
SPECTRAL THEORY FOR LINEAR OPERATORS ON L1 OR
C(K) SPACES

IAN DOUST, FLORENCE LANCIEN, AND GILLES LANCIEN

Abstract. It is known that on a Hilbert space, the sum of a real scalar-
type operator and a commuting well-bounded operator is well-bounded.
The corresponding property has been shown to be fail on Lp spaces, for
1 < p 6= 2 < ∞. We show that it does hold however on every Banach space
X such that X or X∗ is a Grothendieck space. This class notably includes
L1 and C(K) spaces.

1. Introduction

This paper is concerned with scalar-type spectral and well-bounded opera-
tors on a Banach space X.

The theory of scalar-type spectral operators was initiated by N. Dunford (see
his survey [6]) in order to generalize the theory of self-adjoint operators to op-
erators on general Banach spaces. These operators are those which admit an
integral representation with respect to a countably additive spectral measure
(the precise definition is given in section 2) and therefore a functional calculus
for bounded measurable functions on their spectrum. In particular, the spec-
tral expansion of such an operator converges unconditionally. An old result
of J. Wermer ([19]) asserts that finitely many commuting scalar-type spectral
operators on a Hilbert space can be simultaneously transformed into normal
operators, by passing to an equivalent inner product. An application of this
is that the sum and product of two commuting scalar-type spectral operators
on a Hilbert space are also scalar-type spectral. This result has been extended
by many authors, beginning with C.A. McCarthy ([14], [15]) in the 1960s who
considered operators acting on Lp spaces for 1 < p < ∞. More recently T.A.
Gillespie ([8]) showed that, on a Banach lattice, the Boolean algebra generated
by two commuting bounded Boolean algebras is itself bounded. As a conse-
quence he obtains that the sum and product of two commuting scalar-type
spectral operators on a weakly complete Banach lattice (and also on a wide
class of subspaces of Banach lattices) are scalar-type spectral. It has been long
known however that counterexamples to this result exist even within the class
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of super-reflexive Banach spaces. Indeed, a counterexample can be given on
the von Neumann-Schattten classes Cp, for 1 < p 6= 2 < ∞.

One may wonder under what conditions the sum of two commuting scalar-
type spectral operators would have the weaker property of being well-bounded.
Well-bounded operators, introduced by D.R. Smart ([18]), are defined as hav-
ing a functional calculus for the absolutely continuous functions on some com-
pact interval. They coincide with the operators having, in some weaker sense,
a spectral decomposition that converges only conditionally. It is shown in
[3] that on spaces with property (∆), the sum of two commuting scalar-type
spectral operators is always well-bounded. (The class of spaces with prop-
erty (∆), which was introduced by N. Kalton and L. Weis in [10], includes all
UMD spaces.) On the other hand, T.A Gillespie proved in [7] that the sum of
two commuting well-bounded operators is not always well-bounded, even on a
Hilbert space.

We address now the question of the well-boundedness of the sum of a real
scalar-type spectral operator and a commuting well-bounded operator. It fol-
lows from the same work of T.A. Gillespie [7] that the answer is positive for
Hilbert spaces. However, it is shown in [4], how one may construct a coun-
terexample in any reflexive non-Hilbertian Banach lattice. The aim of this
note is to prove that the answer is positive however on an abstract class of
Banach spaces which includes L1 and C(K) spaces.

Before proceeding, we would like to point out that much of this theory bears
a close resemblance with that which arises from questions concerning whether
the sum of two commuting unbounded operators either has an H∞ functional
calculus or is sectorial. We refer the reader to [1], [9], [10], [11] and [16] for the
relevant definitions and, among other things, theorems analogous to the above
mentioned results. One common ground for these two theories is certainly the
classical work on unconditional bases as is expounded in [13].

2. Notation

Throughout this paper, X will denote a complex Banach space, BX its
closed unit ball and B(X) the algebra of all bounded linear operators on X.
Let Σ be the family of all Borel subsets of C.

An operator T ∈ B(X) is said to be scalar-type spectral if there exists a
spectral measure F defined on Σ, whose values are projections in B(X) and
satisfying the following properties:

(i) ‖F‖ = sup{‖F(A)‖, A ∈ Σ} < +∞.
(ii) TF(A) = F(A)T , for all A ∈ Σ.
(iii) σ(T |F(A)X) ⊂ A, for all A ∈ Σ.
(iv) F is countably additive in the strong operator topology.
(v) T =

∫
λF(dλ).
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If in addition σ(T ) ⊂ R, then T is said to be real scalar-type spectral.
Every scalar-type spectral operator T admits a functional calculus defined on
the space B∞(σ(T )) of all bounded Borel measurable functions on σ(T ) by the
formula

f(T ) =

∫
σ(T )

f(λ)F(dλ)

and satisfying the standard estimate

‖f(T )‖ ≤ 4‖F‖ sup
λ∈σ(T )

|f(λ)|.

Details can be found in [5] (the constant 4 can be replaced by 2 if f is real
valued).

An operator S ∈ B(X) is said to be well-bounded if there exist a constant
K and a compact interval J = [a, b] such that for all complex polynomials p,

‖p(S)‖ ≤ K‖p‖AC(J), where ‖p‖AC(J) = sup
t∈J

|p(t)|+

∫ b

a

|p′(t)| dt.

Equivalently, there is a Banach algebra homomorphism f 7→ f(T ), from the al-
gebra AC(J) of all absolutely continuous functions on J into B(X), extending
the natural definition for polynomials and satisfying:

∀f ∈ AC(J), ‖f(T )‖ ≤ K‖f‖AC(J).

On a general Banach space X, an operator S is well-bounded if and only if
it admits a so-called decomposition of the identity. This a family (H(t))t∈R ⊂
B(X∗) of projections enjoying a few more properties and providing the fol-
lowing integral representation for the functional calculus: for any f in AC(J),
x ∈ X and x∗ ∈ X∗,

〈f(T )x, x∗〉 = f(b)〈x, x∗〉 −
∫ b

a

〈x, H(t)x∗〉f ′(t) dt.

Since we shall not need to use this decomposition of the identity, we refer the
reader to [5] for the complete definition.

We now recall that a Banach space X is a Grothendieck space (in short GT-
space) if there is a constant C such that for every bounded linear operator T
from X to `2 and all x1, .., xn ∈ X:

n∑
k=1

‖Txk‖`2 ≤ C ‖T‖ sup
x∗∈BX∗

n∑
k=1

|x∗(xk)|.

Such an operator is called absolutely summing (see [17] for a complete study
of this notion).
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3. A stronger functional calculus for scalar-type spectral
operators on certain Banach spaces

The key step is to show that the unconditionality of the spectral decom-
position of a scalar-type spectral operator is automatically strengthened in a
GT-space. This is clearly inspired by the last section of [10] and by the fun-
damental work of J. Lindenstrauss and A. Pe lczyński [12] on the uniqueness
of unconditional bases in `1. In fact, our next proposition is just a variation
of Corollary 8 of Theorem 6.1 in [12].

Proposition 3.1. Suppose that X is a GT-space and F is a bounded finitely
additive spectral measure defined on some algebra of subsets of C. Then there
is a constant C such that for any x ∈ X and any A1, .., An ∈ Σ which are
pairwise disjoint:

n∑
j=1

‖F(Aj)x‖ ≤ C‖x‖.

In particular, if F is the spectral measure of a scalar-type spectral operator
T on X, then for any x ∈ X, the X-valued vector measure µx, defined by
µx(A) = F(A)x, is a measure of bounded variation, whose total variation is
dominated by C‖x‖.

Proof. Let A1, .., An ∈ Σ be pairwise disjoint. For every u ∈ X and 1 ≤ k ≤ n,
we pick u∗k = u∗k(u) ∈ BX∗ such that 〈F(Ak)u, u∗k〉 = ‖F(Ak)u‖. Then, for
a = (ak)n

k=1 ∈ Cn, we define Tu,a : X → `n
2 by

∀y ∈ X, Tu,ay =
(
ak〈F(Ak)y, u∗k〉

)n

k=1
.

We clearly have

∀y ∈ X, ‖Tu,ay‖`n
2
≤ ‖a‖`n

2
‖F‖ ‖y‖.

Since X is a GT-space, there exists C1 > 0 such that for all a ∈ `n
2 , u ∈ X

and u1, .., un ∈ X,

(3.1)
n∑

j=1

‖Tu,auj‖`n
2
≤ C1 ‖F‖ ‖a‖`n

2
sup

x∗∈BX∗

n∑
j=1

|x∗(uj)|.

We now apply the above inequality for uj = F(Aj)u and aj = ‖F(Aj)u‖. We
have that

Tu,auj =
(
ak〈F(Ak)F(Aj)u, u∗k〉

)n

k=1
=

(
δk,j‖F(Aj)u‖2

)n

k=1
.

Cancelling ‖a‖`n
2

from both sides of (3.1) gives

∀u ∈ X, (
n∑

j=1

‖F(Aj)u‖2)1/2 ≤ C1 ‖F‖ sup
x∗∈BX∗

n∑
j=1

|x∗(uj)|.
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Note now that for any x∗ ∈ BX∗ there exist complex numbers of modulus one,
α1, .., αn, so that

∑n
j=1 |x∗(uj)| = |

∑n
j=1〈αjF(Aj)u, x∗〉|. Then, it follows from

the disjointness of the Aj’s and the functional calculus bounds for T that

∀u ∈ X, sup
x∗∈BX∗

n∑
j=1

|x∗(uj)| ≤ 4‖F‖‖u‖

and so

(3.2) ∀u ∈ X, (
n∑

j=1

‖F(Aj)u‖2)1/2 ≤ 4 C1 ‖F‖2 ‖u‖.

Suppose now that x ∈ X. Denote by Tx the operator Tx,a where a = (1, . . . , 1).
For y ∈ X, inequality (3.2) implies

‖Txy‖ ≤ (
n∑

j=1

‖F(Aj)y‖2)1/2 ≤ 4 C1 ‖F‖2 ‖y‖.

Note that if xj = F(Aj)x then ‖Txxj‖`n
2

= ‖F(Aj)x‖. Using again the fact
that X is a GT-space we get that

n∑
j=1

‖F(Aj)x‖ =
n∑

j=1

‖Txxj‖`n
2
≤ C1‖Tx‖ sup

x∗∈BX∗

n∑
j=1

|x∗(xj)| ≤ 16 C2
1 ‖F‖3‖x‖.

�

We will also need the following dual statement.

Proposition 3.2. Suppose X∗ is a GT-space. Let T be a scalar-type spectral
operator on X and let F be its spectral measure. Then there is a constant C
such that for any x∗ ∈ X∗ and any A1, .., An ∈ Σ which are pairwise disjoint:

n∑
j=1

‖F(Aj)
∗x∗‖ ≤ C‖x∗‖.

In other words, for any x∗ ∈ X∗, the total variation of the X∗-valued finitely
additive vector measure νx∗, defined by νx∗(A) = F(A)∗x∗, is dominated by
C‖x∗‖.

Proof. We just apply Proposition 3.1 to F∗. �

We now need to introduce more notation. For T ∈ B(X), we denote by
{T}′ the commutant of T (namely, the closed subalgebra of B(X) consisting
of all operators commuting with T ). Let ST denote the algebra of all {T}′-
valued Borel simple functions defined on σ(T ), and let B∞(σ(T ), {T}′) be the
uniform closure of ST . We can now state the main result of this section.
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Theorem 3.3. Suppose that X or X∗ is a GT-space (for instance X is an
L1-space, or X is a C(K)-space). Let T be a scalar-type spectral operator on
X and let F be its spectral measure. For any finite families (Ai)

n
i=1 of pairwise

disjoint Borel subsets of σ(T ) and (Si)
n
i=1 in {T}′, we define Φ(

∑n
i=1 Si1Ai

) =∑n
i=1 SiF(Ai). Then Φ can be extended into a bounded algebra homomorphism

from B∞(σ(T ), {T}′) into B(X).

Proof. Since T is a spectral operator, each operator that commutes with T
also commutes with its spectral measure (see [6] or Theorem 6.6 in [5]). It is
therefore simple to check that Φ is an algebra homomorphism on ST . The con-
clusion will therefore follow immediately once we can show that Φ is bounded
on ST . Suppose then that f =

∑n
i=1 Si1Ai

∈ S.
If X is a GT-space then it follows from Proposition 3.1 that for all x ∈ X,

‖Φ(f)x‖ ≤
n∑

i=1

‖SiF(Ai)x‖ ≤ C sup
1≤i≤n

‖Si‖ ‖x‖ = C‖f‖∞‖x‖.

If X∗ is a GT-space, we apply Proposition 3.2 and the fact that Si and F(Ai)
commute to obtain that

∀x ∈ X ∀x∗ ∈ X∗ |〈Φ(f)x, x∗〉| ≤ C‖f‖∞‖x‖ ‖x∗‖.
In each case, our estimate clearly yields the conclusion. �

4. Application to the well-boundedness of sums of operators

Our result is the following

Theorem 4.1. Suppose that X or X∗ is a GT-space. Let T be a real scalar-
type operator on X and let S be a well-bounded operator on X which commutes
with T . Then S + T is a well-bounded operator on X.

Proof. Let Φ be the functional calculus map from B∞(σ(T ), {T}′) into B(X),
associated with T in Theorem 3.3. Note first that if f(λ) = g(λ)IdX , where
IdX is the identity operator on X and g is bounded, Borel measurable and
scalar valued, then Φ(f) = g(T ). On the other hand, if U ∈ {T}′ and f(λ) = U
for all λ ∈ σ(T ), then Φ(f) = U .
For p a complex polynomial, define the map fp : σ(T ) → {T}′ by fp(λ) =
p(S + λ). Combining the above remarks, with the fact that Φ is an algebra
homomorphism, we get that Φ(fp) = p(S + T ). It follows that there is a
constant C1 such that for every polynomial p:

(4.3) ‖p(S + T )‖ ≤ C1 sup
λ∈σ(T )

‖fp(λ)‖B(X).

Since S is well-bounded, there exist a compact interval J and a constant C2

such that for any complex polynomial p, ‖p(S)‖ ≤ C2‖p‖AC(J). Let K be a
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compact interval containing σ(T ) + J . It is a standard fact [5, Lemma 18.7]
that for all λ ∈ σ(T ) and all complex polynomials p,

‖fp(λ)‖B(X) = ‖p(S + λ)‖ ≤ C2‖p‖AC(K).

Combining this with (4.3) shows that there is a constant C such that for
every polynomial p, ‖p(S + T )‖ ≤ C‖p‖AC(K), and therefore that S + T is a
well-bounded operator. �

Remark 4.2. Under the same assumptions, one can show with a similar proof
that q(S, T ) is well-bounded for every real polynomial q.

Remark 4.3. We conclude this note by showing that if T is a scalar-type
spectral operator on a Hilbert space H, then it also admits a functional calculus
defined on B∞(σ(T ), {T}′). This gives an alternative quick proof of Gillespie’s
result ([7]).

So, let (Ai)
n
i=1 be pairwise disjoint Borel subsets of σ(T ), (Si)

n
i=1 in {T}′.

For f =
∑n

i=1 Si1Ai
, set Φ(f) =

∑n
i=1 SiF(Ai). Writing

∀t ∈ [0, 1] ∀x ∈ H Φ(f)x =
( n∑

i=1

ri(t)F(Ai)
)( n∑

i=1

ri(t)F(Ai)Six
)
,

noting that ‖
∑n

i=1 ri(t)F(Ai)‖ ≤ 2‖F‖ and using the parallelogram law, we
obtain that for any x ∈ H:

‖Φ(f)x‖ ≤ 2‖F‖(

∫ 1

0

‖
n∑

i=1

ri(t)F(Ai)Six‖2 dt)1/2 = 2‖F‖(
n∑

i=1

‖F(Ai)Six‖2)1/2.

But
n∑

i=1

‖F(Ai)Six‖2 ≤ ‖f‖2
∞(

n∑
i=1

‖F(Ai)x‖2) = ‖f‖2
∞(

∫ 1

0

‖
n∑

i=1

ri(t)F(Ai)x‖2 dt).

Thus
‖Φ(f)x‖ ≤ 4‖F‖2‖f‖∞‖x‖.

This finishes our proof.
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