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Prescribed Szlenk index of separable Banach spaces

by

R. M. Causey (Oxford, OH) and G. Lancien (Besançon)

Abstract. In a previous work, the first named author described the set P of all values
of the Szlenk indices of separable Banach spaces. We complete this result by showing that
for any integer n and any ordinal α in P, there exists a separable Banach space X such
that the Szlenk index of the dual of order k of X is equal to the first infinite ordinal ω for
all k in {0, . . . , n− 1} and equal to α for k = n. One of the ingredients is to show that the
Lindenstrauss space and its dual both have Szlenk index equal to ω. We also show that
any element of P can be realized as the Szlenk index of a reflexive Banach space with an
unconditional basis.

1. Introduction and notation. In this paper we exhibit some new
properties of the Szlenk index, an ordinal index associated with a Banach
space. More precisely we study the values that can be achieved as the Szlenk
index of a Banach space and of its iterated duals. Let us first recall the
definition of the Szlenk index.

Let X be a Banach space, K a weak∗-compact subset of its dual X∗ and
ε > 0. Then we define

s1ε(K) = {x∗ ∈ K : for any weak∗-neighborhood U of x∗, diam(K ∩U) ≥ ε}
and inductively the sets sαε (K) for α ordinal as follows: sα+1

ε (K) = s1ε(s
α
ε (K))

and sαε (K) =
⋂
β<α s

β
ε (K) if α is a limit ordinal.

Then we let Sz(K, ε) = inf{α : sαε (K) = ∅} if it exists, and Sz(K, ε) =∞
otherwise. Next we define Sz(K) = supε>0 Sz(K, ε). The closed unit ball
of X∗ is denoted BX∗ , and the Szlenk index of X is Sz(X) = Sz(BX∗).

The Szlenk index was first introduced by W. Szlenk [21], in a slightly
different form, in order to prove that there is no separable reflexive Banach
space universal for the class of all separable reflexive Banach spaces. The
key ingredients in [21] are that the Szlenk index of a separable reflexive
space is always countable and that for any countable ordinal α, there exists
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a separable reflexive Banach space with Szlenk index larger than α. It has
been remarked in [15] that, when it is different from∞, the Szlenk index of a
Banach space is always of the form ωα for some ordinal α. Here, ω denotes the
first infinite ordinal. On the other hand, it follows from the work of Bessaga
and Pełczyński [4] and Samuel [20] that ifK is an infinite, countable, compact
topological space, then the Szlenk index of the space of continuous functions
on K is ωα+1, where α is the unique countable ordinal such that ωα ≤
CB(K) < ωα+1 and CB(K) is the Cantor–Bendixson index of K. Finally,
the set of all possible values for the Szlenk index of a Banach space was
completely described in [7, Theorem 1.5]. One consequence of this general
result is that for any countable ordinal α, there exists an infinite-dimensional
separable Banach space X with Sz(X) = α if and only if α ∈ Γ \ Λ, where

Γ = {ωξ : ξ ∈ [1, ω1)} and Λ = {ωωξ : ξ ∈ [1, ω1) and ξ is a limit ordinal}.

Our first result shows that there is quite some freedom in prescribing the
Szlenk indices of the iterated duals of a separable Banach space. We shall use
the notation Z(n) for the nth dual of a Banach space Z. Then our statement
is the following.

Theorem 1.1. Let n ∈ N and α ∈ Γ \ Λ. Then there exists a separable
Banach space Zn such that for all k ∈ {0, . . . , n− 1},

Sz(Z(k)
n ) = ω and Sz(Z(n)

n ) = α.

The above result relies on a statement of independent interest. Let us first
recall that in [16], J. Lindenstrauss constructed, for any separable Banach
space X, a Banach space Z such that Z∗∗/Z is isomorphic to X. We prove
the following.

Theorem 1.2. For any separable Banach space X, the associated Lin-
denstrauss space Z satisfies

Sz(Z) = Sz(Z∗) = ω.

Theorem 1.2 and then Theorem 1.1 are proved in Section 2. In Section 3,
we show the following refinement of [7, Theorem 1.5].

Theorem 1.3. For any α∈Γ \Λ there exists a separable reflexive Banach
space Gα with an unconditional basis such that

Sz(Gα) = α and Sz(G∗α) = ω.

We conclude this introduction by recalling the definitions of some uniform
asymptotic properties of norms that we will use. For a Banach space (X, ‖ ‖)
we denote by BX the closed unit ball of X and by SX its unit sphere. The
following definitions are due to V. Milman [18] and we follow the notation
from [13]. For t ∈ [0,∞), x ∈ SX and Y a closed linear subspace of X, we



Prescribed Szlenk index of separable Banach spaces 3

define

ρX(t, x, Y ) = sup
y∈SY

(‖x+ ty‖ − 1) and δX(t, x, Y ) = inf
y∈SY

(‖x+ ty‖ − 1).

Then

ρX(t, x) = inf
dim(X/Y )<∞

ρX(t, x, Y ) and δX(t, x) = sup
dim(X/Y )<∞

δX(t, x, Y ).

Finally,

ρX(t) = sup
x∈SX

ρX(t, x) and δX(t) = inf
x∈SX

δX(t, x).

The norm ‖ ‖ is said to be asymptotically uniformly smooth (AUS for
short) if

lim
t→0

ρX(t)

t
= 0.

It is asymptotically uniformly convex (AUC ) if

∀t > 0, δX(t) > 0.

Let p ∈ (1,∞) and q ∈ [1,∞). We say that the norm of X is

• p-AUS if there exists c > 0 such that ρX(t) ≤ ctp for all t ∈ [0,∞);
• q-AUC if there exists c > 0 such that δX(t) ≥ ctq for all t ∈ [0, 1].

Similarly, there is on X∗ a modulus of weak∗ asymptotic uniform con-
vexity defined by

δ
∗
X(t) = inf

x∗∈SX∗
sup
E

inf
y∗∈SE

(‖x∗ + ty∗‖ − 1),

where E runs through all weak∗-closed subspaces ofX∗ of finite codimension.
The norm of X∗ is said to be weak∗ asymptotically uniformly convex (for
short weak∗-AUC ) if δ∗X(t) > 0 for all t in (0,∞). If there exist c > 0 and
q ∈ [1,∞) such that δ∗X(t) ≥ ctq for all t ∈ [0, 1], we say that the norm of
X∗ is q-weak∗-AUC.

We will need the following classical duality result concerning these moduli
(see for instance [10, Corollary 2.3] for a precise statement).

Proposition 1.4. Let X be a Banach space. Then ‖ ‖X is AUS if and
only if ‖ ‖X∗ is weak∗-AUC.

If p, q ∈ (1,∞) are conjugate exponents, then ‖ ‖X is p-AUS if and only
if ‖ ‖X∗ is q-weak∗-AUC.

Finally, let us recall the following fundamental result, due to Knaust,
Odell and Schlumprecht [14], which relates the existence of equivalent asymp-
totically uniformly smooth norms and the Szlenk index.

Theorem 1.5 (Knaust–Odell–Schlumprecht). Let X be a separable in-
finite-dimensional Banach space. Then X admits an equivalent norm which
is asymptotically uniformly smooth if and only if Sz(X) = ω.
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2. Prescribed Szlenk index of iterated duals

2.1. Renormings of the Lindenstraus space and of its dual. We
recall the construction given by J. Lindenstrauss [16] (see also [17, Theo-
rem 1.d.3]) and introduce notation that will be used throughout this sec-
tion. We refer the reader to the textbooks [17] and [1] for a presentation
of the standard notions of a Schauder, shrinking, boundedly complete or
unconditional basis of a Banach space.

Let (X, ‖ ‖X) be a separable Banach space. Assume X 6= {0} and fix a
dense sequence (xi)

∞
i=1 in the unit sphere SX of X. Let

E =
{
a = (ai)

∞
i=1 ∈ RN :

‖a‖E = sup
0=p0<p1<···<pk

( k∑
j=1

∥∥∥ pj∑
i=pj−1+1

aixi

∥∥∥2
X

)1/2
<∞

}
.

Then (E, ‖ ‖E) is a Banach space. Let (ei)
∞
i=1 be the canonical algebraic

basis of c00, the space of finitely supported real-valued sequences. It is
clear that (ei)

∞
i=1 is a boundedly complete basis of E. It follows that E

is isometric to the dual Y ∗ of a Banach space Y with a shrinking basis.
If (e∗i )

∞
i=1 is the sequence of coordinate functionals associated with the ba-

sis (ei)
∞
i=1 of E, then the canonical image of Y in its bidual Y ∗∗ is the

closed linear span of {e∗i : i ≥ 1} and (e∗i )
∞
i=1 can be seen as a shrinking

basis of Y . Note now that if a = (ai)
∞
i=1 ∈ E, then the series

∑∞
i=1 aixi

is converging in X. It is important to note that the density of (xi)∞i=1 in
SX implies that the map Q : E → X defined by Q(a) =

∑∞
i=1 aixi is

linear, onto, ‖Q‖ = 1, and the open mapping constant of Q is 1. Conse-
quently, Q∗ is an isometry from X∗ into Y ∗∗. The main result of [16] is
that

Y ∗∗ = Ŷ ⊕Q∗(X∗),

where Ŷ is the canonical image of Y in Y ∗∗, and the projection from Y ∗∗

onto Q∗(X∗) with kernel Ŷ has norm 1. In particular, Y is isomorphic to
the quotient space Y ∗∗/Q∗(X∗).

Now let Z denote the kernel of Q. Then Z is a subspace of E = Y ∗ and
its orthogonal Z⊥ is clearly equal to Q∗(X∗). It follows from the classical
duality theory that Z∗ is isometric to Y ∗∗/Q∗(X∗) and therefore isomorphic
to Y . If I is the inclusion map from Z into Y ∗ and JY is the canonical
injection from Y into Y ∗∗, then an isomorphism from Y onto Z∗ is given
by T = I∗JY . Finally, if JZ is the canonical injection from Z into Z∗∗, it is
easy to check that T ∗JZ = IdZ . It follows immediately that Z∗∗/JZ(Z) (or
simply Z∗∗/Z) is isomorphic to Y ∗/Z and therefore to X.

The purpose of this subsection is to prove Theorem 1.2. In fact, our result
is stronger.
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Theorem 2.1. For any separable Banach space X, the associated Lin-
denstrauss space Z satisfies the following properties:

(i) The space Z∗ admits an equivalent norm which is 2-AUS.
(ii) The space Z admits an equivalent norm which is 2-AUS.

We start with the proof of the easy part (i) which can be precisely stated
as follows.

Proposition 2.2. The norm ‖ ‖E is 2-weak∗-AUC on Y ∗ = E and
therefore ‖ ‖Y is 2-AUS. In particular, Z∗ admits an equivalent norm which
is 2-AUS, there exists C > 0 such that Sz(Z∗, ε) ≤ Cε−2 for all ε > 0, and
Sz(Y ) = Sz(Z∗) = ω.

This result is an immediate consequence of the following elementary
lemma.

Lemma 2.3. Let a, b ∈ E and assume that there exists k ∈ N such that
the sequence a is supported in [1, k] while b is supported in [k + 3,∞). Then

‖a+ b‖2E ≥ ‖a‖2E + ‖b‖2E .

Proof. Since a is supported in [1, k], we can find a sequence 0 = p0 <
p1 < · · · < pm = k + 1 such that

‖a‖2E =
m∑
j=1

∥∥∥ pj∑
i=pj−1+1

aixi

∥∥∥2
X
.

Fix η > 0. Since b is supported in [k+3,∞), we can find a sequence k+1 =
q0 < q1 < · · · < qr such that

‖b‖2E ≥
r∑
j=1

∥∥∥ qj∑
i=qj−1+1

bixi

∥∥∥2
X
− η.

Let nj = pj for j ∈ {0, . . . ,m} and nj = qj−m for m ≤ j ≤ m+ r. Then

‖a+ b‖2E ≥
m+r∑
j=1

∥∥∥ nj∑
i=nj−1+1

(a+ b)ixi

∥∥∥2
X
≥ ‖a‖2E + ‖b‖2E − η.

We now turn to the proof of Theorem 2.1(ii), which will rely on the
following technical lemma.

Lemma 2.4. Assume that a1, . . . , aN are skipped blocks with respect to
the basis (ei)

∞
i=1 of E, meaning that there exist 0 = r0 < r1 < · · · < rN such

that
∀k ∈ {1, . . . , N}, supp(ak) ⊂ (rk−1, rk),



6 R. M. Causey and G. Lancien

and denote εk = ‖
∑∞

i=1 a
k
i xi‖X . Then∥∥∥ N∑

k=1

ak
∥∥∥
E
≤

N∑
k=1

εk + 2
( N∑
k=1

‖ak‖2E
)1/2

.

Proof. Fix 0 = p0 < p1 < · · · < pm and assume without loss of generality
that pm ≥ rN . Then for j ∈ {1, . . . ,m} we denote

Aj = {k ≤ N : (rk−1, rk) ⊂ (pj−1, pj ]}, A =

m⋃
j=1

Aj , B = {1, . . . ,m}\A.

We first estimate( m∑
j=1

∥∥∥ pj∑
i=pj−1+1

(∑
k∈A

aki

)
xi

∥∥∥2
X

)1/2
≤

m∑
j=1

∥∥∥ pj∑
i=pj−1+1

(∑
k∈A

aki

)
xi

∥∥∥
X

=
m∑
j=1

∥∥∥ ∑
k∈Aj

pj∑
i=pj−1+1

aki xi

∥∥∥
X
≤

m∑
j=1

∑
k∈Aj

∥∥∥ pj∑
i=pj−1+1

aki xi

∥∥∥
X

and obtain

(2.1)
( m∑
j=1

∥∥∥ pj∑
i=pj−1+1

(∑
k∈A

aki

)
xi

∥∥∥2
X

)1/2
≤

m∑
j=1

∑
k∈Aj

εk ≤
N∑
k=1

εk.

So we may assume that B is not empty and enumerate B = {ak(1), . . . , ak(L)}
with k(1) < · · · < k(L). Note that for 1 ≤ l ≤ L, supp(ak(l)) ⊂ (rk(l)−1, rk(l))
⊂ (rk(l−1), rk(l)), and (rk(l−1), rk(l)) is not included in any of the sets (pj−1, pj ]
for 1 ≤ j ≤ m. Then we define i0 = 0 and il = min{i : pi ≥ rk(l)} for
1 ≤ l ≤ L. From the definition of B, we see that 2 < i1 < · · · < iL and
pil−1 < rk(l) ≤ pil for all l ∈ {1, . . . , L}. We can now write

m∑
j=1

∥∥∥ pj∑
i=pj−1+1

(∑
k∈B

aki

)
xi

∥∥∥2
X

=

L∑
q=1

iq∑
j=iq−1+1

∥∥∥ pj∑
i=pj−1+1

( L∑
l=1

a
k(l)
i

)
xi

∥∥∥2
X
.

Using the convention ak(0) = 0 = ak(L+1) and the properties of our various
sequences we get

m∑
j=1

∥∥∥ pj∑
i=pj−1+1

(∑
k∈B

aki

)
xi

∥∥∥2
X

=
L∑
q=1

iq∑
j=iq−1+1

∥∥∥ pj∑
i=pj−1+1

(a
k(q)
i + a

k(q+1)
i )xi

∥∥∥2
X

≤
L∑
q=1

‖ak(q) + ak(q+1)‖2E ≤ 4
L∑
q=1

‖ak(q)‖2E ≤ 4
N∑
k=1

‖ak‖2E ,
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which yields

(2.2)
( m∑
j=1

∥∥∥ pj∑
i=pj−1+1

(∑
k∈B

aki

)
xi

∥∥∥2
X

)1/2
≤ 2
( N∑
k=1

‖ak‖2E
)1/2

.

The conclusion now clearly follows from (2.1), (2.2) and the triangle inequal-
ity, by taking the supremum over all finite sequences (pj)j .

Before we proceed with the proof of Theorem 2.1, we need to introduce
some notation. For an infinite subset M of N, we denote by [M]<ω the set of
void or finite increasing sequences in M. The void sequence is denoted ∅. For
E ∈ [N]<ω, we denote by |E| the length of E, defined by |E| = 0 if E = ∅
and |E| = k if E = (n1, . . . , nk). For F = (n1, . . . , nl) in [N]<ω, we write
E ≺ F if E = ∅ or E = (n1, . . . , nk) for some k < l, and we then say that E
is a proper initial segment of F . We write E � F if E < F or E = F and we
then say that E is an initial segment of F . For E = (n1, . . . , nk) ∈ [N]<ω and
n ∈ N such that n > nk, (E,n) denotes the sequence (n1, . . . , nk, n), while
(∅, n) is (n). For a Banach space X, we will call a family (xE)E∈[N]<ω in X
a tree in X. Then a family (xE)E∈[N]<ω in a Banach space X is said to be a
weakly null tree if for any E in [N]<ω the sequence (x(E,n))

∞
n is weakly null.

If (xE)E∈[N]<ω is a tree in the Banach space X and M is an infinite subset
of N, we call (xE)E∈[M]<ω a refinement or a full subtree of (xE)E∈[N]<ω .

Proof of Theorem 2.1(ii). Fix a sequence (εn)
∞
n=0 in (0,∞) such that∑∞

n=0 ε
2
n ≤ 1/4. Let (zF )F∈[N]<ω be a weakly null tree in the unit ball BZ . By

extracting a full subtree, we may assume that there exist 0 = r0 < r1 < · · ·
and for any F ∈ [N]<ω \ {∅} there exist aF ∈ BE such that

∀F = (n1, . . . , nk) ∈ [N]<ω \ {∅},
supp(aF ) ⊂ (rnk−1, rnk) and ‖a

F − zF ‖E ≤ εk.
Since (zF )F∈[N]<ω is in the kernel of Q, the last condition implies

∀F ∈ [N]<ω \ {∅},
∥∥∥ ∞∑
i=1

aFi xi

∥∥∥
X
≤ εk.

We can therefore apply Lemma 2.4 and the triangle inequality to deduce
that for all (λF )F∈[N]<ω\{∅} in R and all F ∈ [N]<ω \ {∅},∥∥∥ ∑

∅<G≤F

λGzG

∥∥∥
E
≤ 2

∑
∅<G≤F

|λG|ε|G| + 2
( ∑
∅<G≤F

λ2G

)1/2
.

It then follows from our initial choice of (εn)
∞
n=0 and from the Cauchy–

Schwarz inequality that

∀F ∈ [N]<ω \ {∅},
∥∥∥ ∑
∅<G≤F

λGzG

∥∥∥
E
≤ 3
( ∑
∅<G≤F

λ2G

)1/2
.
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In the terminology introduced in [9] this means that Z satisfies `2 upper tree
estimates. It then follows from [9, Theorem 1.1] that Z admits an equivalent
norm which is 2-AUS.

Remark 2.5. Statement (i) in Theorem 2.1 can be rephrased as follows:
The space Z∗ admits an equivalent norm whose dual norm is 2-weak∗-AUC.
It is important to note that this norm cannot be the dual norm of an equiv-
alent norm on Z. Indeed, a bidual norm cannot be weak∗-AUC unless the
space is reflexive (see the proposition below). In particular, in Lindenstrauss’
construction, the space Y is isomorphic but never isometric to Z∗.

For the convenience of the reader, we state and prove an elementary fact
from which the previous remark follows.

Proposition 2.6. Let Z be a non-reflexive Banach space. Then the norm
of Z∗∗ is not weak∗-AUC.

Proof. Assume that Z is not reflexive, so there exists z∗∗ ∈ SZ∗∗ \ Z.
Pick ε > 0 such that ε < d(z∗∗, Z). Fix δ > 0 so that ε + δ < d(z∗∗, Z)
and a weak∗-closed finite-codimensional subspace E of Z∗∗. We can write
E =

⋂n
i=1Ker z∗i with z∗i ∈ Z∗. Fix now η > 0. Then Goldstine’s theorem

ensures that there exists z ∈ BZ such that |(z∗∗ − z)(z∗i )| < η for all i ≤ n.
If we denote by F the linear span of z∗1 , . . . , z∗n, it follows from elementary
duality theory that

d(z∗∗ − z, E) = ‖z∗∗ − z‖Z∗∗/F⊥ = ‖z∗∗ − z‖F ∗ .
So, if η was chosen small enough, we get d(z∗∗−z, E) < δ. Thus we can pick
e∗∗ ∈ E such that ‖z− z∗∗− e∗∗‖ < δ. Note that this implies that ‖e∗∗‖ > ε.

Now, writing z = z∗∗+e∗∗+z−z∗∗−e∗∗ and using the fact that z ∈ BZ , we
deduce that ‖z∗∗+ e∗∗‖ ≤ 1+ δ. Finally, by convexity, there exists λ ∈ (0, 1)
such that ‖λe∗∗‖ = ε and ‖z∗∗ + λe∗∗‖ ≤ 1 + δ. Since δ could be chosen
arbitrarily small, we deduce that for any weak∗-closed finite-codimensional
subspace E of Z∗∗,

inf
y∗∗∈SE∗∗

‖z∗∗ + εy∗∗‖ ≤ 1,

which implies that δ∗Z∗(ε) = 0 and finishes our proof.

2.2. Proof of Theorem 1.1. We fix α ∈ Γ \ Λ and use induction on
n ∈ N.

For n = 2, letXα (given by [7, Theorem 1.5]) be a separable Banach space
such that Sz(Xα) = α. Then denote by Z2 the Lindenstrauss space such that
Z∗∗2 /Z2 is isomorphic to Xα. By Theorem 1.2 we have Sz(Z2) = Sz(Z∗2 ) = ω.
Next, by [6, Proposition 2.1], there exists C > 0 such that

∀ε > 0, Sz(Z∗∗2 , ε) ≤ Sz(Z∗∗2 /Z2, ε/C) Sz(Z2, ε/C) < α.

The last inequality follows from Sz(Z∗∗2 /Z2, ε/C) < α, Sz(Z2, ε) < ω and
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elementary properties of multiplication of ordinal numbers. We deduce that
Sz(Z∗∗2 ) is at most α and therefore Sz(Z∗∗2 ) = α, since Sz(Z∗∗2 ) ≥ Sz(Z∗∗2 /Z2)
= Sz(Xα) = α. Thus we can choose Z1 = Z∗2 .

Assume now that n ≥ 3 and that spaces Z1, . . . , Zn−1 have been con-
structed with the required indices of the duals. Then denote by Zn the
Lindenstrauss space such that Z∗∗n /Zn is isomorphic to Zn−2. We already
know that Sz(Zn) = Sz(Z∗n) = ω. Since Sz(Zn−2) = ω, we can use the fact
that having Szlenk index ω is a three-space property (see [6]) to deduce that
Sz(Z∗∗n ) = ω. Then using elementary facts about duality, we find that for all
k ≥ 3 the space Z(k)

n is isomorphic to Z(k−2)
n ⊕ Z(k−2)

n−2 , which implies that
Sz(Z(k)) = max{Sz(Z(k−2)

n ),Sz(Z
(k−2)
n−2 )} (see [8]). It now clearly follows that

Sz(Z
(k)
n ) = ω for all k ∈ {0, . . . , n− 1} and Sz(Z

(n)
n ) = α.

3. Prescribing Szlenk indices of reflexive Banach spaces. We now
turn to the proof of Theorem 1.3, which will take a few steps.

First we describe a general construction of a Banach space associated
with a given Banach space with a Schauder basis, which will be essential
further on. As will be clear, this resembles Lindenstrauss’ construction. The
crucial difference is that the dense sequence (xi)∞i=1 in X will be replaced by
a normalized Schauder basis of X.

So assume that (xi)
∞
i=1 is a normalized Schauder basis of the Banach

space X and denote again by (ei)
∞
i=1 the canonical algebraic basis of c00. We

define X`2 as the completion of c00 with respect to the norm∥∥∥ ∞∑
i=1

aiei

∥∥∥
X`2

= sup
{( ∞∑

i=1

∥∥∥ ki∑
j=ki−1+1

ajxj

∥∥∥2
X

)1/2
: 0 ≤ k0 < k1 < · · ·

}
.

This construction is presented in [19, Section 3] in a more general setting.
With the notation from [19], the space X`2 is ZV (E) with Z = X, V = `2
and E the finite-dimensional decomposition of X into the one-dimensional
spaces spanned by the basis vectors (xi)∞i=1 ofX. Clearly, the definition ofX`2

depends on our choice of (xi)∞i=1. However, we shall omit reference to this
dependence in notation.

Note first that (ei)∞i=1 is a basis forX
`2 which is an unconditional basis for

X`2 if (xi)∞i=1 is unconditional in X. Furthermore, the map ei 7→ xi extends
to a well defined linear operator I : X`2 → X of norm 1. Note also that
(ei)

∞
i=1 is a bimonotone basis for X`2 , even if (xi)∞i=1 is not bimonotone in X.

Proposition 3.1. Assume that (xi)∞i=1 is a shrinking basis of X. Then:

(i) The space X`2 is reflexive. In particular, (ei)
∞
i=1 is a shrinking and

boundedly complete basis of X`2.
(ii) The space (X`2)∗ is 2-AUS. In particular, Sz((X`2)∗) = ω.
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Proof. Statement (i) is a particular case of [19, Corollary 3.4].
(ii) Since (ei)∞i=1 is shrinking, (X

`2)∗ can be seen as the closed linear span
of {e∗i : i ∈ N}. Now it is clear that if x∗, y∗ ∈ (X`2)∗ with max supp(x∗) <
min supp(y∗), then ‖x∗ + y∗‖2 ≤ ‖x∗‖2 + ‖y∗‖2. Here, the support is meant
with respect to the basis (e∗i )

∞
i=1 of (X`2)∗. Hence (X`2)∗ is 2-AUS and has

Szlenk index ω.
Note that this also implies that the bidual norm on (X`2)∗∗ is weak∗-

AUC and, by Proposition 2.6, re-proves the fact that X`2 is reflexive, since
we know that (ei)∞i=1 is shrinking.

Our next proposition provides a crucial estimate for Sz(X`2).

Proposition 3.2. Assume that (xi)
∞
i=1 is a shrinking basis of X. Then

Sz(X`2) ≤ Sz(X).

Our strategy will be to show that Sz(X`2) ≤ Sz(`2(X)), where `2(X)
is the space of sequences (xn)

∞
n=1 in X such that

∑∞
n=1 ‖xn‖2X is finite,

equipped with its natural norm,

‖(xn)∞n=1‖`2(X) =
( ∞∑
n=1

‖xn‖2X
)1/2

.

Then the conclusion will follow from the well known fact that Sz(`2(X)) =
Sz(X) when X is infinite-dimensional (see [5] for a general study of the
behavior of the Szlenk index under direct sums).

Let M1 be the set of all sequences (y∗i )
∞
i=1 in B`2(X∗) such that there

exist n ∈ N and 0 = k0 < · · · < kn−1 with the following properties: for
every 1 ≤ i < n, y∗i belongs to the linear span of {x∗j : ki−1 < j ≤ ki},
y∗n belongs to the closed linear span of {x∗j : j > kn−1} and y∗i = 0 for all
i > n. Then we denote byM2 the set of all sequences (y∗i )

∞
i=1 in B`2(X∗) such

that there exists an infinite sequence 0 = k0 < k1 < · · · such that for all
i ∈ N, y∗i belongs to the linear span of {x∗j : ki−1 < j ≤ ki}. Finally, we set
M =M1 ∪M2.

It is easy to check that M is weak∗-compact in `2(X∗) = `2(X)∗.
Recall that I : X`2 → X denotes the continuous linear map such that

I(ei) = xi and ‖I‖ = 1, and define j :M → (X`2)∗ by

∀y∗ = (y∗i )
∞
i=1 ∈M, j(y∗) =

∞∑
i=1

I∗y∗i .

An elementary application of the Cauchy–Schwarz inequality shows that j
is well defined and

∀y∗ ∈M, ‖j(y∗)‖(X`2 )∗ ≤ ‖y
∗‖`2(X∗).

It is also easy to verify that j is weak∗-to-weak∗ continuous.
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Note that the set j(M) can be less formally described as the set of all∑∞
j=1 bje

∗
j such that there exists an increasing finite or infinite sequence

(Fk)k∈A of blocks of N such that∑
k∈A

∥∥∥∑
j∈Fk

bjx
∗
j

∥∥∥2
X∗
≤ 1.

So we now consider the weak∗-compact subset K = j(M) of B(X`2 )∗ . First
we will need to show that K is norming for X`2 . More precisely, we have:

Claim 3.3. There exists a constant c > 0 such that

∀x ∈ X`2 , ‖x‖X`2 ≥ c sup
x∗∈K

x∗(x).

Proof. Let C ≥ 1 be the bimonotonicity constant of the Schauder basis
(xi)

∞
i=1 of X, let x =

∑∞
i=1 aiei ∈ X`2 and ε > 0. Pick 0 ≤ k0 < · · · < kn

such that ( n∑
i=1

∥∥∥ ki∑
j=ki−1+1

ajxj

∥∥∥2
X

)1/2
≥ ‖x‖X`2 − ε.

It follows from the Hahn–Banach theorem that for all 1 ≤ i ≤ n, there exists
u∗i ∈ X∗ with supp(u∗i ) ⊂ (ki−1, ki] and such that

u∗i

( ki∑
j=ki−1+1

ajxj

)
=
∥∥∥ ki∑
j=ki−1+1

ajxj

∥∥∥
X

and ‖u∗i ‖X∗ ≤ C.

We now set

y∗i =
‖
∑ki

j=ki−1+1 ajxj‖Xu∗i
C(
∑n

i=1 ‖
∑ki

j=ki−1+1 ajxj‖2X)1/2
for 1 ≤ i ≤ n, y∗i = 0 for i > n.

It is then clear that y∗ = (y∗i )
∞
i=1 ∈M and

j(y∗)(x) =
1

C

(∥∥∥ ki∑
j=ki−1+1

ajxj

∥∥∥2
X

)1/2
≥ ‖x‖X`2 − ε

C
.

Claim 3.4. The function j : M → K is 2C-Lipschitz, where C is the
bimonotonicity constant of the basis (xi)

∞
i=1 in X.

Proof. Fix y∗ = (y∗i )
∞
i=1, z

∗ = (z∗i )
∞
i=1 ∈ M . Then there exist S, T ⊂ N

and sequences (Is)s∈S , (Jt)t∈T of successive intervals, where S, T are (pos-
sibly infinite) initial segments of N, {i : y∗i 6= 0} ⊂ S, {i : z∗i 6= 0} ⊂ T ,
and for each s ∈ S and t ∈ T , supp(y∗s) ⊂ Is and supp(z∗t ) ⊂ Jt (here the
supports of y∗s and z∗t are meant with respect to the basis (x∗j )

∞
j=1 of X∗).

By allowing either Is = ∅ or Jt = ∅ for s > maxS or t > maxT , we may
assume S = T = N. For each i ∈ N, consider three cases:
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(a) Ji ⊂ Ii,
(b) Ii ⊂ Ji,
(c) neither (a) nor (b) holds.

If (a) holds, let

u∗i = y∗i − z∗i ∈ span{x∗j : j ∈ Ii} and v∗i = 0 ∈ span{x∗j : j ∈ Ji}.

If (b) holds, let

u∗i = 0 ∈ span{x∗j : j ∈ Ii} and v∗i = y∗i − z∗i ∈ span{x∗j : j ∈ Ji}.

If (c) holds, let

u∗i = P ∗Ii\Ji(y
∗
i − z∗i ) ∈ span{x∗j : j ∈ Ii},

v∗i = P ∗Ji(y
∗
i − z∗i ) ∈ span{x∗j : j ∈ Ji}.

Here, for an interval I, PI : X → span{xj : j ∈ I} denotes the basis
projection. Note that in case (c), Ii \ Ji is an interval. Then, since each
vector u∗i , v

∗
i is either zero or an interval projection of y∗i − z∗i , we see that

for each i, ‖u∗i ‖X∗ ≤ C‖y∗i − z∗i ‖X∗ and ‖v∗i ‖X∗ ≤ C‖y∗i − z∗i ‖X∗ . It follows
that u∗ = (u∗i )

∞
i=1, v

∗ = (v∗i )
∞
i=1 lie in `2(X)∗ and ‖u∗‖`2(X)∗ , ‖v∗‖`2(X)∗ ≤

C‖y∗ − z∗‖`2(X)∗ . Because the (u∗i )
∞
i=1 are successively supported, another

application of the Cauchy–Schwarz inequality implies that
∑∞

i=1 u
∗
i is norm

convergent in (X`2)∗ with ‖
∑∞

i=1 u
∗
i ‖(X`2 )∗ ≤ C‖y∗ − z∗‖`2(X)∗ . Similarly,

‖
∑∞

i=1 v
∗
i ‖`2(X)∗ ≤ C‖y∗ − z∗‖`2(X)∗ . Since j(y∗) − j(z∗) =

∑∞
i=1 y

∗
i − z∗i =∑∞

i=1 u
∗
i + v∗i , we conclude that

‖j(y∗)− j(z∗)‖(X`2 )∗ ≤ 2C‖y∗ − z∗‖`2(X)∗ .

Proof of Proposition 3.2. It is easily seen that if E and F are Banach
spaces, B ⊂ E∗ and C ⊂ F ∗ are weak∗-compact and f : B → C is a
weak∗-to-weak∗ continuous Lipschitz surjection from B to C, then Sz(C) ≤
Sz(B) (see [7, Lemma 2.5(i)]). It follows from this fact and Claim 3.4 that
Sz(K) ≤ Sz(M). On the other hand, since M ⊂ B`2(X)∗ , we deduce from [5]
that Sz(M) ≤ Sz(`2(X)) = Sz(X). Combining these yields Sz(K) ≤ Sz(X).
Denote by L the weak∗-closed convex hull of K. It follows from Claim 3.3
and the geometric Hahn–Banach theorem that cB(X`2 )∗ ⊂ L ⊂ B(X`2 )∗ .
Finally, we can apply [7, Theorem 1.1] to deduce Sz(L) ≤ Sz(X) from
Sz(K) ≤ Sz(X).

The construction of our family (Gα)α∈Γ\Λ of spaces will also rely on the
use of the Schreier families. These were introduced in [2]. Let us now recall
the definition of the Schreier family Sα for α a countable ordinal. Recall that
[N]<ω denotes the set of finite subsets of N, which we identify with the set of
void or finite, strictly increasing sequences in N. We complete the notation
introduced in Section 2 by writing E < F to mean maxE < minF , and
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n ≤ E to mean n ≤ minE. For each countable ordinal α, Sα will be a subset
of [N]<ω. We let

S0 = {∅} ∪ {(n) : n ∈ N},

Sα+1 = {∅} ∪
{ n⋃
i=1

Ei : n ∈ N, ∅ 6= Ei ∈ Sα, E1 < · · · < En, n ≤ E1

}
,

and if α < ω1 is a limit ordinal, we fix an increasing sequence (αn)∞n=1 tending
to α and let

Sα = {E ∈ [N]<ω : ∃n ≤ E ∈ Sαn}.
In what follows, [N]<ω will be topologized by the identification [N]<ω 3 E ↔
1E ∈ {0, 1}N, where {0, 1}N is equipped with the Cantor topology.

Given (mi)
k
i=1, (ni)

k
i=1 in [N]<ω, we say (ni)

k
i=1 is a spread of (mi)

k
i=1 if

mi ≤ ni for each 1 ≤ i ≤ k.
We say that a subset F of [N]<ω is

(i) spreading if it contains all spreads of its members,
(ii) hereditary if it contains all subsets of its members,
(iii) regular if it is spreading, hereditary, and compact.

Given F ,G ⊂ [N]<N, we let

F [G] = {∅}∪
{ n⋃
i=1

Ei : n ∈ N, ∅ 6= Ei ∈ G, E1 < · · · < En, (minEi)
n
i=1 ∈ F

}
.

We refer to [8] for a detailed presentation of these notions and their funda-
mentals properties.

For a topological space F , we denote F1 its Cantor–Bendixson derived
set (the set of its accumulation points), for an ordinal α we let Fα be its
Cantor–Bendixson derived set of order α, and finally CB(F) is its Cantor–
Bendixson index.

We note that if F and G are regular subsets of [N]<ω, then F [G] is reg-
ular, and if the Cantor–Bendixson indices of F and G are α + 1 and β + 1,
respectively, then the Cantor–Bendixson index of F [G] is βα + 1 (see [8,
Proposition 3.1]).

For each n ∈ N, let
An = {E ∈ [N]<ω : |E| ≤ n}.

It is well known that for each α < ω1, Sα is regular with Cantor–Bendixson
index ωα+1. Moreover, for each n ∈ N, An is regular with Cantor–Bendixson
index n+1. These facts together with those cited from [8] yield the following.

Lemma 3.5. Fix an ordinal α < ω1 and n ∈ N.
(i) An[Sα] is regular with Cantor–Bendixson index ωαn+ 1.
(ii) For any β<ω1, Sβ[Sα] is regular with Cantor–Bendixson index ωα+β+1.
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Lemma 3.6. If F and G are regular families, E < F 6= ∅, and E,E ∪ F
∈ F [G], then either E ∈ F1[G] or F ∈ G.

Proof. Write E ∪ F =
⋃n
i=1Ei, where ∅ 6= Ei ∈ G, E1 < · · · < En, and

(minEi)
n
i=1 ∈ F .

If E∩En = ∅, then there exists 1 ≤ m ≤ n such that E∩Ei 6= ∅ for each
i < m and E ∩ Ei = ∅ for each m ≤ i ≤ n.

If m = 1, then E = ∅ ∈ F1, since ∅ ≺ (minEi)
n
i=1 ∈ F .

If m > 1, then the representation

E =
m−1⋃
i=1

(E ∩ Ei)

witnesses that E ∈ F1[G], since (minEi)
m−1
i=1 ∈ F1.

Now if E ∩ En 6= ∅, then F = En \ E ⊂ En, and F ∈ G.

We are now ready to prove Theorem 1.3, that is, to construct for each
α ∈ Γ \Λ a reflexive Banach space Gα with an unconditional basis and such
that Sz(Gα) = α and Sz(G∗α) = ω.

So, let α ∈ Γ \ Λ. We write α = ωδ with δ ∈ (0, ω1). Then by standard
facts about ordinals, either δ = ωξ for some ordinal ξ ∈ [0, ω1), or δ = β + γ
for some β, γ < δ. We shall separate our construction into these two main
cases.

3.1. First case: δ = ωξ with ξ ∈ [0, ω1). In this situation, ξ must be
either 0 or a successor ordinal, otherwise α ∈ Λ.

If ξ = 0, let Fn = S0 for all n ∈ N ∪ {0}.
If ξ = ζ + 1, let F0 = S0 and Fn+1 = Sωζ [Fn] for n ∈ N.
In both cases, denote

Mn =
{
2−n

∑
i∈E

e∗i : E ∈ Fn
}

for n ∈ {0} ∪ N and M =
∞⋃
n=0

Mn,

where (e∗i )
∞
i=1 is the sequence of coordinate functionals defined on c00.

Then we define Gα to be the completion of c00 with respect to the norm

‖x‖Gα = sup
x∗∈M

|x∗(x)|.

Note that the canonical basis of c00 is a 1-suppression unconditional basis
of Gα. To keep our notation consistent, we shall denote by (xi)

∞
i=1 this ba-

sis of Gα. The reason is that we need next to set Gα = G`2
α , where this

construction is meant with respect to the basis (xi)∞i=1, which we shall later
call the canonical basis of Gα. On the other hand (ei)

∞
i=1 will still denote

the canonical basis of c00 considered as a basis of Gα. Finally, we define the
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following subsets of G∗α:

Kn =
{
2−n

∑
i∈E

x∗i : E ∈ Fn
}

for n ∈ {0} ∪ N and K =
∞⋃
n=0

Kn.

Later, the sets Mn and M will be considered as subsets of G∗α.
It is easily checked thatGω = c0 andGω = `2. ClearlyGω is reflexive with

an unconditional basis and Sz(Gω) = Sz(G∗ω) = ω. So we shall now assume
that ξ is different from 0 and is therefore a countable successor ordinal.

Proposition 3.7. Assume α = ωω
ξ , where ξ is a countable successor

ordinal. Then Sz(Gα) ≤ α.

Proof. By [7, Theorem 1.1], it is sufficient to prove that Sz(K) ≤ α, since
BG∗α is the weak∗-closed, absolutely convex hull of K.

First, it is easy to see that for any ε > 0 and any ordinal η,

sηε(K) ⊂ {0} ∪
∞⋃
n=0

sηε(Kn),

whence
Sz(K, ε) ≤

(
sup

n∈N∪{0}
Sz(Kn, ε)

)
+ 1.

Thus it suffices to show that supn∈N∪{0} Sz(Kn, ε) < α for each ε > 0.
For a given ε > 0, we will provide an upper estimate for Sz(Kn, 2ε) in

one of two ways, depending on whether n is large or small relative to ε. The
Cantor–Bendixson index of Kn is an easy upper bound for Sz(Kn, 2ε), which
is a good upper bound for small n. We note that the map φn : Fn → Kn

given by φn(E) =
∑

i∈E x
∗
i is a homeomorphism from Fn to Kn, where Kn

is endowed with its weak∗ topology. It follows that for any n ∈ N ∪ {0} and
any ε > 0,

Sz(Kn, ε) ≤ CB(Kn) = CB(Fn).

We now turn to bounding Sz(Kn, 2ε) for large n. Recall that ξ = ζ + 1
with ζ ∈ [0, ω1). We now prove that if 2−m < ε, then for any n > m and any
ordinal η,

sη2ε(Kn) ⊂
{
2−n

∑
i∈E

x∗i : E ∈ Fηm[Fn−m]
}
.

The proof is by induction on η, with the base case following from the fact
that Fa[Fb] = Fa+b for any a, b ∈ N. The limit ordinal case follows by taking
intersections. Finally, assume we have the result for some η and

2−n
∑
i∈E

x∗i ∈ s
η+1
2ε (Kn),
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so that the inductive hypothesis guarantees that E ∈ Fηm[Fn−m]. Then there
exists a sequence(

2−n
∑
i∈Ej

x∗i

)∞
j=1
⊂ sη2ε(Kn, ε) ⊂

{
2−n

∑
i∈E

x∗i : E ∈ Fηm[Fn−m]
}

converging weak∗ to 2−n
∑

j∈E x
∗
i and such that

lim inf
j→∞

∥∥∥2−n∑
i∈E

x∗i − 2−n
∑
i∈Ej

x∗i

∥∥∥
G∗α
≥ ε.

Of course, this means that Ej → E in Fn, so that, after passing to another
subsequence, we may assume Ej = E ∪ Fj for some Fj 6= ∅ with E < Fj .
Now since E,Ej ∈ Fηm[Fn−m] for each j, by Lemma 3.6 either Fj ∈ Fn−m or
E ∈ Fη+1

m [Fn−m]. However, if Fj ∈ Fn−m, then 2m−n
∑

i∈Fj x
∗
i ∈ BG∗α and

∀j ∈ N,
∥∥∥2−n∑

i∈E
x∗i −2−n

∑
i∈Ej

x∗i

∥∥∥
G∗α

= 2−m
∥∥∥2m−n∑

i∈Fj

x∗i

∥∥∥
G∗α
≤ 2−m < ε,

a contradiction. This concludes the successor case.
We now deduce from the inclusion just proved that

sω
ωζm+1

2ε (Kn) ⊂
{
2−n

∑
i∈E

x∗i : E ∈ Fω
ωζm+1

m [Fn−m]
}
= ∅.

So, we can estimate

Sz(Kn, 2ε) ≤

{
ωω

ζn + 1, n ≤ log2(1/ε),

ωω
ζdlog2(1/ε)e + 1, n > log2(1/ε),

which finishes the proof of Proposition 3.7.

Proof of Theorem 1.3 in the first case. Let α = ωω
ξ , where ξ is a count-

able successor ordinal and Gα, Gα are constructed as above.
Since the canonical basis (xi)∞i=1 of Gα is 1-suppression unconditional, it

is clear that (ei)
∞
i=1 is a 1-suppression unconditional basis for Gα. Proposi-

tion 3.7 ensures that Sz(Gα) ≤ α and therefore Gα does not contain `1. Then
a classical result of R. C. James [12] shows that (xi)∞i=1 is a shrinking basis
of Gα. Thus we can apply Proposition 3.1 to deduce that Gα is reflexive and
Sz(G∗α) = ω.

We also deduce from Proposition 3.2 that Sz(Gα) ≤ Sz(Gα) = α.
Now we have to prove that Sz(Gα) ≥ α. So write again α = ωω

ζ+1 with
ζ ∈ [0, ω1). Suppose n ∈ N and E < F are such that F ∈ Fn. Fix k ∈ F \E.
Note that

2−n
∑
i∈F

e∗i ∈Mn
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and∥∥∥2−n∑
i∈E

e∗i − 2−n
∑
i∈F

e∗i

∥∥∥
Gα
≥
∣∣∣(2−n∑

i∈E
e∗i − 2−n

∑
i∈F

e∗i

)
(ek)

∣∣∣ = 2−n,

since ‖ek‖Gα = 1. From this and an easy induction argument, we see that
2−n

∑
i∈E e

∗
i ∈ s

µ
2−n−1(BG∗α) for any n ∈ N, any 0 ≤ µ < CB(Fn) and any

E ∈ Fµn . Since CB(Fn) = (ωω
ζ
)n = ωω

ζn, we deduce that

Sz(Gα) ≥ sup
n∈N

ωω
ζn = ωω

ζ+1
= α.

This finishes the proof and our construction for α = ωω
ξ with ξ being a

countable successor ordinal.

3.2. Second case: δ = β + γ for some β, γ < δ. We will now slightly
modify our construction in order to treat the case of α = ωβ+γ with ωβ < α
and ωγ < α. We have to consider two subcases.

First suppose γ is a limit ordinal. We fix γ0 = 0 and an increasing
sequence (γn)

∞
n=1 such that supn∈N γn = γ. Then we set

F0 = Sβ and Fn = Sγn [Sβ] for n ∈ N.

If γ = ζ + 1 is a successor ordinal, we set

F0 = Sβ+ζ and Fn = An[Sβ+ζ ] for n ∈ N.

In either case, let

Mn =
{
2−n

∑
i∈E

e∗i : E ∈ Fn
}

for n ∈ {0} ∪ N and M =

∞⋃
n=0

Mn.

As in Subsection 3.1, we define Gα to be the completion of c00 with
respect to the norm ‖x‖Gα = supx∗∈M |x∗(x)| and let Gα = G`2

α , where this
construction is meant with respect to the canonical basis (xi)∞i=1 of Gα. As
previously, we define

Kn =
{
2−n

∑
i∈E

x∗i : E ∈ Fn
}

for n ∈ {0} ∪ N and K =
∞⋃
n=0

Kn.

Proposition 3.8. Assume that α is a countable ordinal that can be writ-
ten as α = ωβ+γ with ωβ < α and ωγ < α. Then Sz(Gα) ≤ α.

Proof. Again, it is sufficient to show that Sz(K) ≤ α. Arguing as in
Proposition 3.7, we first note that for any ε > 0 and n ∈ N,

Sz(Kn, ε) ≤ CB(Fn) =

{
ωβ+γn + 1, γ a limit,
ωβ+µn+ 1, γ = ζ + 1.
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Now for n ∈ N and ε > 0 such that 2−n < ε, we claim that for any ordinal η,

sη2ε(Kn) ⊂

{{
2−n

∑
i∈E x

∗
i : E ∈ S

η
γn [Sβ]

}
, γ a limit,{

2−n
∑

i∈E x
∗
i : E ∈ A

η
n[Sβ+ζ ]

}
, γ = ζ + 1.

The proof is even easier than the analogous proof in the first case, so we
omit it. Note that in particular when γ is a limit ordinal and 2−n < ε, we
have Sωγγn = ∅, whence the previous claim yields the estimate Sz(Kn, 2ε) ≤
ωγ < ωβ+γ when 2−n < ε. Similarly, since Aωn = ∅, we see that Sz(Kn, 2ε) ≤
ω < ωβ+ζ+1 when 2−n < ε.

Therefore for n ≤ log2(1/ε),

Sz(Kn, 2ε) ≤ CB(Fn) =

{
ωβ+γn + 1, γ a limit,
ωβ+µn+ 1, γ = ζ + 1,

and for n > log2(1/ε),

Sz(Kn, 2ε) ≤

{
ωγ , γ a limit,
ω, γ = ζ + 1.

Thus in either case, for every ε > 0, supn∈N∪{0} Sz(Kn, ε) < α, yielding the
result.

Proof of Theorem 1.3 in the second case. The end of the proof is the
same as for the first case, after noting that CB(Fn) = ωβ+γn + 1 when γ is
a limit ordinal, and CB(Fn) = ωβ+ζn+ 1 if γ = ζ + 1.
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