Introduction to linear programming

Lycée Jules Haag, Besançon, April 12th 2012

A simple optimization problem.

A simple optimization problem.
For Easter, a chocolate factory is making two kinds of boxes of chocolate eggs. The Extra box and the Supreme box.

A simple optimization problem.
For Easter, a chocolate factory is making two kinds of boxes of chocolate eggs. The Extra box and the Supreme box.

For an Extra box, they need 1 kg of cocoa, 1 kg of hazelnuts and 2 kg of milk.

A simple optimization problem.
For Easter, a chocolate factory is making two kinds of boxes of chocolate eggs. The Extra box and the Supreme box.

For an Extra box, they need 1 kg of cocoa, 1 kg of hazelnuts and 2 kg of milk.

For a Supreme box, they need 3 kg of cocoa, 1 kg of hazelnuts and 1 kg of milk.

A simple optimization problem.
For Easter, a chocolate factory is making two kinds of boxes of chocolate eggs. The Extra box and the Supreme box.

For an Extra box, they need 1 kg of cocoa, 1 kg of hazelnuts and 2 kg of milk.

For a Supreme box, they need 3 kg of cocoa, 1 kg of hazelnuts and 1 kg of milk.

The factory has 180 kg of cocoa, 80 kg of hazelnuts and 140 kg of milk in stock.

A simple optimization problem.
For Easter, a chocolate factory is making two kinds of boxes of chocolate eggs. The Extra box and the Supreme box.

For an Extra box, they need 1 kg of cocoa, 1 kg of hazelnuts and 2 kg of milk.

For a Supreme box, they need 3 kg of cocoa, 1 kg of hazelnuts and 1 kg of milk.

The factory has 180 kg of cocoa, 80 kg of hazelnuts and 140 kg of milk in stock.

They make a profit of 20 euros per Extra box and of 30 euros per Supreme box.

A simple optimization problem.
For Easter, a chocolate factory is making two kinds of boxes of chocolate eggs. The Extra box and the Supreme box.

For an Extra box, they need 1 kg of cocoa, 1 kg of hazelnuts and 2 kg of milk.

For a Supreme box, they need 3 kg of cocoa, 1 kg of hazelnuts and 1 kg of milk.

The factory has 180 kg of cocoa, 80 kg of hazelnuts and 140 kg of milk in stock.

They make a profit of 20 euros per Extra box and of 30 euros per Supreme box.

How many boxes of each kind should they make in order to maximize the profit?

Mathematical analysis of the chocolate problem.

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.

The profit is

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.

The profit is $p=20 x+30 y$.

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?
$x+3 y \leq 180$

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?

$$
\begin{aligned}
& x+3 y \leq 180 \\
& x+y \leq 80
\end{aligned}
$$

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?

$$
\begin{aligned}
& x+3 y \leq 180 \\
& x+y \leq 80 \\
& 2 x+y \leq 140
\end{aligned}
$$

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?
$x+3 y \leq 180$
$x+y \leq 80$
$2 x+y \leq 140$
And also $x \geq 0$ and $y \geq 0$.

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?
$x+3 y \leq 180$
$x+y \leq 80$
$2 x+y \leq 140$
And also $x \geq 0$ and $y \geq 0$.
We must draw a picture describing the constraints.

Mathematical analysis of the chocolate problem.
Call x the number of Extra boxes produced and call y the number of Supreme boxes produced.
The profit is $p=20 x+30 y$. We want to maximize the function p. It is called the objective function.
What are the constraints?
$x+3 y \leq 180$
$x+y \leq 80$
$2 x+y \leq 140$
And also $x \geq 0$ and $y \geq 0$.
We must draw a picture describing the constraints.
This will be called the feasible region.

The feasible region is a polygon

The feasible region is a polygon
The corner points of the feasible region are

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.
The values of p at the corner points are

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.
The values of p at the corner points are
$p(A)=1800, p(B)=2100, p(C)=1800, p(D)=1400$ and $p(E)=0$.

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.
The values of p at the corner points are
$p(A)=1800, p(B)=2100, p(C)=1800, p(D)=1400$ and $p(E)=0$.

Our guess :

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.
The values of p at the corner points are
$p(A)=1800, p(B)=2100, p(C)=1800, p(D)=1400$ and
$p(E)=0$.
Our guess : The factory should make 30 Extra boxes and 50 Supreme boxes in order to maximize the profit

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.
The values of p at the corner points are
$p(A)=1800, p(B)=2100, p(C)=1800, p(D)=1400$ and
$p(E)=0$.
Our guess: The factory should make 30 Extra boxes and 50 Supreme boxes in order to maximize the profit (although some milk will not be used).

The feasible region is a polygon
The corner points of the feasible region are
$A=(0,60) B=(30,50), C=(60,20), D=(70,0)$ and
$E=(0,0)$.
The values of p at the corner points are
$p(A)=1800, p(B)=2100, p(C)=1800, p(D)=1400$ and
$p(E)=0$.
Our guess : The factory should make 30 Extra boxes and 50 Supreme boxes in order to maximize the profit (although some milk will not be used).

Can we conjecture the statement of the general theorem?

Conjecture : The maximum of a linear objective function in a polygonal feasible region is attained at a corner point (or vertex) of the feasible region.

Conjecture : The maximum of a linear objective function in a polygonal feasible region is attained at a corner point (or vertex) of the feasible region.

Can we prove it?

Conjecture : The maximum of a linear objective function in a polygonal feasible region is attained at a corner point (or vertex) of the feasible region.

Can we prove it?
YES WE CAN!!

Conjecture : The maximum of a linear objective function in a polygonal feasible region is attained at a corner point (or vertex) of the feasible region.

Can we prove it?
YES WE CAN!!
Step 1 The maximum of the objective function on a segment is attained at an endpoint of the segment.

Let $p(x, y)=a x+$ by be a general linear objective function.

Let $p(x, y)=a x+$ by be a general linear objective function.
Consider two points $A=\left(x_{A}, y_{A}\right)$ and $B=\left(x_{B}, y_{B}\right)$ in the plane.

Let $p(x, y)=a x+$ by be a general linear objective function.
Consider two points $A=\left(x_{A}, y_{A}\right)$ and $B=\left(x_{B}, y_{B}\right)$ in the plane.
If $M=\left(x_{M}, y_{M}\right)$ is a point on the segment $[A, B]$, then there is $t \in[0,1]$ such that $\overrightarrow{A M}=t \overrightarrow{A B}$.

Let $p(x, y)=a x+$ by be a general linear objective function.
Consider two points $A=\left(x_{A}, y_{A}\right)$ and $B=\left(x_{B}, y_{B}\right)$ in the plane.
If $M=\left(x_{M}, y_{M}\right)$ is a point on the segment $[A, B]$, then there is $t \in[0,1]$ such that $\overrightarrow{A M}=t \overrightarrow{A B}$.
Therefore

$$
x_{M}-x_{A}=t\left(x_{B}-x_{A}\right) \quad \text { and } \quad y_{M}-y_{A}=t\left(y_{B}-y_{A}\right)
$$

Let $p(x, y)=a x+$ by be a general linear objective function.
Consider two points $A=\left(x_{A}, y_{A}\right)$ and $B=\left(x_{B}, y_{B}\right)$ in the plane.
If $M=\left(x_{M}, y_{M}\right)$ is a point on the segment $[A, B]$, then there is $t \in[0,1]$ such that $\overrightarrow{A M}=t \overrightarrow{A B}$.

Therefore

$$
x_{M}-x_{A}=t\left(x_{B}-x_{A}\right) \quad \text { and } \quad y_{M}-y_{A}=t\left(y_{B}-y_{A}\right)
$$

We obtain
$x_{M}=(1-t) x_{A}+t x_{B} \quad$ and $\quad y_{M}=(1-t) y_{A}+t y_{B}$.

Let $p(x, y)=a x+$ by be a general linear objective function.
Consider two points $A=\left(x_{A}, y_{A}\right)$ and $B=\left(x_{B}, y_{B}\right)$ in the plane.
If $M=\left(x_{M}, y_{M}\right)$ is a point on the segment $[A, B]$, then there is $t \in[0,1]$ such that $\overrightarrow{A M}=t \overrightarrow{A B}$.

Therefore
$x_{M}-x_{A}=t\left(x_{B}-x_{A}\right) \quad$ and $\quad y_{M}-y_{A}=t\left(y_{B}-y_{A}\right)$.
We obtain
$x_{M}=(1-t) x_{A}+t x_{B} \quad$ and $\quad y_{M}=(1-t) y_{A}+t y_{B}$.
And then, after a few computations... $p(M)=a x_{M}+b y_{M}=(1-t) p(A)+t p(B) \leq \max \{p(A), p(B)\}$.

Let $p(x, y)=a x+$ by be a general linear objective function.
Consider two points $A=\left(x_{A}, y_{A}\right)$ and $B=\left(x_{B}, y_{B}\right)$ in the plane.
If $M=\left(x_{M}, y_{M}\right)$ is a point on the segment $[A, B]$, then there is $t \in[0,1]$ such that $\overrightarrow{A M}=t \overrightarrow{A B}$.

Therefore
$x_{M}-x_{A}=t\left(x_{B}-x_{A}\right) \quad$ and $\quad y_{M}-y_{A}=t\left(y_{B}-y_{A}\right)$.
We obtain
$x_{M}=(1-t) x_{A}+t x_{B} \quad$ and $\quad y_{M}=(1-t) y_{A}+t y_{B}$.
And then, after a few computations... $p(M)=a x_{M}+b y_{M}=(1-t) p(A)+t p(B) \leq \max \{p(A), p(B)\}$.
This yields the conclusion of Step 1.

Step 2

Step 2

Consider now a general linear objective function p on a general polygonal feasible set.

Step 2

Consider now a general linear objective function p on a general polygonal feasible set.

Denote by $p_{\text {max }}$ the maximal value taken by p on the vertices of the polygon.

Step 2

Consider now a general linear objective function p on a general polygonal feasible set.

Denote by $p_{\max }$ the maximal value taken by p on the vertices of the polygon.

If M is a point on the boundary of the polygon, show that $p(M) \leq p_{\text {max }}$.

Step 2

Consider now a general linear objective function p on a general polygonal feasible set.

Denote by $p_{\text {max }}$ the maximal value taken by p on the vertices of the polygon.

If M is a point on the boundary of the polygon, show that $p(M) \leq p_{\text {max }}$.
Then, if M is an interior point of the polygon, show that $p(M) \leq p_{\text {max }}$.

Step 2

Consider now a general linear objective function p on a general polygonal feasible set.

Denote by $p_{\text {max }}$ the maximal value taken by p on the vertices of the polygon.

If M is a point on the boundary of the polygon, show that $p(M) \leq p_{\text {max }}$.
Then, if M is an interior point of the polygon, show that $p(M) \leq p_{\text {max }}$.
End of proof.

Last comments

Last comments

Some people think that

Last comments

Some people think that proofs are useless !

Last comments

Some people think that proofs are useless !
It was clear on the picture!

Last comments

Some people think that proofs are useless !
It was clear on the picture!
Why should we prove it???

