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Consider the evolution problem
ut −∆pu + h(u) = µ in Q := (0,T )× Ω,

u(0) = u0 in Ω,

u = 0 on (0,T )× ∂Ω,

where Ω is a bounded susbet in RN , u0 ∈ L1(Ω). Main features:

h(s) satisfies the absorption condition:

h(s)s ≥ 0 for |s| large

µ is a bounded Radon measure on Q (space-time measure)

Rmk: The p-Laplacian can be replaced by any divergence form
operator A(u) = −div(a(t, x ,∇u)) acting similarly on
Lp(0,T ; W 1,p

0 (Ω)).
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Known facts:

The case µ ∈ L1(Q) is well known since the works
(among others) by P. Bénilan, L. Boccardo, T. Gallouët,
M. Pierre & friends, sons, nephews.....

Use nonlinear semigroup theory, notions of entropy or
renormalized solutions etc...

You cannot solve for any measure µ.
Ex: if h(s) = |s|ms [Baras-Pierre].

The obstruction comes from the regularizing of absorption
terms (Vs singular data µ). Basic estimate:

‖h(u)‖L1 ≤ ‖µ‖M(Ω)

But the compactness of h(u) may be missing.
(cfr. [Brezis-Friedman] for the case of initial data....)
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The elliptic case

−∆pu + h(u) = µ in Ω

If µ does not charge the W 1,p
0 - capacity, then ∃ a solution

[Boccardo-Gallouët-Orsina]

Moreover, if h is nondecreasing, uniqueness holds for entropy
or renormalized solutions.

You can solve generically, i.e. for every h(u), only if µ does
not charge sets of null W 1,p

0 - capacity
[Brezis-Marcus-Ponce, with p = 2].

Related question (somehow limiting case): the obstacle
problem. You can solve the obstacle problem

−∆u + β(u) 3 µ
if and only if µ does not charge the W 1,2

0 - capacity
[Brezis-Ponce, Dall’Aglio-Leone].
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Elliptic case: why it is OK when µ << p-capacity?

Answer [Boccardo-Gallouët-Orsina]:

µ << cap
W 1,p

0 (Ω)
⇐⇒ µ ∈ L1 + W−1,p′(Ω)

Then:

µ = f + div(F ) −→ approximate by µn = fn + div(Fn),

fn → f in L1(Ω), Fn → F in Lp′(Ω)

You can localize from the equation∫
{|un|>k+1}

|h(un)|dx ≤
∫
{|un|>k}

|fn|dx + C0

∫
{|un|>k}

|Fn|p
′
dx

Strong convergence of fn, Fn ⇒ equi–integrability of h(un)

−→ compactness of h(un)
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The evolution case

In the evolution case, the natural capacity is associated to the
parabolic p-Laplace operator ut −∆pu.

Def. of parabolic p-capacity:
([Pierre] for p = 2, [Droniou-P.-Prignet] for p 6= 2)

capW (U) = inf
{
‖u‖W : u ∈W , u ≥ χU a.e. in Q

}
,

if U is open, where

W =
{
u ∈ Lp(0,T ; V ) : ut ∈ Lp′(0,T ; V ′)

}
, V = W 1,p

0 (Ω)∩L2(Ω)

The norm in W is

‖u‖W = ‖u‖Lp(0,T ;V ) + ‖ut‖Lp′ (0,T ;V ′)

Extension to to arbitrary Borel subsets B ⊂ Q is done as usual.
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In [Droniou-P.-Prignet]:

(i) we give a representation for (space-time) measures which do
not charge sets of null parabolic capacity:

µ << capW ⇒ µ = f + χ+ gt in D′(Q)

where

f ∈ L1(Q) , χ ∈ Lp′(0,T ; W−1,p′(Ω)) , g ∈ Lp(0,T ; V ) .

Note: it is not different from the elliptic representation principle,

f ∈ L1(Q) , χ+ gt ∈W ′

(ii) we introduce a renormalized formulation for those measures
data, based on shift of the time component gt .
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Roughly speaking (according to [DPP] formulation):

u is a ren. sol. of ut −∆pu = µ = f + χ+ gt if

v := u − g solves vt −∆p(v + g) = f + χ.

Later developments: [Droniou-Prignet] for entropy formulation,
[Petitta] for general measures.

Advantages: one can reproduce many of the elliptic
arguments on v .

Disadvantages: in this approach the renormalization
(truncation principle) takes place on u − g rather than on u.

Pb: This cannot be extended to lower order terms ! Replacing
h(u) into h(v + g) affetcs the absorption structure.

If one can construct a decomposition with g ∈ L∞(Q), then
everything is OK. Is it possible? No.
Ex [PPP]: There exists measures µ << capW for which no
decomposition can be found with bounded g .
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Summary (motivation of our work):

A natural notion of capacity exists related to parabolic
operator.

A decomposition result for measures which do not charge such
capacity exists.

The renormalized formulation developed in [DPP] relies on
such decomposition. It provides well-posedness for the pure
p-Laplace operator. It relies on truncation on u − g rather
than on u.

However, this formulation is not suitable when dealing with
lower order terms. New strategies may be required.

Rmk: a similar (significant) example is the parabolic obstacle
problem, new strategy was needed [Andreianov-Sbihi-Wittbold ’08].
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Back to
ut −∆pu + h(u) = µ + IBC

We change our strategy to deal with measures << capW .

Given µ, approximate with smooth µn.
We wish to deduce compactness from the only estimate∫ ∫

{|un|>k}
|h(un)|dxdt ≤

∫ ∫
{|un|>k}

|µn|dxdt

To this purpose :

We prove that the level sets {|un| > k} have uniform small
capacity

We take µn so that it is equi-diffuse.

Def. [Brezis-Ponce]: µn is equi-diffuse if ∀ε > 0 ∃ η > 0:

capp(E ) < η =⇒ |µn|(E ) < ε ∀n

Typical example: convolution ! µn = µ ? ρn.
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The key point (and new ingredient) is the estimate of capacity of
level sets.

Theorem

Let u ∈W be a (regular) solution of
ut −∆pu = µ in Q,

u = u0 on {0} × Ω,

u = 0 on (0,T )× ∂Ω.

Then,

capp({|u| > k}) ≤ C max

{
1

k
1
p

,
1

k
1
p′

}
∀k ≥ 1, (1)

where C = C
(
‖µ‖M(Q), ‖u0‖L1(Ω)

)
.
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Thanks to the capacity estimate:

we prove compactness of h(un), hence, passing to the limit,
existence of solutions.

we are led to a new definition of renormalized solution.

Indeed, truncating the equation with respect to un we observe:

(Tk(un))t −∆p(Tk(un)) = µk
n ,

and we estimate the error

|µk
n − µ| . |µn|χ{|un|>k}

Then:

uniform capacity estimate + equi-diffuse property of µn

⇒ |µk
n − µ| is small as k →∞ (uniformly in n)
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Renormalized solution - new version

We suggest to use the following definition of renormalized solution
for such measure data:

Definition

u ∈ L1(Q) is a renormalized solution if Tk(u) ∈ Lp(0,T ; W 1,p
0 (Ω))

for every k > 0 and if there exist measures λk ∈M(Q):

(Tk(u))t −∆p(Tk(u)) + h(Tk(u)) = µ+ λk

and
lim

k→∞
‖λk‖M(Q) = 0

Very close to the def. used for conservation laws
[Bénilan-Carrillo-Wittbold] and to some versions used for
elliptic equations [Dal Maso-Malusa], [Dal
Maso-Murat-Orsina-Prignet].
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In this formulation, we prove the L1-contraction principle.

Theorem

If u1, u2 are renormalized solutions with data (u01, µ1), (u02, µ2),∫
Ω

(u1 − u2)+(t) dx +

∫ t

0

∫
Ω

(h(u1)− h(u2))sign +(u1 − u2)dxdτ

≤ ‖(u01 − u02)+‖L1(Ω) + ‖(µ1 − µ2)+‖M(Q)

Corollary

If the measure µ does not charge sets of null parabolic capacity,
the absorption problem{

ut −∆pu + h(u) = µ in Q := (0,T )× Ω,

u(0) = u0 , uI(0,T )×∂Ω
= 0,

admits solution for every h. If h is nondecreasing, the
renormalized solution is unique.
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We also prove several properties of the new renormalized
formulation:

When h = 0, this definition implies the definition of
renormalized solution given in [DPP].

We prove estimates & stability for renormalized solutions

We prove the energy asymptotics

1

δ

∫
{m<|u|<m+δ}

a(t, x ,∇u)∇u dxdt ≤
∫

{|u0|>m}

|u0| dx+|µ| (Em) ,

for some set Em such that capp(Em) ≤ C max
{

m−
1
p ,m

− 1
p′
}

,

where C = C (‖µ‖M(Q), ‖u0‖L1(Ω)).

In particular, we recover the usual estimate for L1-data:

lim
m→∞

∫
{m<|u|<m+1}

a(t, x ,∇u)∇u dxdt = 0
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Final comments

We have investigated one more definition of renormalized
solution, which seems to be more suitable for nonlinear
parabolic equations with lower order terms and measure data.

In this framework, we have extended to parabolic equations
the existence and uniqueness results known in the elliptic case
with general absorption h(u).

Still many results of the elliptic theory with measure data are
missing in the evolution case. Main difficulties:

- u (as well as Tk(u)) may not have a cap-quasi continuous
representative.

- the decomposition of measures with respect to parabolic
capacity does not match well with the localization required by
truncations of u.

We hope to have developed some technical tools to handle similar
problems, at least in some situations.
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Thanks for the attention !
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