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INTRODUCTION FRAMEWORK

Our aim is to study the following equation

∂t u(t , x , ω) + ∂x Ψ
(
u(t , x , ω)

)
= ∂x Ḟ (t , x , ω) , (1)

with
I x ∈ R,
I t0 ≥ 0,
I u(t , x , ·) is a random variable with values in R,
I F is a random force.

A deterministic initial data u(t0, ·) = u0(·) ∈ L∞(R) is given.
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INTRODUCTION FRAMEWORK

Burgers’ case :
If the flux function Ψ is the half of the square function and F = 0, then we obtain the Burgers’
equation  ∂t u(t , x) + 1

2∂x
(
u(t , x)

)2
= 0 ,

u(0, x) = u0(x) .

Characteristic method :
A characteristic curve ξ is a curve such that u(t , ξ(t)) is constant. If u is regular then a
characteristic satisfies ξ′(t) = u(t , ξ(t)) ;

ξ(0) = x0.
=⇒ ξ(t) = x0 + u0(x0)t .

If there exists x0 < x ′0 such that u0(x0) > u0(x ′0) then the characteristics intersect each other and
at the intersection point (t , x) one should have

u(t , x) = u0(x0) = u0(x ′0).

So we need weak solution.
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INTRODUCTION FRAMEWORK

Weak solution :

∫ ∞
0

∫
R

∂ϕ(t , x)

∂t
u(t , x)dxdt +

∫ ∞
t0

∫
R

1
2
∂ϕ(t , x)

∂x

(
u(t , x)

)2dxdt +

∫
R

u0(x)ϕ(t0, x)dx = 0 .

For the Riemann problem, u0 = −1R− + 1R+ we have two weak solutions :

1. u(t , x) =

 −1 if x + t ≤ 0 ;
+1 if x − t ≥ 0 ;
x/t otherwise.

2. ũ(t , x) = u0(x).

SCL WITH FRACTIONAL STOCHASTIC FORCING JEUDI 24 NOVEMBRE



INTRODUCTION FRAMEWORK

In the deterministic case :
I the weak solution is not unique,
I in order to discriminate the "physical" solution one have to introduce the notion of entropy

solution
I the selected solution has nice qualitative behavior :

1. discontinuities that are related with creation of shocks
2. description of the behavior in term of characteristics
3. ...

� There is a wide literature on deterministic conservation laws :
Dafermos, Evans, Hörmander, Serre, Oleı̆nik, Kruzkhov...

� In the stochastic case only few works in this area :
I Kim (Indiana 03)
I Vallet-Wittbold (IDAQPRT 09)
I Feng-Nualart (JFA 08)
I Debussche-Vovelle (JFA 10)
I E-Khanin-Mazel-Sinai (Ann. Math. 00)
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INTRODUCTION THE WORK OF E-KHANIN-MAZEL-SINAI

This article deals with the Burgers’ case (that is Ψ(u) = u2/2) :

∂t u(t , x , ω) + ∂x
(
u(t , x , ω)

)2
= ∂x Ḟ (t , x , ω) ,

with a stochastic forcing given by

F (t , x , ω) =
∞∑

k=1

Fk (x)Ḃk (t)

where (Bk )k≥1 are independent standard Wiener processes on the real line R.

They prove :
I the existence and uniqueness of the solution via a parabolic perturbation method,
I the existence and uniqueness of an invariant measure via a fundamental property of the

Brownian paths.

The Brownian noise is arbitrary small on an infinite number of arbitrary long time intervals. In other
words for all ε > 0, T > 0, for almost-all ω, there exists a sequence of random time (tn(ω))n≥1,
such that tn(ω)→ −∞ and

∀ n , sup
tn−T≤s≤tn

∑
k≥1

{
‖Fk‖C2

b (R)|Bk (s)− Bk (tn)|
}
≤ ε .
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EXISTENCE AND UNIQUENESS OF THE SOLUTION HYPOTHESES

HYPOTHESES

I The stochastic term : for any t , x , F (t , x) =
∑∞

k=1 Fk (x)Bk (t) where :
(A) there exists λ > 0 such that the sequence of processes

(
(Bk (t))t∈(−∞,∞)

)
k≥1 satisfies

Bk (·) ∈ Cλ(a, b) for any k ≥ 1, −∞ < a < b < +∞.
(B) the sequence (Fk )k≥1 is such that for any k , the function Fk belongs to C3

b (R) satisfies

‖Fk‖C3
b (R)
≤ Ck−

2+λ
λ .

I The flux :
(A) Ψ is uniformly convex : there exists θ > 0 such that Ψ′′(v) ≥ θ for all v ∈ R,
(B) super-linear growth condition : there exists k2 > k1 > 0 and two constants l1, l2 such that

l1|v |k1 ≤ Ψ(v)
|v| ≤ l2|v |k2 ,

(C) there exists L such that |Ψ′(v)− Ψ′(v ′)| ≤ L|v − v ′|,
(D) there exists a positive function R 7→ C(R) such that |Ψ∗(v)− Ψ∗(v ′)| ≤ C(R)|v − v ′| 1 whenever

max(|v |, |v ′|) ≤ R.

1. For a function f from R→ R, we denote f∗ its Legendre transform defined as f∗(q) = supp∈R
(
pq − f (p)

)
for q ∈ R
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EXISTENCE AND UNIQUENESS OF THE SOLUTION WEAK SOLUTION

WEAK SOLUTION

DEFINITION
A random field u defined on [t0,+∞)× R× Ω with real values is a weak solution of (1) with initial
condition u(t0, ·) = u0(·) ∈ L∞(R) if :

(I) For all t > t0 and x ∈ R, u(t , x , ·) is measurable with respect to
Ft0,t = σ{Bk (s), t0 ≤ s ≤ t , k ≥ 1}.

(II) Almost surely, u(·, ·, ω) ∈ L1
loc([t0,∞)× R) and u(t , ·, ω) ∈ L∞(R) for any t ≥ t0

(III) For all test function ϕ ∈ C2
c (R× R) (the set of twice differentiable functions with compact

support) the following equality holds almost-surely∫ ∞
t0

∫
R

∂ϕ(t , x)

∂t
u(t , x)dxdt +

∫ ∞
t0

∫
R

∂ϕ(t , x)

∂x
Ψ
(
u(t , x)

)
dxdt = −

∫
R

u0(x)ϕ(t0, x)dx

−
∫
R

∞∑
k=1

{
Fk (x)

∫ ∞
t0

∂2ϕ(t , x)

∂t∂x
(Bk (t)− Bk (t0))dt

}
dx . (2)
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EXISTENCE AND UNIQUENESS OF THE SOLUTION WEAK-ENTROPY SOLUTION

WEAK-ENTROPY SOLUTION

DEFINITION
We say that a random field u which is a already a weak solution of Equation (1) is an entropy-weak
solution if there exists C > 0 such that for almost-all ω ∈ Ω,

u(t , x + z, ω)− u(t , x , ω) ≤ C
(
1 + 1

t−t0

)
z (3)

for all (t , x) ∈ (t0,∞)× R and z > 0.

I The above entropy condition is the historical "condition E".
I This condition will ensure us the uniqueness of bounded weak solution.
I From (3), for t > t0 the function x 7→ u(t , x)− Cx is nonincreasing, and consequently has left

and right hand limits at each point.
I Thus also x 7→ u(t , x) has left and right hand limits at each point, with u(t , x−) ≥ u(t , x+)

(classical form of the entropy condition).
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EXISTENCE AND UNIQUENESS OF THE SOLUTION LAX-OLEĬNIK FORMULA

THEOREM
Let u0 ∈ L∞(R). There exists a unique entropy-weak solution to the stochastic scalar
conservation law (1) such that u(t0, x) = u0(x). For t ≥ t0, this solution is given by the following
Lax-Oleı̆nik type formula :

u(t , x , ω) =
∂

∂x

(
inf

ξ ∈ H1(t0, t)
ξ(t) = x

{
At0,t +

∫ ξ(t0)

0
u0(z)dz

})
, (4)

with

At0,t (ξ) =

∫ t

t0

{
Ψ∗(ξ̇(s))−

∑
k≥1
(
Bk (s)− Bk (t0)

)
F ′k (ξ(s))ξ̇(s)

}
ds

+
∑

k≥1
(
Bk (t)− Bk (t0)

)
Fk (ξ(t)) . (5)
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EXISTENCE AND UNIQUENESS OF THE SOLUTION FEW WORDS ABOUT THE PROOF

THE "STOCHASTIC" INTEGRAL

I The trajectories ω → Bk (t)(ω) are λ−Hölder continuous ;
I If the curve ξ is regular (C1(τ ,t)) then the stochastic term of the action exists as a

Riemann-Stieltjes integral∫ t

τ

∑
k≥1Fk (ξ(s))dBk (s) =−

∫ t

τ

∑
k≥1
(
Bk (s)− Bk (τ)

)
F ′k (ξ(s))ξ̇(s)ds

+
∑

k≥1
(
Bk (t)− Bk (τ)

)
Fk (ξ(t)) (6)

I If ξ(t) is fixed to be x , then the second term in the above equality is independent on ξ, hence
the action is redefined for ξ ∈ C1(τ ,t) as

Aτ,t (ξ) =

∫ t

τ
Ψ∗(ξ̇(s))ds +

∫ t

τ

∑
k≥1Fk (ξ(s))dBk (s) .
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EXISTENCE AND UNIQUENESS OF THE SOLUTION FEW WORDS ABOUT THE PROOF

LINK WITH HJB EQUATION

Formally let ϕ a test function in C2
c (R× R), thanks to an integration by parts one rewrites (2) :∫ ∞

t0

∫
R

∂ϕ(t , x)

∂t
u(t , x)dxdt +

∫ ∞
t0

∫
R

∂ϕ(t , x)

∂x
Ψ
(
u(t , x)

)
dxdt = −

∫
R

u0(x)ϕ(t0, x)dx

−
∫
R

∞∑
k=1

{
Fk (x)

∫ ∞
t0

∂2ϕ(t , x)

∂t∂x
(Bk (t)− Bk (t0))dt

}
dx

as ∫ ∞
t0

∫
R
∂tϕ(t , x)u(t , x)dxdt +

∫ ∞
t0

∫
R
∂xϕ(t , x)Ψ

(
u(t , x)

)
dxdt = −

∫
R

u0(x)ϕ(t0, x)dx

+

∫
R

∫ ∞
t0

∂tϕ(t , x)v(t , x)dtdx (7)

with

v(t , x) =
∞∑

k=1

F ′k (x)(Bk (t)− Bk (t0)) . (8)
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EXISTENCE AND UNIQUENESS OF THE SOLUTION FEW WORDS ABOUT THE PROOF

LINK WITH HJB EQUATION

Consequently,∫ ∞
t0

∫
R
∂tϕ(t , x)

[
u(t , x)− v(t , x)

]
dxdt +

∫ ∞
t0

∫
R
∂xϕ(t , x)Ψ

(
u(t , x)

)
dxdt = −

∫
R

u0(x)ϕ(t0, x)dx

with w = u + v we obtain∫ ∞
t0

∫
R
∂tϕ(t , x)w(t , x)dxdt +

∫ ∞
t0

∫
R
∂xϕ(t , x)Ψ

(
w(t , x) + v(t , x)

)
dxdt = −

∫
R

u0(x)ϕ(t0, x)dx .

Hence w is a solution of the stochastic scalar conservation law

∂t w + divx Ψ(w + v) = 0

and if we integrate with respect to the space variable x this equation, we derive the HJB equation

∂t W + Ψ(∂x W + v) = 0 .

where W is such that ∂x W = w .
This HJB is related to an optimization problem with an action involving the Legendre transform of
p 7→ Ψ(p + v). Thanks to the behavior under translation of the Legendre transformation, one have(
Ψ(·+ v)

)∗
(q) = Ψ∗(q)− vq and we obtain the action in (5).
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GENERALIZED CHARACTERISTICS EULER-LAGRANGE EQUATIONS

PROPERTIES OF THE MINIMIZERS

To simplify Ψ(v) = Ψ∗(v) = v2/2 and the noise is F (t , x) = F (x)B(t).

If γ is a minimizer of A on [t1,t2], that is

At1,t2 (γ) = inf
ξ∈Ht1,t2

x1,x2

{∫ t2

t1

(
1
2

(ξ̇(s))2 − (B(s)− B(t1))F ′(ξ(s))ξ̇(s)

)
ds

+ (B(t2)− B(t1))F (ξ(t2))

}

then we have the following properties :
I regularity : γ̇ ∈ C1(t1,t2) ;
I Euler-Lagrange equations : for t1 ≤ r ≤ s ≤ t2

γ̇(s)− γ̇(r) =

∫ s

r
F ′(γ(τ))dB(τ) . (9)
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GENERALIZED CHARACTERISTICS EULER-LAGRANGE EQUATIONS

I Bound on velocities : for t2 − t1 ≥ 1, then there exists a constant c such that

‖γ̇‖t1,t2,∞ ≤ c ‖F‖C2

{
sup

t1≤r≤r ′≤t2
|B(r)− B(r ′)|

}
(10)

I u(t , x−) = supγ γ̇(t)
I u(t , x+) = infγ γ̇(t)
I The bound (10) on velocities implies

∣∣At1,t2 (γ)
∣∣ ≤ c ‖F‖C2

{
sup

t1≤r≤r ′≤t2
|B(r)− B(r ′)|

}
(11)
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GENERALIZED CHARACTERISTICS ONE-SIDED MINIMIZERS

ONE-SIDED MINIMIZERS

DEFINITION
Let t ∈ R. A piecewise C1 curve ξ : ]−∞,t]→ R is a one-sided minimizer if

(I) for any γ ∈ H1(−∞,t) such that γ(t) = ξ(t) and γ = ξ on ]−∞,τ ] for some τ < t , it holds
that As,t (ξ) ≤ As,t (γ) for any s ≤ τ ;

(II) for any s ≤ t , |ξ(s)− ξ(t)| ≤ 1.

PROPOSITION
For every x ∈ R and t ∈ R, there exists a one-sided minimizer γ such that γ(t) = x.

PROPOSITION
Intersection of one sided minimizers :
For almost-all ω, for any distinct one-sided minimizers γ1 and γ2 on ]−∞, t1] and ]−∞, t2], if γ1
and γ2 intersect at time t in a point x, then t1 = t2 = t and γ1(t1) = γ2(t2) = x.

The above result is true if we assume that the noise has the following "silence property".
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GENERALIZED CHARACTERISTICS ONE-SIDED MINIMIZERS

"SILENCE PROPERTY"

Our noise must satisfy that it is arbitrary small on an infinite number of arbitrary long time intervals.

∀ε > 0, ∀T > 0, for almost-all ω, ∃ (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n , sup
tn−T≤s≤tn

|B(s)− B(tn)| ≤ ε .

In the Brownian case, we consider the events

An =

{
sup

−nT−T≤s≤−nT
|B(s)− B(−nT )| ≤ ε

}
.

The events An are independent and P(An) > 0 for any n. By the Borel-Cantelli lemma,

P
(
ω ∈ An for infinitely many n

)
= 1 .
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AN ASYMPTOTIC PROPERTY OF THE FBM TWO SIDED FBM

DEFINITION
A two-sided fractional Brownian motions (fBm in short) with Hurst parameter H ∈ (0,1) is a
Gaussian process (B(t))t∈R with B(0) = 0 and E(|B(t)− B(s)|2) = |t − s|2H .

Moving average representation :

B(t) =

∫
R

ft (s)dWs with

ft (s) = cH

(
(t − s)

H− 1
2

+ − (−s)
H− 1

2
+

)
.

PROPOSITION
A two-sided fractional Brownian motion satisfies the following property : ∀ε > 0, ∀T > 0, for
almost-all ω, ∃ (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n , sup
tn−T≤s≤tn

|B(s)− B(tn)| ≤ ε .
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AN ASYMPTOTIC PROPERTY OF THE FBM PROOF OF THE "SILENCE PROPERTY" OF THE FBM

PROOF

Let ε > 0 and T > 0 be fixed. Let (tn)n≥1 be a decreasing sequence of negative real numbers
such that 

limn→∞ tn = −∞ ;
tn+1 < tn − T and∑

n≥1(tn − tn+1)H−1 <∞.

We denote Ftn = σ{B(r);−∞ < r ≤ tn} and

An(ε) =

{
sup

tn−T≤t,s≤tn
|B(t)− B(s)| ≤ ε

}
.

The proof is based on the following reversed Borel-Cantelli’s lemma :

LEMMA
Let (Fn)n≥1 be a decreasing sequence of σ−fields and (An)n≥1a sequence of events such that
An ∈ Fn. Then the events∑

k≥1

1Ak <∞

 and

∑
k≥1

E
(
1Ak |Fk+1

)
<∞


are almost-surely equal.
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AN ASYMPTOTIC PROPERTY OF THE FBM PROOF OF THE "SILENCE PROPERTY" OF THE FBM

For t ≥ tn+1 we set

Bn+1(t) = E(B(t)|Ftn+1 ) and B
n+1

(t) = B(t)− Bn+1(t) .

By the gaussian property of the fBm, B
n+1

(t) is independent of Ftn+1 . We denote

Ãn(ε) =

{
sup

tn−T≤t,s≤tn

∣∣∣Bn+1(t)− Bn+1(s)
∣∣∣ ≤ ε} ,

An(ε) =

{
sup

tn−T≤t,s≤tn

∣∣∣Bn+1
(t)− B

n+1
(s)
∣∣∣ ≤ ε} .

After elementary calculus we obtain

E
(
1An(ε)|Ftn+1

)
≥ P(An(ε/4))− P((Ãn(ε/4))c)− 1

(Ãn(ε/2))c . (12)

If one has ∑
n≥1

P((Ãn(ε))c) <∞ and P(An(ε)) ≥ exp
(
−cT
εH

)
, (13)

then
∑

n≥1 E(1An(ε)|Ftn+1 ) =∞ a.s.

Using the reversed conditional Borel-Cantelli’s lemma we deduce that
∑

n≥1 1An(ε) =∞ a.s.,
which implies the expected "silence property".
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PROOF OF
∑

n≥1 P((Ãn(ε))
c) <∞

Garsia-Rodemich-Rumsey inequality : let f be a continuous function, ρ and g two continuous
stricly increasing functions on [0,∞) with ρ(0) = g(0) = 0 and limx→∞ ρ(x) =∞,

|f (t)− f (s)| ≤ 8
∫ t−s

0
ρ−1

(
4Cs,t

u2

)
dg(u)

with Cs,t =

∫ t

s

∫ t

s
ρ

(
|f (t ′)− f (s′)|
g(|t ′ − s′|)

)
ds′dt ′ .

We apply the above inequality with ρ(u) = u4 and g(u) = u :

|Bn+1(t)− Bn+1(s)| ≤ δn × |t − s|1/2 with

δn = c

∫ tn

tn−T

∫ tn

tn−T

(
|Bn+1(t ′)− Bn+1(s′)|

|t ′ − s′|

)4

ds′dt ′

1/4

.
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AN ASYMPTOTIC PROPERTY OF THE FBM PROOF OF THE "SILENCE PROPERTY" OF THE FBM

PROOF OF
∑

n≥1 P((Ãn(ε))
c) <∞

For tn − T ≤ s ≤ t ≤ tn :

Bn+1(t)− Bn+1(s) = E
[∫ tn+1

−∞
cH

{
(s − r)H− 1

2 − (t − r)H− 1
2

}
dWr

∣∣∣∣Ftn+1

]
and for p ≥ 1 we obtain

E
(
|Bn+1(t)− Bn+1(s)|2p

)
≤ c

(∫ tn+1

−∞

∣∣∣(s − r)H− 1
2 − (t − r)H− 1

2

∣∣∣2 dr
)p

≤ c
(

(t − s)(tn − tn+1)H−1
)2p

.

By the Garsia-Rodemich-Rumsey inequality there exists a random variable δn with
E(|δn|2) ≤ cT (tn − tn+1)2(H−1) and we obtain

sup
tn−T≤t,s≤tn

∣∣∣Bn+1(t)− Bn+1(s)
∣∣∣ ≤ c T 1/2 δn .

We obtain the convergence since
∑

n≥1(tn − tn+1)H−1 <∞.
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PROOF OF P(An(ε)) ≥ exp
(−cT
εH

)

Talagrand’s small ball estimate :

One needs al least Tε−H balls of radius ε under the Dudley metric

d(s, t) =
(
E|B(t)− B(s)|2

)1/2

to cover the time interval [tn − T ,tn].

Then there exists a constant c such that

logP

(
sup

tn−T≤t,s≤tn
|B(t)− B(s)| ≤ ε

)
≥ −c

T
εH
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CONSTRUCTION OF THE INVARIANT SOLUTION

We denoteMt,x the family of all one-sided minimizers with end x at time t and

u](t , x , ω) = inf
γ∈Mt,x

γ̇(t) .

Remark
If more than one one-sided minimizer comes to x at time t, there corresponds a non-trivial
segment I(x) = [γ1(t − T ),γ2(t − T )], where γ1 < γ2 on ]−∞,t] (because two different
one-sided minimizers can not intersect each other more than once).

Then the segments I(x) are mutually disjoint. Consequently, for almost-all ω, the set of x ∈ R with
more than one one-sided minimizer is coming to x at time t is at most countable.

PROPOSITION

(I) almost-surely, u](t , ·, ω) ∈ L∞(R) for any t ;

(II) almost-surely, u](t , ·, ω) ∈ D for any t ;

(III) given t, the mapping ω 7→ u](t , ·, ω) is measurable from (Ω,F) to (D,D) ;

(IV) on any finite time interval [t1,t2], for almost-all ω, (t , x) 7→ u](t , x , ω) is a weak solution of (1)
with initial data u0(x) = u](t1, x , ω).
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EXISTENCE AND UNIQUENESS OF THE INVARIANT MEASURE

I Ω = C0(R,R),
I θτ the shift operator on Ω with increment τ : θτ (ω) = ω(·+ τ)− ω(τ) for any ω ∈ Ω,
I The operator Sτω : for v ∈ L∞(R), Sτω(v) is the solution of (1) at time τ , with initial condition v

at time t0 = 0 when the realization of the noise is ω.

By construction of u],
St
ω(u](0, ·, ω)) = u](t , ·, ω).

THEOREM
On (Ω× D ; F ⊗D), the measure µ defined by

µ(dω,dv) = δu](0,·,ω)(dv) P(dω) (14)

is the unique measure that leaves invariant the transformation

Ω× D −→ Ω× D

(ω, v) −→ (θtω,St
ω(v))

with given projection P on (Ω,F).
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Merci de votre attention
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