Journees d'Analyse Non Lineaire de Besancon

November, 24-25, 2011

A Multiscale Approach to
Phase Transition Problems in Compressible Media

Christian Rohde Universität Stuttgart

Plan of the Talk

1) Phase Boundaries in Compressible Media
2) Basic Multi-Scale Method
3) Sharp-Interface Models as Micro-Scale Model
4) Diffuse-Interface Model as Micro-Scale Model
5) Summary and Outlook
6) Phase Boundaries in Compressible Media

Uniaxial Motion in Shape Memory Alloys

Experiment with NiTi: (Shaw\&Kyriakides '97)
列

Photographic sequence of stress induced transformation.

Mathematical Model:

$$
\begin{array}{r}
w_{t}-v_{x}=0 \\
v_{t}-\sigma(w)_{x}=0
\end{array}
$$

Unknowns:

$$
\begin{array}{lll}
w=w(x, t) \in(-1, \alpha) \cap(\beta, \infty) & : & \text { strain } \\
v=v(x, t) \in \mathbb{R} & : & \text { velocity }
\end{array}
$$

Stress function σ

A subsonic phase boundary, i.e., a shock wave with speed $s \in \mathbb{R}$ with end states $w_{ \pm}$from different phases, that satisfies

$$
s^{2}<\min \left\{\sigma^{\prime}\left(w_{-}\right), \sigma^{\prime}\left(w_{+}\right)\right\}
$$

is undercompressive (of degree 1).
Kinetic relation: (Abeyaratne\&Knowles '91, Truskinovsky '93)

$$
\llbracket \Sigma(w) \rrbracket-\frac{\sigma\left(w_{-}\right)+\sigma\left(w_{+}\right)}{2} \llbracket w \rrbracket=\Psi(s), \quad \Sigma^{\prime}=\sigma
$$

Note:

The driving force Ψ has to be prescribed:

$$
s \Psi(s) \geq 0 \Rightarrow 2^{\text {nd }} \text { law of thermodynamics holds. }
$$

Viscosity-Capillarity Approximation:

(Slemrod '83, Abeyaratne\&Knowles '89,Truskinovsky '82)

$$
\begin{aligned}
w_{t}^{\varepsilon}-v_{x}^{\varepsilon} & =0 \\
v_{t}^{\varepsilon}-\sigma\left(w^{\varepsilon}\right)_{x} & =\varepsilon v_{x x}^{\varepsilon}-\gamma \varepsilon^{2} w_{x x x}^{\varepsilon}, \quad \gamma>0
\end{aligned}
$$

Numerical result for $\varepsilon=0.03,0.005$.

Isothermal Liquid-Vapour Flow

$$
\begin{array}{cc}
\rho_{t}+\begin{array}{c}
\operatorname{div}(\rho \mathbf{v})
\end{array} & =0 \\
(\rho \mathbf{v})_{t}+\operatorname{div}(\rho \mathbf{v} \otimes \mathbf{v}+p(\rho) \mathcal{I}) & =0
\end{array}
$$

Unknowns:

$$
\begin{array}{lll}
\rho=\rho(\mathbf{x}, t) \in(0, \alpha) \cup(\beta, b) & : & \text { density } \\
\mathbf{v}=\mathbf{v}(\mathbf{x}, t) \in \mathbb{R}^{d} & : & \text { velocity }
\end{array}
$$

Van-der-Waals pressure

Trace conditions at phase boundary:

$$
\begin{aligned}
\llbracket \rho(\mathbf{v} \cdot \mathbf{n}-s) \rrbracket & =0 \\
\llbracket \rho(\mathbf{v} \cdot \mathbf{n}-s) \mathbf{v}+p \mathbf{n} \rrbracket & =(d-1) \sigma \kappa \mathbf{n}, \quad \text { surface tension } \sigma>0 \\
\llbracket W^{\prime}(\rho)+\frac{1}{2}(\mathbf{v} \cdot \mathbf{n}-s)^{2} \rrbracket & =\Psi(j), j:=\rho_{ \pm}\left(\mathbf{v}_{ \pm} \cdot \mathbf{n}-s\right), p^{\prime}=\rho W^{\prime \prime}
\end{aligned}
$$

Local Navier-Stokes-Korteweg Model:

(Dunn\&Serrin '85, Anderson\&McFadden\&Wheeler '98)

$$
\begin{array}{cl}
\rho_{t}^{\varepsilon}+\quad \operatorname{div}\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}\right) & =0 \\
\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}\right)_{t}+\operatorname{div}\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon} \otimes \mathbf{v}^{\varepsilon}+p\left(\rho^{\varepsilon}\right) \mathcal{I}\right) & =\varepsilon \operatorname{div}\left(\mathbf{T}^{\varepsilon}\right)+\gamma \varepsilon^{2} \rho^{\varepsilon} \nabla \Delta \rho^{\varepsilon}
\end{array}
$$

Two Bubbles:

Two Bubbles:

Scaling Obstacle

Scaled Local NSK Model: $(\varepsilon>0)$

$$
\begin{aligned}
\rho_{t}^{\varepsilon}+\operatorname{div}\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}\right) & =0 \\
\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}\right)_{t}+\operatorname{div}\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon} \otimes \mathbf{v}^{\varepsilon}+p\left(\rho^{\varepsilon}\right) \mathcal{I}\right) & =\varepsilon \operatorname{div}\left(\mathbf{T}^{\varepsilon}\right)+\gamma \varepsilon^{2} \nabla \Delta \rho^{\varepsilon}
\end{aligned}
$$

Scaling Obstacle

Scaled Local NSK Model: $(\varepsilon>0)$

$$
\begin{array}{cl}
\rho_{t}^{\varepsilon}+\quad \operatorname{div}\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}\right) & =0 \\
\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}\right)_{t}+\operatorname{div}\left(\rho^{\varepsilon} \mathbf{v}^{\varepsilon} \otimes \mathbf{v}^{\varepsilon}+p\left(\rho^{\varepsilon}\right) \mathcal{I}\right) & =\varepsilon \operatorname{div}\left(\mathbf{T}^{\varepsilon}\right)+\gamma \varepsilon^{2} \nabla \Delta \rho^{\varepsilon}
\end{array}
$$

The Scaling Obstacle:

The parameter ε controls interfacial width and surface tension
Static solution: $\quad \llbracket p(\rho) \rrbracket=\sigma(\varepsilon) \kappa, \quad \sigma=\mathcal{O}(\varepsilon)$.

This means $\varepsilon<10^{-16}$ for water system...

2) Basic Multi-Scale Method and Macro-Scale Solver

The Heterogeneous Multi-Scale Method in 1D:

(E\&Engquist '03, Kissling\&R. '10)
System of conservation laws as macro-scale model:

$$
u_{t}+f(u)_{x}=0
$$

Micro-scale model:
(SI) Exact Riemann solver for given kinetic relation
(DI) Approximation of form $u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=R[u ; \varepsilon]$ for some $\varepsilon>0$.

Prototype HMM macro time-step $T^{n} \rightarrow T^{n+1}$:

Given: $\left\{u_{j}^{n}\right\}_{j \in \mathbb{Z}}$ macro-scale approximation on macro-grid with grid size $\Delta X>0$ and front location X_{Γ}^{n}

Step 1: Solve the micro-scale model for Riemann-initial data at X_{Γ}^{n}.

SI-micro-scale model

DI-micro-scale model
on micro-scale domain with micro-grid size $\delta x>0$

Prototype HMM macro time-step $T^{n} \rightarrow T^{n+1}$:

Given: $\left\{u_{j}^{n}\right\}_{j \in \mathbb{Z}}$ macro-scale approximation on macro-grid with grid size $\Delta X>0$ and front location X_{Γ}^{n}

Step 2: Extract adjecent states of phase boundary $\bar{u}_{I / r}^{n}$ and phase boundary speed s

Step 3: Solve the macro-scale model in the two macro-scale bulk domains using extracted states at phase boundary with any (finite-volume) scheme in cells away from X_{Γ}^{n}

$$
\leadsto\left\{u_{j}^{n+1}\right\}_{j \in \mathbb{Z}} \text { and } X_{\Gamma}^{n+1}
$$

3) SI-Micro-Scale Models: Riemann Solvers

(Joint work with Ch. Chalons, F. Coquel, P. Engel)

Uniaxial Motion in Shape Memory Alloys

Macro-Scale Model:

$$
\begin{aligned}
w_{t}-v_{x} & =0 \\
v_{t}-\sigma(w)_{x} & =0
\end{aligned}
$$

Micro-Scale Model:

Exact Riemann solver using given kinetic relation in the (equivalent) form

$$
w_{ \pm}=\varphi\left(w_{\mp}\right) .
$$

Exact Riemann solvers: Abeyaratne\&Knowles '91, Shearer\&Yang '95, Hattori '98, Colombo\&Corli '99, Lefloch\&Thanh '02, Mercier\&Piccoli '02,...

Numerical experiment: (pull-motion)

Initial and boundary data:

$$
\begin{array}{rlr}
w(x, 0) & = \begin{cases}-1: x \in(-0.8,0.1) \cup(0.4,0.7) & v(-1)=0 \\
1: \text { elsewhere in }(-1,1) & \sigma(w(1))=0.5\end{cases} \\
v(., 0) & \equiv 0 \text { in }(-1,1) &
\end{array}
$$

Metallbalken (Integralplot)

Kinetic relation: $\varphi(w)=-0.5 w$.

Metallbalken (Integralplot)

Kinetic relation: $\varphi(w)=-0.75 w$.

Isothermal Liquid-Vapour Flow

Mathematical model:

$$
\begin{aligned}
\rho_{t}+(\rho v)_{x} & =0 \\
(\rho v)_{t}+\left(\rho v^{2}+p(\rho)\right)_{x} & =0
\end{aligned}
$$

Kinetic relation can be equivalenty rewritten in form

$$
\rho_{ \pm}=\varphi\left(\rho_{\mp}\right) \leadsto \text { artificial choice }
$$

An exact Riemann solution: (Merkle\&R. '08)

Numerical experiment for Riemann problem:

Density (left) and detailed view.

grid size	L^{1}-error	EOC
0.04	0.08953370	0.48
0.01	0.03562381	0.77
0.0025	0.01247926	0.83
0.000625	0.00406572	0.77
0.00015625	0.00130720	0.76
0.0000390625	0.00045315	

Limitations of the exact Riemann solver

1. Exact Riemann solvers are computationally expensive.

- More than 80 percent of computing time used for Riemann solutions

Limitations of the exact Riemann solver

1. Exact Riemann solvers are computationally expensive.

- More than 80 percent of computing time used for Riemann solutions

2. Useful exact Riemann solvers are rarely available.

- Slight change of flux has impact on Riemann structure
- Each change of kinetic relation has impact on Riemann problem

Limitations of the exact Riemann solver

1. Exact Riemann solvers are computationally expensive.

- More than 80 percent of computing time used for Riemann solutions

2. Useful exact Riemann solvers are rarely available.

- Slight change of flux has impact on Riemann structure
- Each change of kinetic relation has impact on Riemann problem

3. Theory of (analytic) kinetic relations seems to be limited.

- correct interface speed requires Atomistic2Continuum bridging

A Relaxation Solver

The original system:

$$
\begin{aligned}
w_{t}-v & v_{x} \\
v_{t}-\sigma(w)_{x} & =0
\end{aligned}
$$

Exact solution.

A Relaxation Solver

The original system:

$$
\begin{aligned}
w_{t}-v & v_{x} \\
v_{t}-\sigma(w)_{x} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Trace conditions } \\
& \text { at phase boundary } \\
& \begin{aligned}
-s \llbracket w \rrbracket & =\llbracket v \rrbracket \\
-s \llbracket v \rrbracket & =\llbracket \sigma(w) \rrbracket \\
w_{-} & =\varphi\left(w_{+}\right)
\end{aligned}
\end{aligned}
$$

Exact solution.

Relaxation approximation:

$$
\begin{aligned}
w_{t}-v_{x} & =0 \\
v_{t}-\Pi_{x} & =0 \\
\Pi_{t}-a^{2} v_{x} & =\frac{\sigma(w)-\Pi}{\delta}
\end{aligned}
$$

Trace conditions at phase boundary

$$
\begin{aligned}
-s \llbracket w \rrbracket & =\llbracket v \rrbracket \\
-s \llbracket v \rrbracket & =\llbracket \Pi \rrbracket \\
-s \llbracket \Pi \rrbracket & =\llbracket a^{2} v \rrbracket \\
w_{-} & =\varphi\left(w_{+}\right)
\end{aligned}
$$

approximate Rismann-Solution

Approximate solution.

Unaxial Motion in Shape Memory Alloys

Metallbalken (Inte gralplot)

Exact Riemann solver.

Relaxation solver.

Unaxial Motion in Shape Memory Alloys

Exact Riemann solver.

Relaxation solver.

Numerical Experiment: (Convergence and Efficiency)

Isothermal Liquid-Vapour Flow with Surface Tension

Mathematical Model:

(in spherical coordinates)

$$
\begin{aligned}
\rho_{t}+(\rho v)_{r} & =-2 \frac{\rho v}{r} \\
(\rho v)_{t}+\left(\rho v^{2}+p(\rho)\right)_{r} & =-2 \frac{\rho v^{2}}{r}
\end{aligned}
$$

Traces at interface:

$$
\begin{aligned}
\llbracket \rho(v-s) \rrbracket & =0, \\
\llbracket \rho(v-s) v+p \rrbracket & =2 \sigma \frac{1}{r}, \\
\rho_{ \pm} & =\varphi\left(\rho_{\mp}\right)
\end{aligned}
$$

Initial density, volume-weighted total mass in vapour phase

Exact Riemann solver: ??

3) DI-Micro-Scale Models:

(Joint work with A.Corli, P. Engel, A. Viorel)

Uniaxal Motion in Shape Memory Alloys

Macro-Scale Mathematical Model:

$$
\begin{align*}
w_{t}-v_{x} & =0 \\
v_{t}-\sigma(w)_{x} & =0 \tag{0}
\end{align*}
$$

Unknowns:

$$
\begin{array}{lll}
w=w(x, t) \in(-1, \alpha) \cup(\beta, \infty) & : & \text { strain } \\
v=v(x, t) \in \mathbb{R} & : & \text { velocity }
\end{array}
$$

Stress function σ

Micro-Scale Mathematical Model:

$$
\begin{align*}
w_{t}^{\varepsilon}-v_{x}^{\varepsilon} & =0 \\
v_{t}^{\varepsilon}-\sigma\left(w^{\varepsilon}\right)_{x} & =\varepsilon v_{x x}^{\varepsilon}-\gamma \varepsilon^{2} w_{x x x}^{\varepsilon}
\end{align*}
$$

Performance for DI-Micro-Scale Model

Test: Pull Motion in Shape Memory Alloys

$$
\begin{aligned}
& \text { Parameters: } \\
& \varepsilon=10^{-5}, \gamma=1 \text {, } \\
& \delta t=\Delta t / 10
\end{aligned}
$$

\boldsymbol{T}	HMM		micro-scale model	
	N_{T}	cpu-time	n_{t}	cpu-time
$1,98 \cdot 10^{-4}$	1	57 s	4594	$3,3 \cdot 10^{5}$ sec. ≈ 4 days
0,1	505	7 h	2321053	$1,7 \cdot 10^{8} \mathrm{sec} . \approx 5$ years
0,5	2526	34 h	11605263	$8,4 \cdot 10^{8} \mathrm{sec} . \approx 25$ years

Limitation of DI-Micro-Scale Models

Test: Two-Phase Flow with Overshoot-Front:

		CPU-time
$2 D$	Standard Finite-Volume Scheme	38 s
	HMM with SI-micro solver	66 s
	HMM with DI-micro solver	24.7 h
DI-micro solver over one edge	2.6 s	

Need for fast micro-scale solvers!

A Lower-Order Approximation

Micro-Scale Viscosity-Capillarity System:

$$
\begin{align*}
& w_{t}^{\varepsilon}-v_{x}^{\varepsilon}=0 \\
& v_{t}^{\varepsilon}-\sigma\left(w^{\varepsilon}\right)_{x}=\varepsilon v_{x x}^{\varepsilon}-\gamma \varepsilon^{2} w_{x x x}^{\varepsilon}
\end{align*}
$$

Lower-Order Approximation for $\left(P_{\varepsilon}\right)$:

A Lower-Order Approximation

Micro-Scale Viscosity-Capillarity System:

$$
\begin{align*}
w_{t}^{\varepsilon}-v_{x}^{\varepsilon} & =0 \\
v_{t}^{\varepsilon}-\sigma\left(w^{\varepsilon}\right)_{x} & =\varepsilon v_{x x}^{\varepsilon}-\gamma \varepsilon^{2} w_{x x x}^{\varepsilon}
\end{align*}
$$

Lower-Order Approximation for $\left(P_{\varepsilon}\right)$:

$$
\begin{aligned}
w_{t}^{\varepsilon, \alpha}-v_{x}^{\varepsilon, \alpha} & =0 \\
v_{t}^{\varepsilon, \alpha}-\sigma\left(w^{\varepsilon, \alpha}\right)_{x} & =\varepsilon v_{x x}^{\varepsilon, \alpha}-\gamma \alpha\left(\lambda^{\varepsilon, \alpha}-w^{\varepsilon, \alpha}\right)_{x}\left(P_{\varepsilon, \alpha}\right) \\
-\varepsilon^{2} \lambda_{x x}^{\varepsilon, \alpha} & =\alpha\left(w^{\varepsilon, \alpha}-\lambda^{\varepsilon, \alpha}\right)
\end{aligned}
$$

Recover $\left(P_{\varepsilon}\right)$ in the limit $\alpha \rightarrow \infty$.

Theorem: (Corli\&R.\&Viorel '10)
For $\varepsilon>0$ let $\left\{\left(w^{\varepsilon, \alpha}, v^{\varepsilon, \alpha}, \lambda^{\varepsilon, \alpha}\right)\right\}_{\alpha>0}$ be a family of solutions for $\left(P_{\varepsilon, \alpha}\right)$. It satisfies

$$
\frac{d}{d t} \int_{\mathbb{R}}\left(\Sigma\left(w^{\varepsilon, \alpha}\right)+\frac{\alpha}{2}\left(w^{\varepsilon, \alpha}-\lambda^{\varepsilon, \alpha}\right)^{2}+\gamma \varepsilon^{2} \frac{\left(\lambda_{x}^{\varepsilon, \alpha}\right)^{2}}{2}+\frac{\left(v^{\varepsilon, \alpha}\right)^{2}}{2}\right) d x \leq 0 .
$$

If σ is globally Lipschitz there are functions $w^{\varepsilon}, v^{\varepsilon} \in L_{l o c}^{2}(\mathbb{R} \times(0, \infty))$ such that for a subsequence

$$
w^{\varepsilon, \alpha} \rightarrow w^{\varepsilon}, v^{\varepsilon, \alpha} \rightarrow v^{\varepsilon}, \lambda^{\varepsilon, \alpha} \rightarrow w^{\varepsilon} \text { in } L_{l o c}^{p}(\mathbb{R} \times(0, \infty)), p \in[1,2)
$$

holds. The function $\left(w^{\varepsilon}, v^{\varepsilon}\right)$ is a weak solution of $\left(P_{\varepsilon}\right)$.
Note: For the static case refer to Brandon\&Li\&Rogers '95, Solci '03.

Back to Pull-Motion:

Viscosity-capillarity system

$$
\alpha=\infty, \varepsilon=5 \cdot 10^{-4} .
$$

Computing time:

α	∞	1	10	10^{2}	10^{3}
time	10.4	2.9	3.5	4.9	14.0

Metallbalken (Integralplot)

Lower-order approximation

$$
\alpha=1, \varepsilon=5 \cdot 10^{-4}
$$

Numerical advantages of lower-order approximation:

$$
\begin{aligned}
w_{t}^{\varepsilon, \alpha}-v_{x}^{\varepsilon, \alpha} & =0 \\
v_{t}^{\varepsilon, \alpha}-\underbrace{\left(\sigma\left(w^{\varepsilon, \alpha}\right)+\alpha \gamma w^{\varepsilon, \alpha}\right)_{x}}_{=: \tilde{\sigma}\left(w^{\varepsilon, \alpha}\right)_{x}} & =\varepsilon v_{x x}^{\varepsilon, \alpha}-\gamma \alpha c_{x}^{\varepsilon, \alpha} \quad\left(P_{\varepsilon, \alpha}\right) \\
-\varepsilon^{2} c_{x X}^{\varepsilon, \alpha} & =\alpha\left(w^{\varepsilon, \alpha}-c^{\varepsilon, \alpha}\right)
\end{aligned}
$$

1) Eigenvalues (of first-order operator):

$$
\lambda_{\mp}(w, v)=\mp \sqrt{\tilde{\sigma}^{\prime}(w)} \text { real for } \alpha \gg 1 .
$$

Numerical advantages of lower-order approximation:

$$
\begin{aligned}
w_{t}^{\varepsilon, \alpha}-\quad v_{x}^{\varepsilon, \alpha} & =0 \\
v_{t}^{\varepsilon, \alpha}-\underbrace{\left(\sigma\left(w^{\varepsilon, \alpha}\right)+\alpha \gamma w^{\varepsilon, \alpha}\right)_{x}}_{=: \tilde{\sigma}\left(w^{\varepsilon, \alpha}\right)_{x}} & =\varepsilon v_{x x}^{\varepsilon, \alpha}-\gamma \alpha c_{x}^{\varepsilon, \alpha}\left(P_{\varepsilon, \alpha}\right) \\
-\varepsilon^{2} c_{x x}^{\varepsilon, \alpha} & =\alpha\left(w^{\varepsilon, \alpha}-c^{\varepsilon, \alpha}\right)
\end{aligned}
$$

1) Eigenvalues (of first-order operator):

$$
\lambda_{\mp}(w, v)=\mp \sqrt{\tilde{\sigma}^{\prime}(w)} \text { real for } \alpha \gg 1 .
$$

2) Time-step control: An explicit scheme for $\left(P_{\varepsilon, \alpha}\right)$ requires

$$
\delta t \approx C \delta x^{2}
$$

but not as for the third-order problem $\left(P_{\varepsilon}\right)$ like

$$
\delta t \approx C \delta x^{3} .
$$

5) Summary and Outlook:

- Two-scale approach seems to be mandatory for computation of dynamics phase boundaries.
- Increase of efficiency for micro-model solver is the key issue.
- Modelling and numerical ideas are needed for increasing efficiency.
- Modelling perspectives: A2C-bridging, Dafermos regularization,...
- Numerical perspectives: hp-adaptivity, local time stepping, kernel-based learning and and reduced-basis methods,...
- (Almost) no convergence analysis due to lack of theory.

SFB-TRR 75
Troplendynamische Prozesse unter
extremen Umgebungsbedingungen

