Journees d'Analyse Non Lineaire de Besancon November, 24-25, 2011

A Multiscale Approach to Phase Transition Problems in Compressible Media

Christian Rohde Universität Stuttgart

Plan of the Talk

- 1) Phase Boundaries in Compressible Media
- 2) Basic Multi-Scale Method
- 3) Sharp-Interface Models as Micro-Scale Model
- 4) Diffuse-Interface Model as Micro-Scale Model
- 5) Summary and Outlook

1) Phase Boundaries in Compressible Media

Uniaxial Motion in Shape Memory Alloys

Experiment with NiTi: (Shaw&Kyriakides '97)

Photographic sequence of stress induced transformation.

Mathematical Model:

$$w_t - v_x = 0 v_t - \sigma(w)_x = 0$$

Unknowns:

$$w = w(x, t) \in (-1, \alpha) \cap (\beta, \infty)$$
 : strain
 $v = v(x, t) \in \mathbb{R}$: velocity

A subsonic phase boundary, i.e., a shock wave with speed $s \in \mathbb{R}$ with end states w_{\pm} from different phases, that satisfies

$$s^2 < \min\{\sigma'(w_-), \sigma'(w_+)\},$$

is undercompressive (of degree 1).

Kinetic relation: (Abeyaratne&Knowles '91, Truskinovsky '93)

$$\llbracket \Sigma(w) \rrbracket - \frac{\sigma(w_{-}) + \sigma(w_{+})}{2} \llbracket w \rrbracket = \Psi(s), \qquad \Sigma' = \sigma$$

Note:

The **driving force** Ψ has to be prescribed:

 $s\Psi(s) \ge 0 \Rightarrow 2^{nd}$ law of thermodynamics holds.

Viscosity-Capillarity Approximation:

(Slemrod '83, Abeyaratne&Knowles '89, Truskinovsky '82)

$$\begin{array}{l} w_t^{\varepsilon} - v_x^{\varepsilon} &= 0 \\ v_t^{\varepsilon} - \sigma (w^{\varepsilon})_x &= \varepsilon v_{xx}^{\varepsilon} - \gamma \varepsilon^2 w_{xxx}^{\varepsilon}, \quad \gamma > 0 \end{array}$$

Numerical result for $\varepsilon = 0.03, 0.005$.

Isothermal Liquid-Vapour Flow

$$\rho_{t} + \operatorname{div}(\rho \mathbf{v}) = 0$$

$$(\rho \mathbf{v})_{t} + \operatorname{div}(\rho \mathbf{v} \otimes \mathbf{v} + \rho(\rho)\mathcal{I}) = 0$$
Unknowns:
$$\rho = \rho(\mathbf{x}, t) \in (0, \alpha) \cup (\beta, b) \quad : \text{ density}$$

$$\mathbf{v} = \mathbf{v}(\mathbf{x}, t) \in \mathbb{R}^{d} \quad : \text{ velocity}$$
Van-der-Waals pressure

Trace conditions at phase boundary:

$$\begin{split} \llbracket \rho(\mathbf{v} \cdot \mathbf{n} - s) \rrbracket &= 0, \\ \llbracket \rho(\mathbf{v} \cdot \mathbf{n} - s) \mathbf{v} + p \mathbf{n} \rrbracket &= (d - 1) \sigma \kappa \mathbf{n}, \quad \text{surface tension } \sigma > 0 \\ \llbracket W'(\rho) + \frac{1}{2} (\mathbf{v} \cdot \mathbf{n} - s)^2 \rrbracket &= \Psi(j), \, j := \rho_{\pm} (\mathbf{v}_{\pm} \cdot \mathbf{n} - s), \, p' = \rho W''. \end{split}$$

Local Navier-Stokes-Korteweg Model: (Dunn&Serrin '85, Anderson&McFadden&Wheeler '98)

$$\begin{split} \rho_t^{\varepsilon} &+ \operatorname{div}(\rho^{\varepsilon}\mathbf{v}^{\varepsilon}) &= 0\\ (\rho^{\varepsilon}\mathbf{v}^{\varepsilon})_t &+ \operatorname{div}(\rho^{\varepsilon}\mathbf{v}^{\varepsilon}\otimes\mathbf{v}^{\varepsilon} + p(\rho^{\varepsilon})\mathcal{I}) &= \varepsilon \operatorname{div}(\mathbf{T}^{\varepsilon}) + \gamma \varepsilon^2 \rho^{\varepsilon} \nabla \Delta \rho^{\varepsilon} \end{split}$$

Two Bubbles:

Two Bubbles:

Scaling Obstacle

Scaled Local NSK Model: ($\varepsilon > 0$)

$$\begin{split} \rho_t^{\varepsilon} + & \operatorname{div}(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}) &= 0\\ (\rho^{\varepsilon} \mathbf{v}^{\varepsilon})_t + & \operatorname{div}(\rho^{\varepsilon} \mathbf{v}^{\varepsilon} \otimes \mathbf{v}^{\varepsilon} + p(\rho^{\varepsilon})\mathcal{I}) &= \varepsilon \operatorname{div}(\mathbf{T}^{\varepsilon}) + \gamma \varepsilon^2 \nabla \Delta \rho^{\varepsilon} \end{split}$$

Scaling Obstacle

Scaled Local NSK Model: ($\varepsilon > 0$)

$$\begin{split} \rho_t^{\varepsilon} &+ \operatorname{div}(\rho^{\varepsilon}\mathbf{v}^{\varepsilon}) &= 0\\ (\rho^{\varepsilon}\mathbf{v}^{\varepsilon})_t &+ \operatorname{div}(\rho^{\varepsilon}\mathbf{v}^{\varepsilon}\otimes\mathbf{v}^{\varepsilon} + p(\rho^{\varepsilon})\mathcal{I}) &= \varepsilon \operatorname{div}(\mathbf{T}^{\varepsilon}) + \gamma \varepsilon^2 \nabla \Delta \rho^{\varepsilon} \end{split}$$

The Scaling Obstacle:

The parameter ε controls interfacial width and surface tension

Static solution:
$$\llbracket p(\rho) \rrbracket = \sigma(\varepsilon)\kappa, \quad \sigma = \mathcal{O}(\varepsilon).$$

This means $\varepsilon < 10^{-16}$ for water system...

2) Basic Multi-Scale Method and Macro-Scale Solver

The Heterogeneous Multi-Scale Method in 1D: (E&Engquist '03, Kissling&R. '10)

System of conservation laws as macro-scale model:

$$u_t + f(u)_x = 0$$

Micro-scale model:

(SI) Exact Riemann solver for given kinetic relation

(DI) Approximation of form $u_t^{\varepsilon} + f(u^{\varepsilon})_{\chi} = R[u; \varepsilon]$ for some $\varepsilon > 0$.

Prototype HMM macro time-step $T^n \to T^{n+1}$: Given: $\{u_j^n\}_{j \in \mathbb{Z}}$ macro-scale approximation on macro-grid with grid size $\Delta X > 0$ and front location X_{Γ}^n

Step 1: Solve the micro-scale model for Riemann-initial data at X_{Γ}^{n} .

Prototype HMM macro time-step $T^n \to T^{n+1}$: Given: $\{u_j^n\}_{j \in \mathbb{Z}}$ macro-scale approximation on macro-grid with grid size $\Delta X > 0$ and front location X_{Γ}^n

- **Step 2:** Extract adjecent states of phase boundary $\bar{u}_{l/r}^n$ and phase boundary speed *s*
- **Step 3:** Solve the macro-scale model in the two macro-scale bulk domains using extracted states at phase boundary with any (finite-volume) scheme in cells away from X_{Γ}^{n}

$$\rightsquigarrow \{u_j^{n+1}\}_{j\in\mathbb{Z}}$$
 and X_{Γ}^{n+1}

3) SI-Micro-Scale Models: Riemann Solvers

(Joint work with Ch. Chalons, F. Coquel, P. Engel)

Uniaxial Motion in Shape Memory Alloys

Macro-Scale Model:

$$w_t - v_x = 0$$

$$v_t - \sigma(w)_x = 0$$

Micro-Scale Model:

Exact Riemann solver using given kinetic relation in the (equivalent) form

$$w_{\pm}=arphi(w_{\mp}).$$

Exact Riemann solvers: Abeyaratne&Knowles '91, Shearer&Yang '95, Hattori '98, Colombo&Corli '99, **Lefloch&Thanh '02**, Mercier&Piccoli '02,...

Numerical experiment: (pull-motion)

Initial and boundary data:

$$w(x,0) = \begin{cases} -1: x \in (-0.8, 0.1) \cup (0.4, 0.7) & v(-1) = 0, \\ 1: \text{elsewhere in } (-1,1) & \sigma(w(1)) = 0.5 \\ v(.,0) \equiv 0 \text{ in } (-1,1) \end{cases}$$

Kinetic relation: $\varphi(w) = -0.5w$.

Kinetic relation: $\varphi(w) = -0.75w$.

Isothermal Liquid-Vapour Flow

Mathematical model:

$$\rho_t + (\rho v)_x = 0 (\rho v)_t + (\rho v^2 + p(\rho))_x = 0$$

Kinetic relation can be equivalenty rewritten in form

 $ho_{\pm}=arphi(
ho_{\mp}) \rightsquigarrow$ artificial choice

An exact Riemann solution: (Merkle&R. '08)

Numerical experiment for Riemann problem:

Density (left) and detailed view.

grid size	L ¹ -error	EOC
0.04	0.08953370	0.49
0.01	0.03562381	0.40
0.0025	0.01247926	0.77
0.000625	0.00406572	0.03
0.00015625	0.00130720	0.77
0.0000390625	0.00045315	0.70

1. Exact Riemann solvers are computationally expensive.

• More than 80 percent of computing time used for Riemann solutions

- 1. Exact Riemann solvers are computationally expensive.
 - More than 80 percent of computing time used for Riemann solutions
- 2. Useful exact Riemann solvers are rarely available.
 - Slight change of flux has impact on Riemann structure
 - Each change of kinetic relation has impact on Riemann problem

- 1. Exact Riemann solvers are computationally expensive.
 - More than 80 percent of computing time used for Riemann solutions
- 2. Useful exact Riemann solvers are rarely available.
 - Slight change of flux has impact on Riemann structure
 - Each change of kinetic relation has impact on Riemann problem
- 3. Theory of (analytic) kinetic relations seems to be limited.
 - correct interface speed requires Atomistic2Continuum bridging

A Relaxation Solver

The original system:

$$w_t - v_x = 0$$

$$v_t - \sigma(w)_x = 0$$

Trace conditions at phase boundary -s[w] = [v] $-s[v] = [\sigma(w)]$ $w_{-} = \varphi(w_{+})$

Exact solution.

A Relaxation Solver

The original system:

$$w_t - v_x = 0$$

$$v_t - \sigma(w)_x = 0$$

Trace conditions
at phase boundary
$$-s[w] = [v]$$

 $-s[v] = [\sigma(w)]$
 $w_{-} = \varphi(w_{+})$

Exact solution.

Relaxation approximation:

$$w_t - v_x = 0$$

$$v_t - \Pi_x = 0$$

$$\Pi_t - a^2 v_x = \frac{\sigma(w) - \Pi}{\delta}$$

Trace conditions at
phase boundary
$$-s[w] = [v]$$

 $-s[v] = [\Pi]$
 $-s[\Pi] = [a^2v]$
 $w_- = \varphi(w_+)$

Approximate solution.

Unaxial Motion in Shape Memory Alloys

Exact Riemann solver.

Relaxation solver.

Unaxial Motion in Shape Memory Alloys

Exact Riemann solver.

Relaxation solver.

Numerical Experiment: (Convergence and Efficiency)

Isothermal Liquid-Vapour Flow with Surface Tension

Mathematical Model:

(in spherical coordinates)

$$\rho_t + (\rho v)_r = -2\frac{\rho v}{r}$$
$$(\rho v)_t + (\rho v^2 + p(\rho))_r = -2\frac{\rho v^2}{r}$$

Traces at interface:

$$\begin{split} \llbracket \rho(\mathbf{v} - \mathbf{s}) \rrbracket &= 0, \\ \llbracket \rho(\mathbf{v} - \mathbf{s}) \mathbf{v} + \mathbf{p} \rrbracket &= 2\sigma \frac{1}{r}, \\ \rho_{\pm} &= \varphi(\rho_{\mp}) \end{split}$$

Exact Riemann solver: ??

Initial density, volume-weighted total mass in vapour phase

3) DI-Micro-Scale Models:

(Joint work with A.Corli, P. Engel, A. Viorel)

Uniaxal Motion in Shape Memory Alloys

Macro-Scale Mathematical Model:

$$w_t - v_x = 0$$

$$v_t - \sigma(w)_x = 0$$
(P₀)
Unknowns:
$$w = w(x, t) \in (-1, \alpha) \cup (\beta, \infty) \quad : \text{ strain}$$

$$v = v(x, t) \in \mathbb{R} \quad : \text{ velocity}$$
Stress function σ

Micro-Scale Mathematical Model:

Performance for DI-Micro-Scale Model

Test: Pull Motion in Shape Memory Alloys

Parameters: $\varepsilon = 10^{-5}, \ \gamma = 1, \\ \delta t = \Delta t / 10$

т	HMM		micro-scale model		
•	NT	cpu-time	n _t	cpu-time	
$1,98 \cdot 10^{-4}$	1	57 s	4 594	$3,3\cdot 10^5$ sec. $pprox$ 4 days	
0,1	505	7 h	2 321 053	$1,7\cdot 10^8$ sec. $pprox 5$ years	
0, 5	2 5 2 6	34 h	11 605 263	$8,4\cdot 10^8$ sec. $pprox 25$ years	

Limitation of DI-Micro-Scale Models

Test: Two-Phase Flow with Overshoot-Front:

		CPU-time
2D	Standard Finite-Volume Scheme	38 <i>s</i>
	HMM with SI-micro solver	66 <i>s</i>
	HMM with DI-micro solver	24.7 <i>h</i>
	DI-micro solver	2.65
	over one edge	2.05

Need for fast micro-scale solvers!

A Lower-Order Approximation

Micro-Scale Viscosity-Capillarity System:

Lower-Order Approximation for (P_{ε}) :

A Lower-Order Approximation

Micro-Scale Viscosity-Capillarity System:

$$\begin{array}{ll} w_t^{\varepsilon} - v_x^{\varepsilon} &= 0 \\ v_t^{\varepsilon} - \sigma(w^{\varepsilon})_x &= \varepsilon v_{xx}^{\varepsilon} - \gamma \varepsilon^2 w_{xxx}^{\varepsilon} \end{array} \tag{P_{ε}}$$

Lower-Order Approximation for (P_{ε}) :

$$\begin{split} w_t^{\varepsilon,\alpha} &- v_x^{\varepsilon,\alpha} &= 0\\ v_t^{\varepsilon,\alpha} &- \sigma(w^{\varepsilon,\alpha})_x &= \varepsilon v_{xx}^{\varepsilon,\alpha} - \gamma \alpha (\lambda^{\varepsilon,\alpha} - w^{\varepsilon,\alpha})_x \ (P_{\varepsilon,\alpha})\\ &- \varepsilon^2 \lambda_{xx}^{\varepsilon,\alpha} &= \alpha (w^{\varepsilon,\alpha} - \lambda^{\varepsilon,\alpha}) \end{split}$$

Recover (P_{ε}) in the limit $\alpha \to \infty$.

Theorem: (Corli&R.&Viorel '10) For $\varepsilon > 0$ let $\{(w^{\varepsilon,\alpha}, v^{\varepsilon,\alpha}, \lambda^{\varepsilon,\alpha})\}_{\alpha>0}$ be a family of solutions for $(P_{\varepsilon,\alpha})$. It satisfies

$$\frac{d}{dt}\int_{\mathbb{R}}\left(\Sigma(w^{\varepsilon,\alpha})+\frac{\alpha}{2}(w^{\varepsilon,\alpha}-\lambda^{\varepsilon,\alpha})^2+\gamma\varepsilon^2\frac{(\lambda^{\varepsilon,\alpha}_x)^2}{2}+\frac{(v^{\varepsilon,\alpha})^2}{2}\right)\ dx\leq 0.$$

If σ is globally Lipschitz there are functions $w^{\varepsilon}, v^{\varepsilon} \in L^{2}_{loc}(\mathbb{R} \times (0, \infty))$ such that for a subsequence

$$w^{\varepsilon,lpha}
ightarrow w^{arepsilon}, \ v^{arepsilon,lpha}
ightarrow v^{arepsilon}, \ \lambda^{arepsilon,lpha}
ightarrow w^{arepsilon} \ ext{in } \ L^p_{\textit{loc}}(\mathbb{R} imes (0,\infty)), \ p \in [1,2) \ .$$

holds. The function $(w^{\varepsilon}, v^{\varepsilon})$ is a weak solution of (P_{ε}) .

Note: For the static case refer to Brandon&Li&Rogers '95, Solci '03.

Back to Pull-Motion:

Viscosity-capillarity system $\alpha = \infty$, $\varepsilon = 5 \cdot 10^{-4}$.

Computing time:

α	∞	1	10	10 ²	10 ³
time	10.4	2.9	3.5	4.9	14.0

Lower-order approximation $\alpha = 1, \ \varepsilon = 5 \cdot 10^{-4}$

Numerical advantages of lower-order approximation:

$$w_{t}^{\varepsilon,\alpha} - v_{x}^{\varepsilon,\alpha} = 0$$

$$v_{t}^{\varepsilon,\alpha} - \underbrace{(\sigma(w^{\varepsilon,\alpha}) + \alpha\gamma w^{\varepsilon,\alpha})_{x}}_{=:\tilde{\sigma}(w^{\varepsilon,\alpha})_{x}} = \varepsilon v_{xx}^{\varepsilon,\alpha} - \gamma\alpha c_{x}^{\varepsilon,\alpha} \quad (P_{\varepsilon,\alpha})$$

$$-\varepsilon^{2} c_{xx}^{\varepsilon,\alpha} = \alpha(w^{\varepsilon,\alpha} - c^{\varepsilon,\alpha})$$

1) Eigenvalues (of first-order operator):

$$\lambda_{\mp}(w,v) = \mp \sqrt{ ilde{\sigma}'(w)}$$
 real for $lpha >> 1.$

Numerical advantages of lower-order approximation:

$$w_t^{\varepsilon,\alpha} - v_x^{\varepsilon,\alpha} = 0$$

$$v_t^{\varepsilon,\alpha} - \underbrace{(\sigma(w^{\varepsilon,\alpha}) + \alpha\gamma w^{\varepsilon,\alpha})_x}_{=:\tilde{\sigma}(w^{\varepsilon,\alpha})_x} = \varepsilon v_{xx}^{\varepsilon,\alpha} - \gamma\alpha c_x^{\varepsilon,\alpha} \quad (P_{\varepsilon,\alpha})_x$$

$$-\varepsilon^2 c_{xx}^{\varepsilon,\alpha} = \alpha(w^{\varepsilon,\alpha} - c^{\varepsilon,\alpha})$$

1) Eigenvalues (of first-order operator):

$$\lambda_{\mp}(w,v) = \mp \sqrt{\tilde{\sigma}'(w)}$$
 real for $\alpha >> 1$.

2) Time-step control: An explicit scheme for $(P_{\varepsilon,\alpha})$ requires

$$\delta t \approx C \delta x^2$$
,

but not as for the third-order problem (P_{ε}) like

$$\delta t \approx C \delta x^3$$
.

5) Summary and Outlook:

- Two-scale approach seems to be mandatory for computation of dynamics phase boundaries.
- Increase of efficiency for micro-model solver is the key issue.
- Modelling and numerical ideas are needed for increasing efficiency.
- Modelling perspectives: A2C-bridging, Dafermos regularization,...
- Numerical perspectives: *hp*-adaptivity, local time stepping, kernel-based learning and and reduced-basis methods,...
- (Almost) no convergence analysis due to lack of theory.

