
COUNTEREXAMPLES CONCERNING SECTORIAL OPERATORS

Gilles LANCIEN(*)
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ABSTRACT

In this paper we give two counterexamples to the closedness of the sum of two sectorial operators with

commuting resolvents. In the first example the operators are defined on an Lp
-space, with 1 < p ̸= 2 < ∞,

and one of them admits bounded imaginary powers. The second example is concerned with operators defined

on a Hilbert valued Lp
-space; one acts on Lp

and admits bounded imaginary powers as the other acts on the

Hilbert space. In the last section of the paper we show that the two partial derivations on L2(IR2;X) admit a

so-called bounded joint functional calculus if and only ifX is a UMD Banach space with property (α) (geometric

property introduced by G. Pisier).

1991 Mathematics Subject Classification: primary 47A60, secondary 42B15.

1. INTRODUCTION-NOTATIONS

Let X be a complex Banach space and let A and B be two sectorial operators on X,
with commuting resolvents and whose respective types ωA and ωB satisfy ωA + ωB < π
(see definitions below). In [8], Da Prato and Grisvard showed that A + B, with domain
the intersection of the domains of A and B, is then closable and they derived important
consequences for the study of abstract differential equations. It turns out that, even if X is
a Hilbert space, this sum is not necessarilly closed (see [2] for a counterexample). However,
with additional assumptions on A and B, some positive results have been obtained. The
most famous is due to Dore and Venni ([9]), who proved that if X is a UMD Banach space
(see [3] and [5] for the definition and important characterizations) and if the imaginary

(*) This work was completed while the author was visiting the University of Missouri in
Columbia.
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powers of A and B satisfy: ∥Ais∥ ≤ CeµA|s|, ∥Bis∥ ≤ CeµB |s|, for any s in IR, with
µA + µB < π; then A+B is closed.

The purpose of Section 2 is to show the optimality of two other positive results.
The first one was also obtained by Dore and Venni [9], who showed the closedness of A+B
when X is a Hilbert space and A admits bounded imaginary powers. We will show that
this is false if X is an Lp-space, with 1 < p ̸= 2 < +∞.
For the second, consider H a Hilbert space, (Ω, µ) a measure space and 1 < p < ∞.
Let A be a closed operator on Lp(Ω) whith a bounded H∞(Σθ) functional calculus for
some sector Σθ = {z ∈ |C∗ : |arg z| < θ} and B a sectorial operator of type ωB, with
ωB + θ < π. In a joint work with F. Lancien and C. Le Merdy [12], we proved that A+B
is a closed operator on Lp(Ω;H), where A and B are the respective closures of A ⊗ IH
and ILp ⊗ B. Here, we show that this is false, if we only assume that A admits bounded
imaginary powers.

In Section 3 we study the notion of joint functional calculus. Let us first recall that
it follows from Dore and Venni’s theorem that if X is a UMD Banach space and if A and
B admit respectively a bounded H∞(ΣθA) and a bounded H∞(ΣθB ) functional calculus
on X, with θA + θB < π, then A + B is closed. In [12] it is shown that if X enjoys some
”local unconditionality”, namely property (α) introduced by Pisier [16], then A+B admits
a bounded H∞(Σµ) functional calculus for any µ > max{θA, θB}. This type of stability
result, already obtained for bounded imaginary powers in UMD Banach spaces ([9],[19]),
is crucial if one wants to iterate the application of Dore and Venni’s theorem. In fact a
stronger property is proved in [12]: if X has property (α), if A and B admit respectively
a bounded H∞(ΣθA) and a bounded H∞(ΣθB ) functional calculus, then (A,B) admits a
bounded joint functional calculus for any (µ, ν) in (θA, π) × (θB, π). Although property
(α) is not comparable with the UMD property, it must be kept in mind that the UMD
property is crucial for the boundedness of the functional calculi associated with many

differential operators. For instance, it is known that, if µ >
π

2
and 1 < p < +∞, then

the first derivation operator on Lp(IR;X), with domain W 1,p(IR;X), admits a bounded
H∞(Σµ) functional calculus if and only if X is a UMD Banach space (see [18]). It is then
clear that the above theorem is essentially applicable in UMD spaces with property (α).
In Section 3, we show the optimality of this theorem in quite a strong way. More precisely,
we consider U (resp. V ) the derivation with respect with the first (resp. second) variable
on L2(IR2;X) and we prove that (U, V ) admits a bounded joint functional calculus if and
only if X is UMD with property (α). Along the proof, we also show that this is equivalent
to the validity of some vector valued multiplier theorems due to Zimmermann [22].

Let us now fix some notations and terminology. In this paper, all Banach spaces will
be complex ones. We denote by L(X) the algebra of all bounded operators on the Banach
space X. For any θ in (0, π) (resp. (θ, θ′) in (0, π)× (0, π)), H∞(Σθ) (resp. H

∞(Σθ×Σθ′))
will denote the Banach algebra of all bounded analytic functions on Σθ (resp. Σθ × Σθ′),
equipped with the supremum norm. For a linear operator A on a Banach space X, D(A),
R(A), σ(A) and ρ(A) will denote respectively its domain, range, spectrum and resolvent
set. The sum of two linear operators will always be meant with domain D(A + B) =
D(A) ∩ D(B) and the product with domain D(AB) = {x ∈ D(B), Bx ∈ D(A)}. Let
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0 < ω < π, A is said to be sectorial of type ω if A is closed, injective, with dense range
and domain and if it satisfies the following spectral conditions:

σ(A) ⊂ Σω and ∀ θ ∈ (ω, π), sup
λ/∈Σθ

∥∥λ(λ−A)−1
∥∥ <∞. (1)

If for any ω in (0, π), A is sectorial of type ω, we will say that A is sectorial of type 0.
Let A be a sectorial operator of type ω and let θ in (ω, π). We refer the reader to [19] for
the definition of the bounded imaginary powers of A and to [15] for the construction of
the H∞(Σθ) functional calculus associated with A. We will just recall the construction of
McIntosh’s joint functional calculus.
Consider A and B two sectorial operators with commuting resolvents, of respective types
ω and ω′. For (µ, µ′) in (ω, π)× (ω′, π), let

H∞
0 (Σµ × Σµ′) = {f ∈ H∞(Σµ × Σµ′) ; ∃ s > 0 / Φ−sf ∈ H∞(Σµ × Σµ′)},

where Φ(z, z′) =
zz′

(1 + z)2(1 + z′)2
. Then, for any F in H∞

0 (Σµ × Σµ′), we set

F (A,B) = − 1

4π2

∫
Γθ×Γθ′

F (λ, λ′)(λ−A)−1(λ′ −B)−1dλ dλ′ (2)

where (θ, θ′) ∈ (ω, µ)× (ω′, µ′) and Γθ is the oriented contour defined by:

Γθ(t) :

{
−teiθ if −∞ < t ≤ 0

te−iθ if 0 ≤ t < +∞

We have in particular that Φ(A,B) = A(I+A)−2B(I+B)−2 which is a bounded one to one
operator with a dense range and we denote by Φ(A,B)−1 its inverse defined on R(Φ(A,B)).
Then, for F in H∞(Σµ × Σµ′), F (A,B) := Φ(A,B)−1(FΦ)(A,B) is closed and densely
defined. If this extends to a bounded algebra homomorphism from H∞(Σµ × Σµ′) into
L(X), we say that (A,B) admits a bounded H∞(Σµ × Σµ′) joint functional calculus (see
[1] and [12] for details). Notice that (2) makes sense for F in H∞

0 (Σµ×Σµ′) even if A and
B are not injective or with dense range.
We also introduce (ri)i≥1, the sequence of Rademacher functions on I = [0, 1] and we say
that a Banach space X has property (α) if there exists a constant C > 0 such that for

every integer n and every choice of (αi,j) in |Cn2

and (xi,j) in X
n2

.∥∥∥ ∑
1≤i,j≤n

αi,j(ri ⊗ rj)xi,j

∥∥∥
L2(I×I;X)

≤ C sup
1≤i,j≤n

|αi,j |
∥∥∥ ∑
1≤i,j≤n

(ri ⊗ rj)xi,j

∥∥∥
L2(I×I;X)

. (α)

Aknowledgements. It is the author’s pleasure to express his gratitude to all those who
made his stay at the University of Missouri, Columbia so valuable. He also wants to thank
C. Le Merdy for many helpful comments.
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2. COUNTEREXAMPLES

Before to proceed with the the construction of our counterexamples, we need to state
two well known lemmas, that can essentially be found in [2] or [21] for instance.

Lemma 2.1. Let X be a Banach space with a Schauder basis (xn)n≥0 and let (x∗n)n≥0

be the sequence of corresponding coordinate functionals. For a fixed sequence (an)n≥0 of
complex numbers, we set

D(A) = {x ∈ X :
∑
n≥0

anx
∗
n(x)xn converges in X}

and for x in D(A), we define Ax =
∑

n≥0 anx
∗
n(x)xn. Then:

(i) A is closed and densely defined.

(ii) If for any n ≥ 0 an ̸= 0, then A is injective and has a dense range.

(iii) If (an)n≥0 is a non decreasing sequence of positive real numbers, then A is invertible
and sectorial of type 0.

Let T be the unit circle equipped with its Haar measure. For n in ZZ and t in (−π, π)
(identified with T), let en(t) = eint. The next lemma is a slight modification of Lemma
2.1, describing the sectorial Fourier multipliers on Lp(T), for p ∈ (1,+∞).

Lemma 2.2. Let 1 < p <∞ and let (an)n∈ZZ ⊂ |C. We define

D(A) = {f ∈ Lp(T) :
∑

−N≤n≤N

anf̂(n)en converges in Lp(T) as N tends to +∞}

and for f in D(A), Af = ∥ ∥Lp − lim
N∑
−N

anf̂(n)en. Then:

(i) A is closed and densely defined.

(ii) If for any n ∈ ZZ an ̸= 0, then A is injective and has a dense range.

(iii) If (an)n∈ZZ is non decreasing from ZZ into (0,+∞), then A is sectorial of type 0.

Proof. We will only show that A satisfies the sectoriality estimates of (1), in the setting
of Lemma 2.2. For the rest of the proof we refer to [21].
Let λ = |λ|eiθ with 0 < |θ| ≤ π and |λ| > 0. For any n in ZZ:

1

|λ− an|
≤ 1

dist(λ, IR+)
=
Cθ

|λ|
, (3)

where Cθ is a constant depending only on θ.
Moreover, ∑

n∈ZZ

∣∣∣ 1

λ− an
− 1

λ− an+1

∣∣∣ = 1

|λ|
∑
n∈ZZ

∣∣∣φ(an+1

|λ|
)− φ(

an
|λ|

)
∣∣∣,
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where φ(x) =
1

1− xe−iθ
, for x ≥ 0. Since (an)n∈ZZ is non decreasing, we have

∑
n∈ZZ

∣∣∣ 1

λ− an
− 1

λ− an+1

∣∣∣ ≤ 1

|λ|

∫ ∞

0

d x

|1− xe−iθ|2
=
C ′

θ

|λ|
, (4)

where C ′
θ depends only on θ. Then, in view of Marcinkiewicz’s multiplier theorem, it

follows clearly from (3) and (4) that A is sectorial of type 0, with

∀λ ∈ |C \ [0,+∞), ∀f ∈ Lp(T) : (λ−A)−1f =
∑
n∈ZZ

1

λ− an
f̂(n)en. ⋄

Until the end of this section, A will denote the multiplier on Lp(T), for 1 < p < ∞,
associated as in Lemma 2.2 with the sequence (an)n∈ZZ = (2n)n∈ZZ. From Lemma 2.2, it
follows that A is sectorial of type 0. Moreover, it is clear that for any s in IR, Ais is the
Fourier multiplier associated with the sequence (2ins)n∈ZZ, which is a translation operator.
In particular, for any s in IR, ∥Ais∥ = 1.
On the other hand, it is worth noticing already that if 1 < p ̸= 2 < ∞, then A fails to
admit a bounded H∞(Σπ) functional calculus. Indeed, (2n)n∈ZZ is a so-called Carleson
interpolating sequence. More precisely, there exists a positive constant M such that for
any bounded sequence of complex numbers (αn)n∈ZZ, there is f in H∞(Σπ) satisfying
∥f∥H∞(Σπ) ≤ M sup |αn| and f(2n) = αn for every n in ZZ (see [11] for instance). Then,
the conclusion follows from the fact that for 1 < p ̸= 2 < +∞, there are bounded scalar
sequences whose associated Fourier multipliers are unbounded on Lp(T).
We can now state the main result of this section.

Theorem 2.3. Let A be defined as above.

1) If 1 < p ̸= 2 < +∞, then there exists an operator B on Lp(T), sectorial of type 0,
resolvent commuting with A and such that A+B is not closed.

2) If p > 2, then there exists an operator C on H = L2(T), sectorial of type 0 and such
that A + C is not closed on Lp(T;H), where A and C denote respectively the closures of
A⊗ IH and ILp(T) ⊗ C.

Proof of 1). It is well known that, for 1 < p ̸= 2 < +∞, (en)n≥1 is a conditional basic
sequence in Lp(T). So there exists a choice of signs ε in {−1, 1}IN such that the operator
Sε defined on span{en;n ≥ 1}, the vector space spanned by (en)n≥1, as follows:

Sε

( N∑
n=1

xnen
)
=

N∑
n=1

ε(n)xnen

is unbounded for the norm of Lp(T).
For n ≤ 0, we set bn = 1; for n ≥ 1 we set bn = 2n if ε(n) = 1 and bn = 2n−1 if
ε(n) = −1. (bn)n∈ZZ is non decreasing from ZZ into (0,+∞). Therefore, by Lemma 2.2,
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the corresponding Fourier multiplier B is sectorial of type 0. B admits clearly a bounded
inverse. It is then well known (see [8,9] for instance) that A + B is closed if and only if
there is a constant K > 0 such that:

∀x ∈ D(A) ∩D(B) ∥Ax∥ ≤ K∥Ax+Bx∥. (5)

From the definition of A and B (see Lemma 2.2), it follows clearly that D(A) ∩ D(B)
contains span{en;n ≥ 1}. Now, if (5) was fulfilled we would have that for any finite
sequence (xn)

N
n=1 in |C:

∥∥ N∑
n=1

2nxnen
∥∥ ≤ K

∥∥ N∑
n=1

(2n + bn)xnen
∥∥.

And therefore, replacing xn by
xn

2n + bn
,

∥∥ N∑
n=1

2n

2n + bn
xnen

∥∥ ≤ K
∥∥ N∑

n=1

xnen
∥∥.

But, for n ≥ 1,
2n

2n + bn
is either

1

2
or

2

3
. Precisely, the restriction to span{en;n ≥ 1} of

the corresponding multiplier is
7

12
Id− 1

12
Sε, which is unbounded. Therefore A+B is not

closed. ⋄

Remark. The following question seems to be open: does there exist such a counterexam-
ple, on an Lp-space or more generally on a UMD Banach space, with B sectorial but A
admitting a bounded H∞ functional calculus?

Proof of 2). We first need to introduce some notations. Let 0 < β <
1

2
. For n in ZZ and t

in (−π, π), we let fn(t) = |t|−βeint. It is known that (f0, f−1, f1, ...) is a conditional basis
of H (see [20, p. 428]). We need the following lemma:

Lemma 2.4. For n ≥ 0, let un = en ⊗ fn ∈ Lp(T;H).

If
1

2

(1
2
+

1

p

)
< β <

1

2
, then (un)n≥0 is a conditional basic sequence in Lp(T;H).

End of proof of 2). Pick ε in {−1, 1}IN such that the operator Tε defined on
span{un;n ≥ 0} by:

Tε(
∑

0≤n≤N

xnun) =
∑

0≤n≤N

ε(n)xnun

is unbounded for the norm of Lp(T;H). Let now C be the multiplier on the basis
(f0, f−1, f1, ...) associated with the sequence (cn)n∈ZZ defined by:

if n ≥ 0 and ε(n) = 1 then cn = 2n

if n ≥ 0 and ε(n) = −1 then cn = 2n−1

if n < 0 then cn = c|n+1| = c|n|−1.
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The sequence (c0, c−1, c1, ...) is non decreasing. So by Lemma 2.1, C is sectorial of type

0 on H. On the other hand, for any n ≥ 0,
2n

2n + cn
=

7

12
− 1

12
ε(n). Then, using

the same arguments as above, it follows from the unboundedness of Tε and the inclusion
span{un;n ≥ 0} ⊆ D(A) ∩D(C) that A+ C is not closed. ⋄

Proof of Lemma 2.4. Let us first assume that (un)n≥0 is an unconditional basic sequence.
So there exists K1 > 0 so that, for any N ≥ 0 and any (an)

N
n=0 ⊂ |C:

K−1
1

∥∥∥ N∑
n=0

anrn⊗un
∥∥∥
L1(I;Lp(T;H))

≤
∥∥∥ N∑

n=0

anun

∥∥∥
Lp(T;H)

≤ K1

∥∥∥ N∑
n=0

anrn⊗un
∥∥∥
L1(I;Lp(T;H))

.

Then it follows from a generalization of the classical Khintchine inequality (due to Maurey
[14] in the most general case of a Banach lattice with finite cotype, see also [13, p. 49-50])
that there exists K2 > 0 such that, for any N ≥ 0 and any (an)

N
n=0 ⊂ |C:

K−1
2

∥∥∥( N∑
n=0

|anun|2
)1/2∥∥∥

Lp(T;H)
≤

∥∥∥ N∑
n=0

anun

∥∥∥
Lp(T;H)

≤ K2

∥∥∥( N∑
n=0

|anun|2
)1/2∥∥∥

Lp(T;H)
.

But ∥∥∥( N∑
n=0

|anun|2
)1/2∥∥∥

Lp(T;H)
=

∥∥∥( N∑
n=0

|anfn|2
)1/2∥∥∥

H
.

Therefore, since H is 2-concave and 2-convex (see [13] for definitions), there exists K3 > 0
such that, for any N ≥ 0 and any (an)

N
n=0 ⊂ |C:

K−1
3

( N∑
n=0

|an|2
)1/2 ≤

∥∥∥ N∑
n=0

anun

∥∥∥
Lp(T;H)

≤ K3

( N∑
n=0

|an|2
)1/2

.

So it is enough to show that (un)n≥0 is not equivalent to the canonical basis of l2. For
that purpose we will construct a sequence of scalars (αn) such that

∑
n≥0 |αn|2 < +∞ and∑

n≥0 αnun diverges in Lp(T;H).

Let
1

2
+

1

p
− β < α <

1

2
and let f in L2(T) defined by f(u) =

1

|u|α
for u ∈ (−π, π) \ {0}.

For n ≥ 0, we set αn = f̂(n). Since f is in L2(T), we have
∑

n∈ZZ |f̂(n)|2 <∞. Moreover,

f is even, so for any n in ZZ, f̂(−n) = f̂(n). In order to conclude our proof, it is therefore

sufficient to show that the sequence
( N∑
−N

f̂(n)un
)
N≥0

does not converge in Lp(T;H).

Let us assume that this sequence is convergent and notice the following obvious identity:

∀(s, t) ∈ (−π, π)2,
N∑
−N

f̂(n)en(s)fn(t) = |t|−β
N∑
−N

f̂(n)ein(s+t).
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Then, we have that ψ, defined by

ψ(s) =
(∫ π

−π

|f(s+ t)|2

|t|2β
)1/2

for a.e. s ∈ (−π, π)

belongs to Lp(−π, π). But it is easy to check that this not the case for our choice of α and
β. ⋄

3. JOINT FUNCTIONAL CALCULUS FOR PARTIAL DERIVATIONS

Let X be a Banach space. For (s, t) in IR2 we denote by τ(s,t) the translation operator
of vector (s, t) on L2(IR2;X). Let U and V be respectively the generators of the C0-groups

(τ(s,0))s∈IR and (τ(0,t))t∈IR. Then it is well known that U and V are sectorial of type
π

2
and that, for

π

2
< µ < π, the following are equivalent [9,18]:

1) U admits a bounded H∞(Σµ) functional calculus.
2) V admits a bounded H∞(Σµ) functional calculus.
3) X is a UMD Banach space.

We now recall a vector valued multiplier theorem due to Zimmermann [22], that we will
state only on L2(T2;X) and in a simpler form sufficient for our purpose. We shall need
the notation: I1 = {0} ⊂ ZZ and for n ∈ IN, In = {k ∈ ZZ : 2n−2 ≤ |k| < 2n−1}.

Theorem 3.1 (Zimmermann [22]). Let X be a UMD Banach space with property (α).
Then, every bounded sequence a = (a(k,l))(k,l)∈ZZ2 which is constant on each set In × Ip,

(n, p) ∈ IN2, defines a bounded L2(T2;X)-Fourier multiplier Ma. Moreover, there exists
C > 0 so that, for all such sequences a, we have

∥Ma∥ ≤ Csup {|a(k,l)|, (k, l) ∈ ZZ2}.

Remark. For 1 < p < +∞ the Schatten space Sp is UMD [4], but if moreover p ̸= 2, it
fails property (α) [16]. It is also shown in [22] that for 1 < p ̸= 2 < +∞ Theorem 3.1 is
false on X = Sp.

Our result is the following:

Theorem 3.2. Let X be a Banach space and
π

2
< µ < π. Consider U and V defined as

above. The following assertions are equivalent:

(i) (U, V ) admits a bounded H∞(Σµ × Σµ) joint functional calculus.

(ii) X is a UMD space with property (α).

(iii) The conclusion of Theorem 3.1 is satisfied.
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Proof.

(ii) is equivalent to (iii). Theorem 3.1 exactly states that (ii) implies (iii), so let us assume
that (iii) is true. Then it clearly follows that the Riesz projection is bounded on L2(T;X),
which is one characterization of the UMD spaces. Thus we only have to show that X
has property (α). Let n in IN, (αi,j)1≤i,j≤N ∈ |CN2

and (xi,j)1≤i,j≤N ∈ XN2

; recall that
∀z ∈ T ∀k ∈ ZZ ek(z) = zk. It follows from (iii) that:∥∥∥ ∑

1≤i,j≤n

αi,j(e2i ⊗ e2j )xi,j

∥∥∥
L2(T

2
;X)

≤ C sup
1≤i,j≤n

|αi,j |
∥∥∥ ∑
1≤i,j≤n

(e2i ⊗ e2j )xi,j

∥∥∥
L2(T

2
;X)
.

It remains to prove that the sequence (ri)i≥1 can be replaced by the sequence (e2i)i≥1

in the definition of property (α). This is well known in one variable and the results of
G. Pisier on Sidon sets [17] imply the existence of a constant K > 0 such that for every
Banach space Y and every finite sequence (y1, .., yn) in X:

1

K

∥∥∥ ∑
1≤i≤n

e2iyi

∥∥∥
L2(T;Y )

≤
∥∥∥ ∑
1≤i≤n

riyi

∥∥∥
L2(I;Y )

≤ K
∥∥∥ ∑
1≤i≤n

e2iyi

∥∥∥
L2(T;Y )

.

Applying this to Y = L2(T;X) or L2(I;X), we obtain that for every Banach space X and
every family (xi,j)1≤i,j≤n in X:

1

K2

∥∥∥ ∑
1≤i,j≤n

(e2i ⊗ e2j )xi,j

∥∥∥
L2(T

2
;X)

≤
∥∥∥ ∑
1≤i,j≤n

(ri ⊗ rj)xi,j

∥∥∥
L2(I2;X)

≤ K2
∥∥∥ ∑
1≤i≤n

(e2i ⊗ e2j )xi,j

∥∥∥
L2(T

2
;X)
.

(ii) implies (i). Since X is UMD, we already know that for every µ in (
π

2
, π), U and V

admit a bounded H∞(Σµ) functional calculus. X has property (α) and therefore, so does
L2(T2;X). Then (i) follows from [12, Theorem 3.3].

(i) implies (ii). Assume that (U, V ) admits a bounded H∞(Σµ × Σµ) joint functional
calculus. It is then clear that U and V admit a bounded H∞(Σµ) functional calculus and
consequently that X is UMD. In order to prove property (α) for X, we introduce U0 and
V0 the respective generators of the C0-groups (T(s,0))s∈IR and (T(0,t))t∈IR, where

∀(s, t) ∈ IR2 ∀f ∈ L2(T;X), (T(s,t)f)(e
iu, eiv) = f(ei(u+s), ei(v+t)).

Lemma 3.3. There is a constant K > 0 such that

∀F ∈ H∞
0 (Σµ ⊗ Σµ) ∥F (U0, V0)∥L(L2(T

2
;X))

≤ K∥F∥H∞(Σµ⊗Σµ).
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Proof. Let Rµ be the algebra of all rational functions, belonging to H∞
0 (Σµ). For any f

in Rµ There exists k in L1(IR+) such that:

∀ z ∈ Σπ
2

: f(z) =

∫ ∞

0

e−szk(s) ds .

It follows that for any F in Rµ ⊗Rµ, there is K in L1(IR+)⊗ L1(IR+) so that:

∀ (z, z′) ∈ Σπ
2
× Σπ

2
: F (z, z′) =

∫ ∞

0

∫ ∞

0

e−sze−tz′
K(s, t) dsdt .

Then, for such an F :

F (U, V ) =

∫ ∞

0

∫ ∞

0

τ(s,t)K(s, t) dsdt and F (U0, V0) =

∫ ∞

0

∫ ∞

0

T(s,t)K(s, t) dsdt .

Therefore Calderon’s results on transference (see [6]) and assumption (i) yield the existence
of a constant K1 > 0 so that

∀F ∈ Rµ ⊗Rµ ∥F (U0, V0)∥L(L2(T
2
;X))

≤ K1∥F∥H∞(Σµ×Σµ). (6)

Let now F in H∞
0 (Σµ ⊗ Σµ) and fix ε > 0. For z, z′ ̸= −1

ε
, we set gε(z) =

ε+ z

1 + εz
and

Gε(z, z
′) = (gε(z), gε(z

′)). We denote Ωε = gε(Σµ), Ωε = gε(Σµ) is a compact subset
of Σµ. For an open subset U of |C or |C2, A(U) is the algebra of all complex valued
functions, continuous on U and holomorphic on U . Since Ωε/2 is a conformal image of the
unit disk, there is a sequence (Gn) in A(Ωε/2)⊗A(Ωε/2) such that Gn → F uniformly on

Ωε/2×Ωε/2. Then Runge’s theorem implies that there is a sequence (Fn) in R̃µ⊗R̃µ with

Fn ◦Gε → F ◦Gε uniformly on Σµ ×Σµ, where R̃µ is the algebra of all rational functions
of nonpositive degree and with poles outside Σµ.
Since Fn ◦ Gε is not in H∞

0 and U0 and V0 are not injective, we need to use an other
standard approximation argument. So, for z, z′ in Σµ and m in IN, let now φm(z) =

m2z

(m+ z)(1 +mz)
and Φm(z, z′) = φm(z)φm(z′). Note that for any 0 < µ < π, (φm) ⊂

H∞
0 (Σµ) and there exists Cµ > 0 such that for every m, ∥φm∥H∞(Σµ) ≤ Cµ. Then, it

follows from (6) that

∀m > 0 ∀n > 0 ∥[(Fn ◦Gε)Φm](U0, V0)∥ ≤ K1∥Φm∥H∞(Σµ×Σµ)∥Fn ◦Gε∥H∞(Σµ×Σµ).

Therefore

∀m > 0 ∥[(F ◦Gε)Φm](U0, V0)∥ ≤ K1C
2
µ∥F ◦Gε∥H∞(Σµ×Σµ).

On the other hand, Lebesgue’s dominated convergence theorem implies

lim
ε→0

[(F ◦Gε)Φm](U0, V0) = F (U0, V0)Φm(U0, V0).
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Finally, using the so-called Convergence Lemma ([7], or [12] for a two variables version) as
m tends to +∞, we get the desired inequality. ⋄

Lemma 3.4. There is a constant M > 0 such that for every (αn,p)1≤n,p≤N in |CN2

, there
exists F in H∞(Σπ × Σπ) satisfying:

∀(n, p) F (i2n, i2p) = αn,p and ∥F∥H∞(Σπ×Σπ) ≤M sup
1≤n,p≤N

|αn,p|.

Proof. We only mention that it relies on the fact that (i2n) is a Carleson interpolating
sequence in Σπ ([11], see also [12, section 3] for further details). ⋄

End of proof of Theorem 3.2. Let (xn,p)1≤n,p≤N ⊂ X. By the Cauchy Residue
Formula,

∀G ∈ H∞
0 (Σµ × Σµ), G(U0, V0)

∑
(e2n ⊗ e2p)xn,p =

∑
G(i2n, i2p)(e2n ⊗ e2p)xn,p.

Therefore, it follows from Lemmas 3.3 and 3.4 that for every (αn,p)1≤n,p≤N in |CN2

:∥∥∥ ∑
1≤n,p≤N

φm(i2n)φm(i2p)αn,p(e2n ⊗ e2p)xn,p

∥∥∥
L2(T

2
;X)

≤

MC2
νK sup

1≤n,p≤N
|αn,p|

∥∥∥ ∑
1≤n,p≤N

(e2n ⊗ e2p)xn,p

∥∥∥
L2(T

2
;X)
.

Finally, for all z in Σπ, lim
m→+∞

φm(z) = 1, so

∥∥∥ ∑
1≤n,p≤N

αn,p(e2n ⊗ e2p)xn,p

∥∥∥
L2(T

2
;X)

≤

MC2
νK sup

1≤n,p≤N
|αn,p|

∥∥∥ ∑
1≤n,p≤N

(e2n ⊗ e2p)xn,p

∥∥∥
L2(T

2
;X)
,

which yields property (α). ⋄
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