Boccardo, Gallouët, and Murat [9], as well as to [23], [3], [1, 2].

We note that in many of these papers equations involving quasilinear

operators modeled on the p-Laplacian are also studied. Finally, the

second author [24] recently obtained existence and uniqueness results

for fully nonlinear equations in non-divergence form with quadratic de-

pendence in the gradient, in which case the adapted weak notion of

solution is the viscosity one (see [24] for references on these types of

problems). The idea of our study originated from that paper.

As far as Theorem 2 is concerned, the fact that in problems with nat-

ural growth in the gradient the presence of a non-coercive zero-order

term may lead to non-uniqueness of bounded solutions was observed

only very recently in [24], for the equation (2.3) with f = 0. Sub-

sequently the case when f ≡ c0 	 0 was considered in the work by

Abdel Hamid and Bidaut-Véron [2] (their model equation is −∆pu =

|∇u|p + λf(x)(1 + u)b, b ≥ p − 1). Theorem 2 is valid for arbitrary

source term f , which in particular may not be positive, and thus shows

the multiplicity result is independent of the source term – as long as it

has a small norm, of course, otherwise solutions may not exist.

To summarize, Theorem 1 is an essentially optimal, with respect

to the coefficients, result on existence of bounded solutions of (2.1),

for equations in divergence form with possibly non-coercive zero-order

terms; while Theorem 2 shows uniqueness of bounded solutions is lost

in the presence of non-coercive zero-order terms, at least in the model

cases. We do not know whether a more general non-uniqueness result

is valid (see Section 8).

In the next section we give more details on the underlying ideas in our

approach, and discuss the difference between coercive and non-coercive

problems.
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Notation.

(1) We denote by X the space H1
0 (Ω) equipped with the Poincaré norm

|||u||| :=
∫

Ω |∇u|
2, and by X−1 its dual.

(2) For v ∈ L1(Ω) we define v+ = max(v, 0) and v− = max(−v, 0).

(3) The norm (
∫

Ω |u|
pdx)1/p in Lp(Ω) is denoted by ‖ · ‖p. We denote

by p′ the conjugate exponent of p, namely p′ = (p− 1)/p.

(4) We denote by C,D > 0 any positive constants which are not essential

in the arguments and may vary from one line to another.

3. Discussion and general frame of the proofs

The aim of this section is, first, to provide some intuition on the

hypotheses in our theorems and the differences they introduce with

respect to previous works on problems with natural growth in the gra-

dient, and second, to describe the ideas of the proofs of Theorem 1 and

Theorem 2. To this goal, and in order to help the reader understand

why the case c+
0 6≡ 0 is different from the cases c0 ≤ 0 or c0 ≤ −α0 < 0,

we present a variational interpretation of the model problem (2.3).

Let us assume, for the time being, that µ > 0 is a constant and c0 and

f are smooth functions. Making the well-known change of unknown

v = 1
µ
(eµu − 1) in (2.3) we observe that if a solution of

(3.1) −∆v − [c0(x) + µf(x)]v = c0(x)g(v) + f(x), v ∈ X,

where

(3.2) g(s) =


1
µ
(1 + µs)ln(1 + µs)− s if s > − 1

µ

−s if s ≤ − 1
µ
,

satisfies v > − 1
µ
, then u = 1

µ
ln(1+µv) is a solution of (2.3). In the next

section we are going to see that this procedure can be made rigorous in

general, and we will obtain a priori bounds on solutions of (3.1) which

show that they indeed give solutions of (2.3), under the hypotheses of

our theorems.

Equation (3.1) admits a variational formulation, in other words, its

solutions in H1
0 (Ω) can be represented as critical points of a functional

defined on this space. Specifically, critical points of

I(v) :=
1

2

∫
Ω

|∇v|2−[c0(x)+µf(x)]v2dx−
∫

Ω

c0(x)G(v) dx−
∫

Ω

f(x)v dx

on H1
0 (Ω) are weak solutions of (3.1). Here G(s) =

∫ s
0
g(t) dt.

No such link between problems of type (2.1) and problems admitting

a variational formulation has appeared in the earlier works on coercive

equations with natural growth in the gradient [10, 12, 15, 23, 17, 18].
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The fact that the general problem (2.1) does not have such a formula-

tion surely explains this; however the validity of the results obtained

in these papers can be explained, in a different light, by looking at the

model problem (3.1).

First, if we assume that

c0 ≤ −α0 < 0

(as in [10, 12, 15]), it is easily seen that we have, independently of the

size of f ∈ LN
2 (Ω),

(3.3) lim
|||v|||→∞

I(v) = +∞,

or in other words I is coercive, from which the existence of a global

minimum of I follows. Indeed, to prove (3.3) we observe that the

second term in the definition of I dominates, for |||v||| large, the first

and third terms, since (see Lemma 7)

(3.4) lim
s→∞

G(s)

s2
= +∞.

Next, if c0 = 0 (as in [23], [17], [18]), then I becomes

I(v) =
1

2

∫
Ω

|∇v|2 − µf(x)v2 dx−
∫

Ω

f(x)v dx

and it is easily seen that this functional is coercive if and only if (see

Lemma 4)

(3.5) inf
‖v‖L2(Ω)=1

∫
Ω

|∇v|2 − µf(x)v2dx > 0,

which in turn holds under the condition (2.2), discovered in [17].

On the other hand, in the case we are interested in

c+
0 6≡ 0,

the geometry of I is completely different, now (3.4) implies

(3.6) inf
v∈X

I(v) = lim inf
|||v|||→∞

I(v) = −∞,

and in particular no global minimum of I exists.

However, as we are going to see, it turns out that if c+
0 is appro-

priately small, the functional I takes strictly positive values on the

boundary of some large ball B in H1
0 (Ω). In other words, we show that

letting the coefficient c0 be slightly positive perturbs badly I at infinity

(compare (3.3) to (3.6)) but keeps I “sufficiently large” on some large

sphere. Hence, in view of I(0) = 0, it follows that I attains a local

minimum in B, which is then a critical point of I.
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The latter argument applies only to the extremal case (2.3) but yields

existence for general equations as in Theorem 1, via the method of sub-

and super-solutions. This method requires no variational structure at

all, and applies to very general equations (see for instance [4, 11, 14]).

Note that the method of sub- and super-solutions is particularly useful

in searching for stable solutions, and a local minimum of a functional

corresponds precisely to a stable solution.

Let us now explain why Theorem 2 is valid. The existence of a local

minimum of I and (3.6) suggest that at least one more critical point (of

saddle type) of I could be expected to exist. Proving this type of state-

ment is the object of a large branch of the theory of variational methods

in PDE, whose development started with the acclaimed work by Am-

brosetti and Rabinowitz [5] on functionals which have “mountain-pass”

geometry, that is, are positive on a small sphere and tend to −∞ at

infinity. In our case we are able to prove that a second critical point

of I exists by showing that Cerami sequences for I are bounded, from

which classical arguments permit us to deduce the result. The bound-

edness of Cerami sequences is a significant difficulty and to overcome

it we need to develop further some ideas introduced in [21].

It is important to note that the latter argument depends strongly

on the variational structure of the PDE in consideration, which is the

reason for which we are able to prove Theorem 2 only for the model

equation (2.3). See Open Problem 1 in Section 8, and the remarks

therein.

Here is an outline of the following sections. First, in Section 4 we give

some preliminaries and study the relation between the problems (2.3)

and (3.1). In Section 5 we establish several facts on the geometry of the

functional I(v), and show it admits a local minimum. The core of the

multiplicity result is in Section 6, where we show that Cerami sequences

for I are bounded. In Section 7 we finish the proof of Theorems 1 and 2.

Section 8 contains some closing remarks and open problems.

4. The link between problems (2.3) and (3.1)

We consider the problem

(4.1) −∆v − [c0(x) + µf(x)]v = c0(x)g(v) + f(x), v ∈ X,

where g is given by (3.2) and µ > 0.

Lemma 3. If v ∈ X is a solution of (4.1) which satisfies

v > −1/µ+ ε on Ω, for some ε > 0,

then u = 1
µ
ln(1 + µv) is a solution of (2.3).
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Proof. The equation (4.1) can be rewritten, for v > −1/µ,

(4.2) −∆v =
c0(x)

µ
(1 + µv)ln(1 + µv) + (1 + µv)f(x).

Let v ∈ X be a solution of (4.2), we want to show that u = 1
µ
ln(1+µv)

is a solution of (2.3), that is, if φ ∈ C∞0 (Ω), then

(4.3)

∫
Ω

∇u∇φ− µ|∇u|2φ− c0(x)uφ dx =

∫
Ω

f(x)φ dx.

Let ψ =
φ

1 + µv
. Clearly ψ ∈ X and thus it can be used to test (4.2).

We get

(4.4)

∫
Ω

∇v∇ψ dx =

∫
Ω

c0(x)

µ
ln(1 + µv)φ dx+

∫
Ω

f(x)φ dx.

But

(4.5)

∫
Ω

c0(x)

µ
ln(1 + µv)φ dx =

∫
Ω

c0(x)uφ dx

and ∫
Ω

∇v∇ψ dx =

∫
Ω

∇
(

1

µ
(eµu − 1)

)
∇
(

φ

1 + µv

)
dx

=

∫
Ω

eµu∇u
(
∇φ

1 + µv
− µφ∇v

(1 + µv)2

)
dx

=

∫
Ω

∇u

(
∇φ−

µφ∇( 1
µ
(eµu − 1))

(1 + µv)

)
dx

=

∫
Ω

∇u(∇φ− µφ∇u) dx

=

∫
Ω

∇u∇φ− µ|∇u|2φ dx.(4.6)

Combining (4.4), (4.5) and (4.6), we see that u satisfies (4.3). �

Next we recall the following standard fact.

Lemma 4. Given h ∈ LN/2(Ω), set

E2
h(u) =

∫
Ω

|∇u|2 − h(x)|u|2dx,

for u ∈ X. Then

‖h+‖N
2
< CN

implies that the quantity Eh(u) defines a norm on X which is equivalent

to the standard norm, and

λ(h,Ω) := inf
u∈X\{0}

Eh(u)

|||u|||2
> 0.
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This last property implies that the operator −∆− h satisfies the maxi-

mum principle in Ω, that is, if −∆u−hu ≥ 0 in X−1 for some u ∈ X,

then u− ∈ X yields u− ≡ 0 in Ω.

Proof. The first statement trivially follows from the Sobolev embedding

and the fact that for any v ∈ X,

(4.7)

∫
Ω

h(x)v2dx ≤ ‖h‖N
2
‖v‖2

2∗ ≤
1

CN
‖h‖N

2
‖∇v‖2

2.

Here 2∗ = 2N
N−2

and

(4.8) CN = inf{‖∇v‖2
2 : v ∈ X, ‖v‖2

2∗ = 1} > 0

is the optimal constant in Sobolev’s inequality. Note CN depends only

on N ; the exact value of CN can be found in [25]. The maximum

principle is obtained by multiplying −∆u − hu ≥ 0 by u− and by

integrating. �

Definition. In the rest of the paper we assume that the constant c > 0

in the main theorems is fixed so small that

(H2) ||c0 + µf+||N
2
< CN .

We denote with ||·|| the norm defined by Ec0+µf (·) which, by Lemma 4,

is equivalent to the standard norm on X.

By (2.4), the validity of (H2) can be ensured by taking

(4.9) ‖c0‖N
2
≤ ε0/2, with ε0 := CN − µ‖f+‖N

2
> 0,

which occurs for ||c0||p sufficiently small, since |Ω| <∞.

Now we recall the following global boundedness lemma, which is a

consequence of results due to Stampacchia and Trudinger.

Lemma 5. Assume that A ∈ L∞(Ω)N×N , ΛI ≥ A ≥ λI, for some

Λ ≥ λ > 0, and that c, f ∈ Lp(Ω) for some p > N
2

. Then if u ∈ X is a

solution of

−div(A(x)∇u) ≤ (≥)c(x)u+ f(x)

then u is bounded above(below) and

sup
Ω
u+(sup

Ω
u−) ≤ C(‖u+(u−)‖2 + ‖f‖p),

where C depends on N, p, λ,Λ, |Ω|, and ‖c‖p.

Proof. This is a consequence of Theorem 4.1 in [26] combined with Re-

mark 1 on page 289 in that paper. It can also be obtained by repeating

the proof of Theorem 8.15 in [19] (which implies the same result for

c ∈ L∞(Ω)), as remarked at the end of page 193 in that book. �
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The next lemma shows that Lemma 3 can be applied, provided the

function c0 is sufficiently small.

Lemma 6. There exists a constant c > 0 depending on N, p, |Ω|,
µ‖f+‖p, such that if

µ‖f+‖N
2
< CN , and max{‖c0‖p , µ‖f−‖p} < c,

then any solution v of (4.1) satisfies v > −1/(2µ) in Ω.

Proof. Since c0 ≥ 0 on Ω and g is nonnegative on R, any solution

of (4.1) satisfies

(4.10) −∆v − [c0(x) + µf+(x)]v ≥ −f− on the set {v < 0}.

We now use the global bound given in the previous lemma to infer that

(4.11) sup
Ω

(v−) ≤ C(||v−||2 + ||f−||p),

for some constant C = C(N, p, |Ω|, ||c0 + µf+||p).
Recall that if we assume c > 0 is small enough (H2) holds, and thus

|| · || is equivalent to the standard norm on X. We multiply (4.1) by

v−, and integrate to get

||v−||2 ≤
∫

Ω

|∇v−|2 − [c0(x) + µf(x)]|v−|2dx

≤ −
∫

Ω

c0(x)g(v)v−dx−
∫

Ω

f(x)v−dx

≤
∫

Ω

f−(x)v−dx

≤ ||f−||N
2
||v−|| N

N−2
≤ C||f−||N

2
||v−||.

Thus, in particular,

(4.12) ||v−||2 ≤ C||f−||p.

Combining (4.11) and (4.12) we get sup(v−) ≤ C||f−||p. This implies

that sup(v−) < 1/(2µ) if C||f−||p < 1/(2µ), that is, if ||µf−||p ≤
1/(2C). This finishes the proof. �

5. On the geometry of the functional I(v)

We associate to (4.1) the functional I : X → R defined by

I(v) =
1

2
||v||2 −

∫
Ω

c0(x)G(v) dx−
∫

Ω

f(x)v dx.

Under our assumptions it is standard to show that I ∈ C1(X,R)1.

1Note that in Sections 5 and 6 µ can be an arbitrary function in L∞(Ω)
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Recall G(s) =
∫ s

0
g(t)dt and define H(s) = 1

2
g(s)s − G(s). In the

following lemma we gather some simple and useful properties of g,G

and H.

Lemma 7.

(i) The function g is continuous on R, g > 0 on R \ {0}, G ≥ 0

on R+ and G ≤ 0 on R−.

(ii) For any r ∈ (1, 2) there exists C = C(r, µ) > 0 such that we

have |g(s)| ≤ C|s|r for any s ∈ R.

(iii) We have g(s)/s→ 0 as s→ 0.

(iv) We have g(s)/s→ +∞ and G(s)/s2 → +∞ as s→ +∞.

(v) The function H satisfies H(s) ≤ (s/t)H(t), for 0 ≤ s ≤ t.

(vi) The function H is bounded on R−.

Proof. We have g(0) = 0 and, for s > −1/µ, g′(s) = ln(1 + µs). Thus

g′(0) = 0, g(s) > 0 if s 6= 0. Now direct calculations show that

g(s) ≤ ln(1 + µs) s if s ≥ 0,

and g(s) ≤ |s| if s ≤ 0. Hence (i), (ii) and (iii) hold. By the definition

of g, (iv) clearly holds. Also H(0) = 0 and we get, for s ≥ 0,

H ′(s) =
1

2
[g′(s)s− g(s)] =

1

2
[s− 1

µ
ln(1 + µs)].

Thus H ′′(s) =
µs

2(1 + µs)
≥ 0 for s ≥ 0. From the convexity of H, we

deduce that, if 0 < s ≤ t,

H(s) ≤ s

t
H(t) +

(
1− s

t

)
H(0) =

s

t
H(t),

which proves (v). Finally, we trivially check that

H(s) = −G(− 1

µ
)− 1

2µ2

is constant for s ≤ −1/µ, which implies (vi). The lemma is proved. �

The next lemma concerns the geometrical structure of I. We are

going to denote with B(0, ρ) the ball in X with center 0 and radius ρ.

Lemma 8. Assume (H2). There exist constants α = α(N, |Ω|, µ) > 0,

β > 0 and ρ > 0 such that if 0 < ‖c0‖p ≤ α then

(i) I(v) ≥ β for ‖u‖ = ρ.

(ii) infv∈B(0,ρ) I(v) ≤ 0, and infv∈B(0,ρ) I(v) < 0 if f 6≡ 0.

(iii) There exists v0 ∈ X such that ‖v0‖ > ρ and I(v0) ≤ 0.
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Proof. Let r > 1, close to 1, satisfy (r + 1)p′ < 2N
N−2

. We can choose

such r since p > N
2

. By Lemma 7 we have

(5.1) |G(s)| ≤ C|s|r+1, for all s ∈ R.

Using (5.1), we get, for any v ∈ X,

(5.2)

∫
Ω

c0(x)G(v)dx ≤ C‖c0‖p‖v‖r+1

(r+1)p′
≤ C‖c0‖p‖v‖r+1,

where we used the Hölder and Sobolev inequalities. Also∫
Ω

f(x)v(x)dx ≤ ‖f‖N
2
‖v‖ N

N−2
≤ D(‖f+‖N

2
+ ‖f−‖N

2
)‖v‖

≤ (D/µ)(CN + µ‖f−‖N
2

)‖v‖,

for some D = D(N, |Ω|) > 0, by the hypotheses of Theorem 2. We

then get, for any v ∈ X, because of (4.9),

(5.3) I(v) ≥ 1

2
‖v‖2 − (D/µ)(CN + µ‖f−‖N

2
)‖v‖ − C‖c0‖p‖v‖r+1.

We fix first ρ > 0 sufficiently large so that if ‖v‖ = ρ

1

2
‖v‖2 − (D/µ)(CN + µ‖f−‖N

2
)‖v‖ ≥ 1

4
ρ,

and then ‖c0‖p small enough to ensure that I(v) ≥ 1
8
ρ, for any v ∈ X

with ‖v‖ = ρ. This proves (i).

Next, note that I(0) = 0, so infv∈B(0,ρ) I(v) ≤ 0. If f 6≡ 0, take a

function v ∈ C∞0 (Ω), such that
∫

Ω
f(x)vdx > 0 and consider the map

t→ I(tv) for t > 0. We have

I(tv) =
t2

2
‖v‖2 −

∫
Ω

c0(x)G(tv) dx− t
∫

Ω

f(x)v dx(5.4)

= t2
[

1

2
‖v‖2 −

∫
Ω

c0(x)
G(tv)

t2v2
v2dx− 1

t

∫
Ω

f(x)v dx

]
.

By Lemma 7 we have G(s)/s2 → 0 as s→ 0, thus∫
Ω

c0(x)
G(tv)

t2v2
|v|2dx→ 0

as t → 0, since v ∈ C∞0 (Ω). Then (5.4) implies I(tv) < 0 for t > 0

small enough. This proves (ii).

Finally, to prove (iii) we consider again the map t → I(tv), t > 0,

and take v ∈ C∞0 (Ω) with v ≥ 0, c0v 6≡ 0. Then since by Lemma 7

G(s)/s2 → +∞ as s→ +∞, we now have∫
Ω

c0(x)
G(tv)

t2v2
|v|2dx→ +∞,

so I(tv)→ −∞ as t→ +∞. This of course implies (iii). �
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In view of Lemma 8 it can be expected that for ‖c0‖p sufficiently

small I has two critical points, one of which is a local minimum, while

the other is of saddle type.

Lemma 9. Assume that ‖c0‖p is sufficiently small to ensure that (H2)

and Lemma 8 hold. Then the functional I possesses a critical point

v ∈ B(0, ρ), with I(v) ≤ 0, which is a local minimum of I.

Proof. By Lemma 8 (i) and (ii) there are ρ, β > 0 such that

m := inf
v∈B(0,ρ)

I(v) ≤ 0 and I(v) ≥ β > 0 if ‖v‖ = ρ.

Let (vn) ⊂ B(0, ρ) ⊂ X be a sequence such that I(vn) → m. Since

(vn) ⊂ X is bounded we have, up to a subsequence, vn ⇀ v weakly

in X, for some v ∈ X. Now, by standard properties of the weak

convergence and since f ∈ LN/2(Ω) ⊂ X−1,

‖v‖2 ≤ lim inf
n→∞

‖vn‖2 and

∫
Ω

f(x)vn dx→
∫

Ω

f(x)v dx

as n→∞.Also, since vn → v in Lq(Ω) for 1 ≤ q < 2N
N−2

and c0 ∈ Lp(Ω)

we readily obtain, using (5.1), that∫
Ω

c0(x)G(vn)dx→
∫

Ω

c0(x)G(v)dx as n→∞.

We deduce that v ∈ B(0, ρ) and

I(v) ≤ lim inf
n→∞

I(vn) = m = inf
v∈B(0,ρ)

I(v).

Thus v is a local minimum of I and, by standard arguments, a critical

point of I. �

Now we define the mountain pass level

ĉ = inf
g∈Γ

max
t∈[0,1]

I(g(t))

where

Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = v0},

with v0 ∈ X given by Lemma 8 (iii). We shall prove that I possesses

a critical point at the mountain pass level, that is, there exists v ∈ X
such that I(v) = ĉ and I ′(v) = 0. Since ĉ > 0 (by Lemma 8 (i)),

this critical point must be different from the local minimum given by

Lemma 9.

It is a standard fact that any C1-functional having a mountain pass

geometry admits a Cerami sequence at the mountain pass level (see for
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instance [13, 16]). In other words, there exists a sequence (vn) ⊂ X

such that

I(vn)→ ĉ and (1 + ‖vn‖)I ′(vn)→ 0.

If we manage to show that (vn) ⊂ X admits a strongly convergent

subsequence, its limit is the desired critical point. A first essential step

in the proof of this fact is showing that (vn) is bounded.

6. Boundedness of the Cerami sequences

The following lemma is the key point in the proof of Theorem 2.

Lemma 10. Assume that ‖c0‖p is sufficiently small to ensure (H2) and

Lemma 8 hold. Then the Cerami sequences for I at any level d ∈ R+

are bounded.

Proof. Let (vn) ⊂ X be a Cerami sequence for I at a level d ∈ R+.

Assume for contradiction that ‖vn‖ → ∞ and set

wn =
vn
‖vn‖

.

Since (wn) ⊂ X is bounded we have wn ⇀ w weakly in X and wn → w

strongly in Lq(Ω), for 1 ≤ q < 2N
N−2

(up to a subsequence). We write

w = w+ − w−. We shall distinguish the two cases c0w
+ ≡ 0 and

c0w
+ 6≡ 0, and prove they are both impossible.

First we assume that c0w
+ = 0, and define the sequence (zn) ⊂ X

by zn = tnvn with tn ∈ [0, 1] satisfying

I(zn) = max
t∈[0,1]

I(tvn)(6.1)

(if tn defined by (6.1) is not unique we choose its smallest possible

value). Let us show that

lim
n→∞

I(zn) = +∞.(6.2)

Seeking a contradiction we assume that for some M <∞

lim inf
n→∞

I(zn) ≤M,(6.3)

and we define (kn) ⊂ X by

kn =

√
4M

‖vn‖
vn =

√
4Mwn.

Then kn ⇀ k :=
√

4M w weakly in X and kn → k strongly in Lq(Ω)

for any 1 ≤ q < 2N
N−2

. Thus, as in the proof of Lemma 9, we have

(6.4)

∫
Ω

c0(x)G(kn) dx→
∫

Ω

c0(x)G(k) dx.
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Now, recall that G(s) ≤ 0 for s ≤ 0, see Lemma 7. Since we have

assumed c0(x) = 0 if k(x) > 0, we obtain

(6.5)

∫
Ω

c0(x)G(k) dx ≤ 0.

Also, since f ∈ LN/2(Ω) ⊂ X−1

(6.6)

∣∣∣∣∫
Ω

f(x)kn dx

∣∣∣∣ ≤ √4M ‖f‖X−1‖wn‖ ≤
√

4M ‖f‖X−1 .

Combining (6.4), (6.5) and (6.6) it follows that

I(kn) = 2M −
∫

Ω

c0(x)G(kn) dx−
∫

Ω

f(x)kn dx(6.7)

≥ 2M −
√

4M ‖f‖X−1 + o(1).

Thus, taking M > 0 larger if necessary, we can assume that

(6.8) I(kn) ≥ (3/2)M

for all sufficiently large n ∈ N. Since kn and zn lay on the same ray in

X for all n ∈ N, we see by the definition of zn that (6.8) contradicts

(6.3) (note
√

4M/‖vn‖ < 1 since ‖vn‖ → ∞). Thus (6.2) holds.

We remark that I(vn) → d and I(zn) → ∞ imply that tn ∈ (0, 1).

Hence by the definition of zn we have that < I ′(zn), zn >= 0, for all

n ∈ N. Thus, with H defined as in Lemma 7,

I(zn) = I(zn)− 1

2
<I ′(zn), zn>(6.9)

=

∫
Ω

c0(x)H(zn) dx− 1

2

∫
Ω

f(x)zn dx.

Combining (6.2) and (6.9) we see that

(6.10)
1

2

∫
Ω

f(x)zn dx = −M(n) +

∫
Ω

c0(x)H(zn) dx

where M(n) is a quantity such that M(n)→ +∞ as n→∞. In order

to show that c0w
+ = 0 does not occur we next prove that (6.10) is

impossible.

Observe that, for n ∈ N large enough,

d+ 1 ≥ I(vn) = I(vn)− 1

2
<I ′(vn), vn> +o(1)(6.11)

=

∫
Ω

c0(x)H(vn) dx− 1

2

∫
Ω

f(x)vn dx+ o(1)

(note that <I ′(vn), vn>→ 0, since (vn) is a Cerami sequence). Thus,

for some D > 0,∫
Ω

c0(x)H(vn) dx ≤ D +
1

2

∫
Ω

f(x)vn dx = D +
1

2tn

∫
Ω

f(x)zn dx
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or equivalently, using (6.10)∫
Ω

c0(x)H(vn) dx ≤ D − M(n)

tn
+

1

tn

∫
Ω

c0(x)H(zn) dx.(6.12)

Now we decompose Ω into Ω = Ω+
n ∪ Ω−n with

Ω+
n = {x ∈ Ω : zn(x) ≥ 0} and Ω−n = Ω\Ω+

n .

On Ω+
n we have, by Lemma 7 (v) and c0 ≥ 0, that∫

Ω+
n

c0(x)H(zn) dx ≤ tn

∫
Ω+

n

c0(x)H(vn) dx.

On Ω−n we have, by Lemma 7 (vi) and |Ω| <∞, that for some D > 0∫
Ω−n

c0(x)H(zn) dx ≤ D.

Then it follows from (6.12) that∫
Ω−n

c0(x)H(vn) dx ≤ D − M(n)

tn
+
D

tn
.

Letting n→∞ and using tn ∈ [0, 1] we see that∫
Ω−n

c0(x)H(vn) dx→ −∞

which is impossible since, by Lemma 7 (vi), H is bounded on R− and

|Ω| <∞. At this point we have shown that c0w
+ = 0 is impossible.

We now assume that c0w
+ 6= 0 and we show that this property also

leads to a contradiction. Since (vn) ⊂ X is a Cerami sequence we have

<I ′(vn), vn>→ 0. Thus

‖vn‖2 −
∫

Ω

c0(x)g(vn)vn dx−
∫

Ω

f(x)vn dx→ 0.

Dividing by ‖vn‖2 we get

‖wn‖2 −
∫

Ω

c0(x)
g(vn)

‖vn‖
wn dx→ 0,

and since ‖wn‖ = 1 we have∫
Ω

c0(x)
g(vn)

‖vn‖
wn dx =

∫
Ω

c0(x)
g(vn)

vn
w2
n dx→ 1.(6.13)

Let

Ω+ = {x ∈ Ω : c0(x)w(x) > 0} 6= ∅.
We also define

Ω+
n = {x ∈ Ω : vn(x) ≥ 0} and Ω−n = Ω\Ω+

n .
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Now since g(s)/s → +∞ as s → +∞ and wn → w > 0 a.e. on Ω+ it

follows that

c0
g(vn)

vn
w2
n → +∞ a.e. on Ω+.

Thus, taking into account that |Ω+| > 0, we deduce that

(6.14) lim
n→∞

∫
Ω+

c0(x)
g(vn)

vn
w2
n dx→ +∞.

On the other hand we have∫
Ω+

c0(x)
g(vn)

vn
w2
n dx =

∫
Ω

c0(x)
g(vn)

vn
w2
n dx(6.15)

−
∫

(Ω\Ω+)∩Ω+
n

c0(x)
g(vn)

vn
w2
n dx

−
∫

(Ω\Ω+)∩Ω−n

c0(x)
g(vn)

vn
w2
n dx.

But, for all n ∈ N, since g is non negative,

(6.16)

∫
(Ω\Ω+)∩Ω+

n

c0(x)
g(vn)

vn
w2
n dx ≥ 0.

Also, since g(s)/s is bounded for s ≤ 0 we have, for some D > 0,∣∣∣∣∫
(Ω\Ω+)∩Ω−n

c0(x)
g(vn)

vn
w2
n dx

∣∣∣∣ ≤ D

∫
Ω

c0(x)w2
n dx(6.17)

≤ D‖c0‖N
2
‖wn‖2 ≤ D‖c0‖N

2
.

Now combining (6.13)-(6.17) we get a contradiction. This shows that

c0w
+ 6= 0 is impossible and ends the proof of the lemma. �

Lemma 11. Under the hypotheses of Lemma 10 any Cerami sequence

for I at a level d ∈ R+ admits a strongly convergent subsequence.

Proof. Let (vn) ⊂ X be a Cerami sequence for I at a level d ∈ R+. Since

by Lemma 10 this sequence is bounded, by passing to a subsequence we

can assume that vn ⇀ v weakly in X and vn → v strongly in Lq(Ω), for

each 1 ≤ q < 2N
N−2

. The condition I ′(vn) → 0 in X−1 means precisely

that

−∆vn − [c0(x) + µf(x)]vn − c0(x)g(vn)− f(x)→ 0 in X−1.

Because vn → v in Lq(Ω), for 1 ≤ q < 2N
N−2

and c0 ∈ Lp(Ω) for some

p > N
2

we readily have that c0(x)g(vn)→ c0(x)g(v) in X−1. Thus

(6.18) −∆vn − [c0(x) + µf(x)]vn → c0(x)g(v) + f(x) in X−1.

Now let L : X → X−1 be defined by

(Lu)v =

∫
Ω

∇u∇v − [c0(x) + µf(x)]uv dx.
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The operator L is invertible by (4.9), so we can deduce from (6.18) that

vn → L−1[c0(x)g(v) + f(x)] in X. Consequently, by the uniqueness of

the limit, vn → v in X. �

7. Proofs of the main theorems

With the results from the previous section at hand, we are ready to

prove Theorem 2. We assume that c > 0 is chosen sufficiently small to

ensure that the conclusions of Lemmas 4–11 hold.

Proof of Theorem 2. Let first µ > 0. By Lemma 9 we have the existence

of a first critical point which is a local minimum of I, whereas by

Lemmas 10 and 11 we obtain a second critical point at the mountain

pass level ĉ > 0. So we obtain two different solutions of (4.1) in X.

By Lemma 6 and Lemma 3 they give two different solutions of (2.3).

These solutions are bounded, as a consequence of Lemma 13 below.

Next, if µ < 0 we replace u by −u, which is equivalent to replacing

µ by −µ and f by −f . Theorem 2 is proved. �

Now consider the equation

(7.1) − div(A(x)∇u) = µ <A(x)∇u,∇u> +c0(x)u+ f(x),

and assume ΛI ≥ A(x) ≥ λI, where Λ ≥ λ > 0. We have just proved

Theorem 2 for (7.1) with A(x) = I.

It is trivial to check that the change of unknown v = 1
µ
(eµu − 1)

transforms (7.1) into

(7.2) − div(A(x)∇v)− [c0(x) + µf(x)] v = c0(x)g(v) + f(x).

This equation is variational and can be treated exactly like (4.1). Re-

peating the arguments from the previous sections we are led to the

following result.

Theorem 12. Assume that

c0 	 0 in Ω and µ 6= 0.

If

‖[µf ]+‖
L

N
2 (Ω)

< λCN

and

max{‖c0‖Lp(Ω) , [µf ]−‖Lp(Ω)} < c ,

where c > 0 depends only on N , p, λ, Λ, |Ω|, |µ|, ‖[µf ]+‖Lp(Ω), then

(7.1) admits at least two bounded solutions.

The boundedness of the solutions obtained in this theorem (which

contains Theorem 2 as a particular case) is a consequence of the fol-

lowing lemma.
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Lemma 13. Assume that ΛI ≥ A(x) ≥ λI for some Λ ≥ λ > 0,

µ ∈ L∞(Ω), and that c0 and f belong to Lp(Ω), for some p > N
2

. Then

any solution v ∈ X of (7.2) belongs to L∞(Ω).

Proof. Let v ∈ X be a solution of (7.2), which we recast as

−div(A(x)∇v) = [c0(x) + µf(x) + c0(x)
g(v)

v
]v + f(x).

By our assumptions c0, f , and µf belong to Lp(Ω), for some p > N/2.

We will be in position to apply Lemma 5 provided we show that the

term c0(x)g(v)
v

has the same property. This is indeed the case because

of the slow growth of g(s)/s as |s| → ∞ (recall Lemma 7). Specifically,

for any r ∈ (0, 1) there exists a D > 0 such that∣∣∣∣g(s)

s

∣∣∣∣ ≤ D|s|r, for any s ∈ R.

Thus, since c0 ∈ Lp(Ω) for some p > N
2

, and v is in some Lebesgue space

(v ∈ L2N/(N−2)(Ω)), by taking r > 0 sufficiently small (r < 4p−2N
p(N−2)

) and

by using the Hölder inequality we see that c0g(v)/v ∈ Lp1(Ω), for some

p1 ∈ (N/2, p).

So v is bounded, by Lemma 5. �

We are now ready to prove Theorem 1. The idea is to use Theorem 12

in order to obtain a supersolution and a subsolution to (2.1) which can

be proved to be ordered. Then we can obtain the existence of one

solution to (2.1) by appealing to a theorem which states the existence

of a solution between ordered sub- and super-solutions. Such results

abound in the theory of elliptic PDE, see for instance [4], [14], and the

references in these works. We are going to use Theorem 3.1 from [11],

which is particularly adapted to our setting.

We recall, see Definition 3.1 of [11], that a function w ∈ W 1,2(Ω) ∩
L∞(Ω) is a subsolution of (2.1) if

−div(A(x)∇w) ≤ H(x,w(x),∇w(x)) in Ω and w ≤ 0 on ∂Ω.

Respectively, a function w ∈ W 1,2(Ω)∩L∞(Ω) is a supersolution of (2.1)

if

−div(A(x)∇w) ≥ H(x,w(x),∇w(x)) in Ω and w ≥ 0 on ∂Ω.

The function H obviously satisfies the hypothesis (1.5) from [11], since

|H(x, s, ξ)| ≤ (1 + µ+ |s|)(|c0(x)|+ |f(x)|+ |ξ|2).

Proof of Theorem 1. Observe that any solution u ∈ X of the equation

(7.3) − div(A(x)∇u) =
µ

λ
<A(x)∇u,∇u> +c0(x)u+ f(x),
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given by applying Theorem 12 to (7.3) in the particular case µ > 0 and

f ≥ 0, is such that u is a supersolution to the original equation (2.1),

thanks to (H1). In addition u ≥ 0, by the maximum principle (Lemma

4) which can be applied to (7.2). Similarly, it is easily checked that

u = −u is a subsolution to (2.1), and of course u ≤ 0 ≤ u, so u, u are

ordered. These functions are bounded, by Lemma 13. Thus Theorem

3.1 of [11] implies Theorem 1. �

8. Final Remarks

The hypotheses we made on (1.1) in order to prove Theorem 2 can

be generalized in various ways. For instance, if f ≥ 0 we see that any

solution v of (4.1) satisfies v ≥ 0 on Ω, provided ‖c0 +µf‖N/2 < CN (by

Lemma 4). Then we do not need any more Lemma 6 and, inspecting

the proofs of the remaining lemmas, one can see that requiring that c0

belongs to Lp(Ω) for some p > N
2

and that f ∈ LN
2 (Ω) suffices to get

the conclusion of Theorem 2. In this case the solutions of (4.1) and

thus of (2.3) which we obtain are not necessarily bounded. One may

in general ask whether it is possible to consider coefficients c0 and f

which are less regular, thus obtaining solutions with lower regularity,

like for instance in [20].

Let us also make some remarks on the importance of the change of

variables u = 1
µ

ln(1+µv) which we used. If the operators div(a) and B

in (1.1) can be appropriately bounded above and below by quantities

such that this change can be made in the corresponding “extremal”

equations, leading to new equations for which our critical point method

can be applied, then we obtain a subsolution and a supersolution for the

initial problem, and hence a solution to this problem. This approach

is in some sense alternative, as well as complementary, to the one used

in many previous papers on coercive problems with natural growth. In

these papers the idea was to mimic the change of variables in the initial

problem, by testing the weak formulation of (1.1) with suitably chosen

functions, which somehow take account of the change of unknown (see

for instance Remark 2.10 in [18] for more details).

We stress that, in contrast with the existence result in Theorem 1

which is very general with respect to the structure of the equation, our

multiplicity result, Theorem 12, depends on a strict link between the

second order term and the gradient term. In other words, to obtain

multiplicity we do need to be able to make the change of variables in the

initial equation. It is certainly a very interesting open problem whether

a multiplicity result can be proved for more general non-coercive prob-

lems with natural growth. It can be expected that topological methods,
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in particular index theory, should permit us to deduce multiplicity of

solutions for equations which do not have an equivalent formulation in

terms of critical points of a functional. For instance, we state

Open Problem 1. Under appropriate smallness condition on c0 and

f is it true that the equation

−∆u = c0(x)u+ µ(x)|∇u|2 + f(x), u ∈ X,

has at least two bounded solutions, provided 0 < µ1 ≤ µ(x) ≤ µ2 and

µ is not constant ?

Acknowledgement. We thank M.-F. Bidaut-Véron for a number of very

useful remarks, which improved our presentation.
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Rua Marquês de São Vicente 225, Gávea
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