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1) Phase Boundaries in Compressible Media
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Uniaxial Motion in Shape Memory Alloys

Experiment with NiTi: (Shaw&Kyriakides ’97)

Photographic sequence of stress induced transformation.

Mathematical Model:

wt − vx = 0
vt − σ(w)x = 0

Unknowns:
w = w(x , t) ∈ (−1, α) ∩ (β,∞) : strain
v = v(x , t) ∈ R : velocity Stress function σ
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A subsonic phase boundary, i.e., a shock wave with speed s ∈ R with
end states w± from different phases, that satisfies

s2 < min{σ′(w−), σ′(w+)},

is undercompressive (of degree 1).

Kinetic relation: (Abeyaratne&Knowles ’91, Truskinovsky ’93)

JΣ(w)K− σ(w−) + σ(w+)

2
JwK = Ψ(s), Σ′ = σ

Note:
The driving force Ψ has to be prescribed:

sΨ(s) ≥ 0⇒ 2nd law of thermodynamics holds.
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Viscosity-Capillarity Approximation:
(Slemrod ’83, Abeyaratne&Knowles ’89,Truskinovsky ’82)

w ε
t − v εx = 0

v εt − σ(w ε)x = εv εxx − γε2w ε
xxx , γ > 0

Numerical result for ε = 0.03, 0.005.
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Isothermal Liquid-Vapour Flow

ρt + div(ρv) = 0
(ρv)t + div(ρv ⊗ v + p(ρ)I) = 0

Unknowns:
ρ = ρ(x, t) ∈ (0, α) ∪ (β, b) : density
v = v(x, t) ∈ Rd : velocity

ρ

β b
α

Van-der-Waals pressure

Trace conditions at phase boundary:

Jρ(v · n− s)K = 0,

Jρ(v · n− s)v + pnK = (d − 1)σκn, surface tension σ > 0
s
W ′(ρ) +

1

2
(v · n− s)2

{
= Ψ(j), j := ρ±(v± · n− s), p′ = ρW ′′.
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Local Navier-Stokes-Korteweg Model:
(Dunn&Serrin ’85, Anderson&McFadden&Wheeler ’98)

ρεt + div(ρεvε) = 0

(ρεvε)t + div(ρεvε ⊗ vε + p(ρε)I) = εdiv(Tε) + γε2ρε∇∆ρε
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Two Bubbles:
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Two Bubbles:
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Scaling Obstacle

Scaled Local NSK Model: (ε > 0)

ρεt + div(ρεvε) = 0

(ρεvε)t + div(ρεvε ⊗ vε + p(ρε)I) = εdiv(Tε) + γε2∇∆ρε

The Scaling Obstacle:
The parameter ε controls interfacial width and surface tension

Static solution: Jp(ρ)K = σ(ε)κ, σ = O(ε).

This means ε < 10−16 for water system...
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2) Basic Multi-Scale Method and

Macro-Scale Solver
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The Heterogeneous Multi-Scale Method in 1D:
(E&Engquist ’03, Kissling&R. ’10)

System of conservation laws as macro-scale model:

ut + f (u)x = 0

Micro-scale model:

(SI ) Exact Riemann solver for given kinetic relation

(DI ) Approximation of form uεt + f (uε)x = R[u; ε] for some ε > 0.
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Prototype HMM macro time-step T n → T n+1:
Given: {un

j }j∈Z macro-scale approximation on macro-grid with grid size
∆X > 0 and front location X n

Γ

Step 1: Solve the micro-scale model for Riemann-initial data at X n
Γ .

SI-micro-scale model DI-micro-scale model
on micro-scale domain with

micro-grid size δx > 0
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Prototype HMM macro time-step T n → T n+1:
Given: {un

j }j∈Z macro-scale approximation on macro-grid with grid size
∆X > 0 and front location X n

Γ

Step 2: Extract adjecent states of phase boundary ūn
l/r

and phase boundary speed s

Step 3: Solve the macro-scale model in the two macro-scale bulk
domains using extracted states at phase boundary with
any (finite-volume) scheme in cells away from X n

Γ

; {un+1
j }j∈Z and X n+1

Γ
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3) SI-Micro-Scale Models:

Riemann Solvers

(Joint work with Ch. Chalons, F. Coquel, P. Engel)

November 25, 2011 15



Uniaxial Motion in Shape Memory Alloys

Macro-Scale Model:

wt − vx = 0
vt − σ(w)x = 0

Micro-Scale Model:
Exact Riemann solver using given kinetic relation in the (equivalent) form

w± = ϕ(w∓).

Exact Riemann solvers: Abeyaratne&Knowles ’91, Shearer&Yang ’95,
Hattori ’98, Colombo&Corli ’99, Lefloch&Thanh ’02, Mercier&Piccoli
’02,...
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Numerical experiment: (pull-motion)

Initial and boundary data:

w(x , 0) =

{
−1 : x ∈ (−0.8, 0.1) ∪ (0.4, 0.7)

1 : elsewhere in (−1, 1)
v(−1) = 0,

σ(w(1)) = 0.5
v(., 0)≡0 in (−1, 1)

Kinetic relation: ϕ(w) = −0.5w . Kinetic relation: ϕ(w) = −0.75w .
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Isothermal Liquid-Vapour Flow

Mathematical model:

ρt + (ρv)x = 0
(ρv)t + (ρv2 + p(ρ))x = 0

Kinetic relation can be equivalenty rewritten in form

ρ± = ϕ(ρ∓) ; artificial choice

An exact Riemann solution: (Merkle&R. ’08)
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Numerical experiment for Riemann problem:

h = 0.005
h = 0.0025
h = 0.00125
h = 0.000625

numerical solutions

exact solution

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Density (left) and detailed view.

grid size L1–error EOC

0.04 0.08953370
0.01 0.03562381

0.48

0.0025 0.01247926
0.77

0.000625 0.00406572
0.83

0.00015625 0.00130720
0.77

0.0000390625 0.00045315
0.76

L1–error and EOC rate for subsequent refinement levels of the grid.November 25, 2011 19



Limitations of the exact Riemann solver

1. Exact Riemann solvers are computationally expensive.
• More than 80 percent of computing time used for Riemann solutions

2. Useful exact Riemann solvers are rarely available.
• Slight change of flux has impact on Riemann structure
• Each change of kinetic relation has impact on Riemann problem

3. Theory of (analytic) kinetic relations seems to be limited.
• correct interface speed requires Atomistic2Continuum bridging
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A Relaxation Solver

The original system:

wt − vx = 0
vt − σ(w)x = 0

Trace conditions
at phase boundary

−sJwK = JvK
−sJvK = Jσ(w)K

w− = ϕ(w+)

Exact solution.

Relaxation approximation:

wt − vx = 0
vt − Πx = 0

Πt − a2vx = σ(w)−Π
δ

Trace conditions at
phase boundary

−sJwK = JvK
−sJvK = JΠK
−sJΠK = Ja2vK

w− = ϕ(w+)
Approximate solution.
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Unaxial Motion in Shape Memory Alloys

Exact Riemann solver. Relaxation solver.

Numerical Experiment: (Convergence and Efficiency)

Initial stress. Error versus runtime.
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Isothermal Liquid-Vapour Flow with Surface Tension

Mathematical Model:
(in spherical coordinates)

ρt + (ρv)r = −2
ρv

r

(ρv)t + (ρv2 + p(ρ))r = −2
ρv2

r

Traces at interface:

Jρ(v − s)K = 0,

Jρ(v − s)v + pK = 2σ 1
r ,

ρ± = ϕ(ρ∓)

Exact Riemann solver: ??

Initial density,

volume-weighted total mass

in vapour phase
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3) DI-Micro-Scale Models:

(Joint work with A.Corli, P. Engel, A. Viorel)
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Uniaxal Motion in Shape Memory Alloys

Macro-Scale Mathematical Model:

wt − vx = 0
vt − σ(w)x = 0

(P0)

Unknowns:
w = w(x , t) ∈ (−1, α) ∪ (β,∞) : strain
v = v(x , t) ∈ R : velocity

Stress function σ

Micro-Scale Mathematical Model:

w ε
t − v εx = 0

v εt − σ(w ε)x = εv εxx − γε2w ε
xxx

(Pε)
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Performance for DI-Micro-Scale Model

Test: Pull Motion in Shape Memory Alloys

Parameters:
ε = 10−5, γ = 1,
δt = ∆t/10

T
HMM micro-scale model

NT cpu-time nt cpu-time

1, 98 · 10−4 1 57 s 4 594 3, 3 · 105 sec. ≈ 4 days
0, 1 505 7 h 2 321 053 1, 7 · 108 sec. ≈ 5 years
0, 5 2 526 34 h 11 605 263 8, 4 · 108 sec. ≈ 25 years

November 25, 2011 26



Limitation of DI-Micro-Scale Models

Test: Two-Phase Flow with Overshoot-Front:

CPU-time

2D

Standard Finite-Volume Scheme 38s
HMM with SI-micro solver

66s
HMM with DI-micro solver 24.7h

DI-micro solver
2.6s

over one edge

Need for fast micro-scale solvers!
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A Lower-Order Approximation

Micro-Scale Viscosity-Capillarity System:

w ε
t − v εx = 0

v εt − σ(w ε)x = εv εxx − γε2w ε
xxx

(Pε)

Lower-Order Approximation for (Pε):

w ε,α
t − v ε,αx = 0

v ε,αt − σ(w ε,α)x = εv ε,αxx − γα(λε,α − w ε,α)x

−ε2λε,αxx = α(w ε,α − λε,α)

(Pε,α)

Recover (Pε) in the limit α→∞.
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Theorem: (Corli&R.&Viorel ’10)
For ε > 0 let {(w ε,α, v ε,α, λε,α)}α>0 be a family of solutions for (Pε,α).
It satisfies

d

dt

∫
R

(
Σ(w ε,α) +

α

2
(w ε,α − λε,α)2 + γε2 (λε,αx )2

2
+

(v ε,α)2

2

)
dx ≤ 0.

If σ is globally Lipschitz there are functions w ε, v ε ∈ L2
loc(R× (0,∞))

such that for a subsequence

w ε,α→w ε, v ε,α → v ε, λε,α → w ε in Lp
loc(R× (0,∞)), p ∈ [1, 2) .

holds. The function (w ε, v ε) is a weak solution of (Pε).

Note: For the static case refer to Brandon&Li&Rogers ‘95, Solci ’03.
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Back to Pull-Motion:

Viscosity-capillarity system

α =∞, ε = 5 · 10−4.

Lower-order approximation

α = 1, ε = 5 · 10−4

Computing time:

α ∞ 1 10 102 103

time 10.4 2.9 3.5 4.9 14.0

Lower-order approximation.
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Numerical advantages of lower-order approximation:

w ε,α
t − v ε,αx = 0

v ε,αt − (σ(w ε,α) + αγw ε,α)x︸ ︷︷ ︸
=:σ̃(wε,α)x

= εv ε,αxx − γαcε,αx

−ε2cε,αxx = α(w ε,α − cε,α)

(Pε,α)

1) Eigenvalues (of first-order operator):

λ∓(w , v) = ∓
√
σ̃′(w) real for α >> 1.

2) Time-step control: An explicit scheme for (Pε,α) requires

δt ≈ Cδx2,

but not as for the third-order problem (Pε) like

δt ≈ Cδx3.
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5) Summary and Outlook:

Two-scale approach seems to be mandatory for computation of
dynamics phase boundaries.

Increase of efficiency for micro-model solver is the key issue.

Modelling and numerical ideas are needed for increasing efficiency.

Modelling perspectives: A2C-bridging, Dafermos regularization,...

Numerical perspectives: hp-adaptivity, local time stepping,
kernel-based learning and and reduced-basis methods,...

(Almost) no convergence analysis due to lack of theory.
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